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摘 要:遥感卫星数据云检测分割是遥感影像处理中的重要环节,为了解决目前碎云薄云检测精度较低的问题,提出

了一种采用基于高阶语义解码和自适应卷积编码的云检测方法。这种方法针对云团和碎云薄云之间的空间分布联

系,提出了自适应卷积编码器来提取云团之间的关联信息。然后,使用高阶语义指导模块来解码语义特征,指导高分

辨率的云掩码图生成。此外,这种方法还设计了一种动态联合损失函数,该损失函数通过动态计算样本中的漏检误检

像素来构建权重,以引导神经网络关注碎云薄云特征,从而提高整体精度。实验结果表明,提出的算法在遥感图像上

云分割能力可以达到96.5%的精确度和88.1%的交并比,可以很好地检测碎云薄云。
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Abstract:Cloud
 

detection
 

of
 

remote
 

sensing
 

satellite
 

data
 

is
 

a
 

crucial
 

component
 

in
 

the
 

processing
 

of
 

remote
 

sensing
 

images.
 

To
 

address
 

the
 

issue
 

of
 

low
 

accuracy
 

in
 

detecting
 

broken-clouds
 

and
 

thin-clouds,
 

this
 

paper
 

proposes
 

a
 

novel
 

cloud
 

detection
 

method
 

that
 

utilizes
 

high-order
 

semantic-guided
 

decoding
 

and
 

adaptive
 

convolutional
 

encoding.
 

The
 

method
 

leverages
 

the
 

spatial
 

distribution
 

relationship
 

between
 

the
 

main
 

cloud
 

and
 

broken-clouds
 

by
 

introducing
 

an
 

adaptive
 

convolutional
 

encoder
 

to
 

extract
 

correlation
 

information
 

between
 

the
 

main
 

cloud
 

clusters.
 

A
 

high-order
 

semantic-guided
 

decoding
 

module
 

is
 

then
 

utilized
 

to
 

decode
 

semantic
 

features,
 

thus
 

restoring
 

high-resolution
 

cloud
 

mask
 

images.
 

Moreover,
 

a
 

dynamic
 

fusion
 

loss
 

function
 

is
 

designed
 

to
 

calculate
 

the
 

weight
 

by
 

dynamically
 

computing
 

the
 

missed
 

and
 

wrong
 

pixels
 

in
 

the
 

prediction,
 

guiding
 

the
 

network
 

to
 

focus
 

on
 

broken-clouds
 

and
 

thin-clouds,
 

features,
 

thereby
 

enhancing
 

the
 

overall
 

accuracy.
 

Experimental
 

results
 

demonstrate
 

that
 

the
 

proposed
 

algorithm
 

achieves
 

an
 

accuracy
 

of
 

over
 

96.5%
 

and
 

an
 

intersection
 

over
 

union
 

of
 

over
 

88.1%,
 

effectively
 

detecting
 

broken-clouds
 

and
 

thin-
clouds.
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0 引  言

  遥感卫星的云检测主要依赖于图像的像素值和光谱特

征分析,以识别和区分图像中的云层,并据此获取更准确的

地表影像数据。遥感卫星云检测技术的主要目的是识别遥

感图像中的云层,为研究者提供更准确的数据和信息。在

军事领域,遥感卫星云检测技术可以用于目标探测、军事情

报和战术决策等方面。通过使用遥感卫星云检测技术,军
方可以实时监测敌方部队的活动情况,提高战术作战效率。

在民用领域,遥感卫星云检测技术主要用于气象预报、环境

保护等领域。在气象预报方面,遥感卫星云检测技术可以

帮助气象部门准确地预报天气情况,减轻自然灾害对人们

生活的影响。在环境保护方面,遥感卫星云检测技术可以

帮助监测大气污染、海洋污染等情况,从而及时采取措施保

护环境。随着遥感技术的发展,研究者获取地面影像的能

力得到显著提升。然而遥感卫星极易受到天气因素的影

响,其中最明显的一个因素就是云层。云层的出现会直接

阻挡视线,遮盖目标物体,使得其应用价值大大降低。云检
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测识别是使用遥感卫星图像的关键步骤,精确的云识别可

以帮助研究者处理遥感卫星数据,大大提高研究者的处理

效率。
在早期云检测方法中传统的图像处理方法占据着主导

地位[1]。云检测的方法大致分为两类:基于波段阈值和纹

理信息的方法和基于深度学习的方法。基于波段阈值和纹

理信息的方法需要专家特征来建立专家特征库。基于波段

阈值和纹理信息的云检测方法最早是Zhu等[2-3]提出的

FMask算法,通过多波段的阈值来进行云检测。康一飞

等[4]利用高斯混合模型来自适应计算出遥感图像的灰度阈

值,分割前景和后景来实现 云 检 测 分 割。Otus算 法 和

K-means算法[5]都是通过计算云层与相邻环境之间的相似

性进行检测,难以区分复杂地表环境,对地表噪声敏感,鲁
棒性差。这类方法数学原理清晰,计算成本低,但往往只利

用图像的浅层信息,在处理复杂背景时,抗噪性能差,容易

混淆。
基于深度学习的方法不需要人工的干预和介入,在检

测过程中具备强大的鲁棒性,能够提取到遥感图像中的深

层特征,而且随着深度的提高,越能够提取到抽象且具有全

局性的信息,特征的表征能力就越强。其中最具代表的便

是基于卷积神经网络的CNN模型[6],Li等[7]提出 MSCFF
算法利用多尺度卷积进行特征融合提取,实现了高分辨率

遥感图像的云分割。Guo等[8]提出的CDNetV2使用高级

语义指导模块将高级语义送入解码模块,指导云语义的解

码,在云雪分割的场景下取得了更加优异的效果。Wieland
等[9]提出的 MS-UNet基于改进的UNet模型结构,实现了

对遥 感 图 像 中 多 种 目 标 的 高 精 度 检 测。目 前 基 于

Transformer的神经网络算法[10-12]在多个图像处理的数据

集中展现了出色的能力,Transformer模型在多尺度信息

建模以及全局上下文交互层面上具有显著的优点。Xie
等[13]提出的SegFormer算法将 Transformer引入到图像

分割中,在多个图像分割数据集中取得了最好的性能。
对于云检测来说,其物理特性使得检测难以进行。例

如小面积的碎云在特征提取过程中极易被忽略,云雪共存

的场景极易误识别雪为云。碎云漏检和高亮地表反射物误

检易受样本数量所带来的影响。
为解决上述问题,本文构建了自适应多尺度卷积编码

模块(adaptive
 

multi-scale
 

convolutional
 

block,
 

AMSCB),
该模块利用CNN提取局部的纹理特征并建立有效的自注

意力,再利用Transformer范式来将局部特征融入于全局

进行交互,帮助模型更好的预测云的空间位置。当前的注

意力解码模块[14-17]往往都只用到了自注意力的部分,忽略

了高阶语义信息的指导作用,针对这个问题本文提出了一

种高 阶 语 义 指 导 解 码 模 块 (high-order
 

semantic-guided
 

decoding
 

module,
 

HSDM),在解码过程中融合高级语义的

特征信息,指导云掩膜的生成。最后利用动态联合损失函

数(dyanmic
 

fusion
 

loss
 

function,
 

DFLoss)增加训练期间漏

检误检碎云薄云数据的惩罚权重,减小训练样本所带来的

影响,增强网络的碎云薄云检测能力。最后在数据集[6]上

实验,证明本文算法能有效提高遥感图像云检测的准确度。

1 模型算法介绍

1.1 总体架构

  为了能够解决薄云、碎云检测难,下垫面影响大的问

题,本文提出基于高阶语义指导解码和自适应卷积编码的

云检测算法,其结构如图1所示。主要利用了自适应多尺

度卷积编码模块来对原始遥感图像进行编码,然后利用高

阶语义指导解码模块对特征图进行解码,生成最后的云掩

码图。为了能够加强云团信息之间的联系,增强了信息交

互尺度的通透性,利用自适应编码模块从不同的空间尺度

对特征进行计算,适应不同大小的特征图,加强编码结构在

信息提取过程中对空间位置信息的感知能力,提取出充足

的语义信息。然后通过高阶语义指导解码模块将深层语义

特征作为指导,来解码浅层的语义特征图得到更准确的预

测。最后利用动态联合损失函数加强网络对薄云、碎云的

感知能力,优化训练过程。

图1 网络架构图
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1.2 自适应多尺度卷积编码模块

  在卫星遥感图像数据中,云团之间存在着位置关联,
碎云、薄云与主要云团之间的空间分布存在着相应的关

系,但Transformer自注意力模块在特征提取过程中难以

处理局部特征,因此利用卷积提取像素局部关系特征的优

点,设计了自适应多尺度卷积编码模块。该模块通过自适

应大小的金字塔结构空洞卷积捕获不同尺度下的特征,增
加神经网络感知空间位置感知能力,让网络可以有效的建

模不同云块之间的像素关系。自适应多尺度卷积编码模

块每一个阶段的结构如图2所示。

图2 AMSCB结构图

每一个阶段开始时,都先使用Embedding层来进行特

征降维,其结构如图3所示。

图3 Embedding网络结构图

在第一层结构如图3(a)所示,使用两次卷积和BN逐

步下采样,保证特征的细腻程度,并在两次操作中使用

GELU激活函数来激活网络感知,最后得到下采样1/4的

特征图。在其他层则利用图3(b)的结构下采样1/2得到

特征图。

在每一个模块中,先通过Norm层进行批归一化操作,
然后送入自注意力计算,最后再经过Norm层归一化后送

入前向反馈层(feed-forward
 

network,
 

FFN)中。前向反馈

层如图2所示,由3×3大小的深度可分离卷积和1×1大

小的卷积构成,其目的是对特征信息进行进一步提取。自

注意力 计 算 主 要 用 到 的 是 自 适 应 多 尺 度 卷 积 注 意 力

(adaptive
 

multi-scale
 

convolution
 

attention,
 

AMSCA),其
结构如图4所示。

图4 AMSCA模块结构图

它首先利用一个大小为5×5的深度可分离卷积来提

取特征信息,然后使用多路条形可分离卷积来计算不同尺

度下上下文关系,生成自注意力权重,最后与原来的输入

相乘,在数学上其表达式如式(1)和(2)所示。

attention=Conv ∑
3

i=0
Scalei(DWConv(F))  (1)

Out=attention×F (2)
其中,F 代表输入的特征,DWConv 代表深度可分离

卷积,Conv代表卷积,其中Scalei 表示i个分支。在每个

分支中选用了两个深度方向的长条形卷积来近似具有大

核的卷积。针对大小为(H,W)的特征图每个分支的内核

大小分别设置为 H/2+1、H/4+1和 H/8+1,这样可以

让主要云团和碎云之间可以找到充足的关联,而不过度关

注更远距离的干扰。
主干网络共有四层,原输入图像分辨率大小(H,W),

在每一层中特征图分辨率为(H/4,W/4),(H/8,W/8),
(H/16,W/16)和(H/32,W/32),其中各层重复次数为3、

3、12、3,经 过 主 干 网 络 提 取 后 各 层 通 道 数 为64,128,

256,512。

1.3 高阶语义指导解码模块
 

  在传统的解码模块中,常常使用空间和通道注意力机

制,这些方法利用自注意力机制来进行空间和通道上的信

息建模,在同一维度上计算各特征的权重分配,但是这样

的话会忽略掉高阶语义特征的指导作用。高阶语义中蕴
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含着更高级的纹理空间语义指导信息,在语义特征解码的

过程中有着不可忽略的作用。
为了能够利用高阶语义特征中的指导作用,加强特征

图在空间和通道纬度上的信息交流,本文设计了高阶语义

指导模块。为了能够捕获空间和通道上的双重信息,构建

两种纬度上信息解码路径,高阶语义指导解码模块需要输

入高阶 特 征 图 Xn+1 ∈ ℝ
2C×

H
2×

W
2 和 低 阶 特 征 图 Xn ∈

ℝC×H×W,其结构如图5所示。

图5 高阶语义指导解码模块示意图

在空间语义解码时,主要利用高阶特征图在空间位置

上的信息,指导低阶特征图的位置信息解码,其过程如图6
所示。

图6 空间信息解码结构图

首先将Xn+1 特征增强再重组采样成Xq ∈ℝC×H×W 作

为Query,其计算如式(3)所示。

Xq =Fs(Conv(Xn+1)) (3)
其中,Fs 表示采样重组。然后利用卷积提取Xq 中的

语义信息,经过池化操作并转置后生成Pq ∈ ℝ1×C,其计

算如式(4)所示。

Pq =Fsm θ(Fp(Conv(Xq)))  (4)
其中,Fp 表示全局池化操作,θ 表示 Reshape操作,

Fsm 表示Softmax函数。然后将Xn 和Xq 的特征信息拼

接成Xv ∈ ℝ2C×H×W 作为Value,其计算如式(5)所示。

Xv =Cat(Xq,Xn) (5)
其中,Cat表示拼接操作。利用卷积融合 Xv 中的语

义信息并转置后生成Pv ∈ ℝC×HW,其计算如式(6)所示。

Pv =θ(Conv(Xv)) (6)

将Pv 与Pq 相乘获得Pqv ∈ ℝ1×HW,其计算如式(7)
所示。

Pqv =Pq ×Pv (7)

Pqv 经过转置和Sigmoid函数激活后即得到Pinfo ∈

ℝ1×H×W 的空间特征信息,其计算如式(8)所示。

Pinfo =σ(θ(Pqv)) (8)
其中,σ是Sigmoid函数。最后将Pinfo 与低阶特征Xn

相乘,得到空间特征解码的特征图YP
n。

YP
n =Xn·Pinfo (9)

在空间信息解码分支中,更加关注空间纹理信息,指
导神经网络在空间纹理位置上的注意力权重分布。

在通道语义解码时,利用高阶特征图指导低阶特征图

对各通道上的信息进行感知,其过程如图7所示。

图7 通道信息解码结构图

首先将Xn+1 特征增强再重组采样成Xq ∈ℝC×H×W 作

为Query,其计算如式(10)所示。

Xq =Fs(Conv(Xn+1)) (10)
然后Xq 经过卷积提取语义信息并转置后生成Cq ∈

ℝHW×1×1,其计算如式(11)所示。

Cq =θ(Conv(Xq)) (11)
然后将Xn 和Xq 的特征信息拼接成Xv ∈ℝ2C×H×W 作

为Value,其计算如式(12)所示。

Xv =Cat(Xq,Xn) (12)
利用卷 积 融 合 Xv 语 义 信 息 并 转 置 后 生 成Cv ∈

ℝC×HW,其计算如式(13)所示。

Cv =θ(Conv(Xv)) (13)
将Cv 与Cq 相乘获得Cvq ∈ ℝC×1×1,其计算如式(14)

所示。

Cvq =Cq ×Cv (14)
经过 转 置 和 Sigmoid 函 数 激 活 后 即 得 到 Cinfo ∈

ℝC×1×1 通道特征信息,其计算如式(15)所示。

Cinfo =Convσ(LN(Conv(Cvq)))  (15)

其中,LN 表示LayerNorm,最后Cinfo 与低阶特征Xn

相乘得到通道特征解码的特征图YC
n。

YC
n =Xn·Cinfo (16)

在通道语义解码分支中,更加关注各通道中的语义信

息,指导神经网络在不同通道上的注意力权重分布。最后

将空间特征和通道特征相互叠加,获得在高阶语义指导下

解码的特征信息。

Yn =YP
n +YC

n (17)

HSDM在解码的过程中不断加强低阶语义的特征信
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息,还能有效地融合不同纬度上的特征信息,使网络获得

高效的解码能力,从而提升算法在云检测上的精度。

1.4 动态联合损失函数

  遥感图像云检测中薄云、碎云检测一直是科研工作者

解决的重点问题。薄云易受下垫面的干扰,影响薄云的精

度检测。碎云数量少、且远离主要云团、易受周围像素的

影响,导致检测精度的下降。因此设计了动态联合损失函

数来解决这一问题,损失函数如式(18)所示。

LDF =∑
n

i=1

[ωi(αceLce+αdiceLdice)] (18)

LDF 为动态联合损失函数,n 为批量的大小,Lce 为交

叉熵损失函数,Ldice 为骰子损失函数,ωi 为动态权重。Lce

是分类问题上最经典的损失函数。遥感图像云分割任务

中,往往单张训练图片样本中要么全为非云,要么全为云,
在训练过程中存在着样本的分布不均的现象。Ldice 被证

明可以很好的解决样本分布不均衡的情况,通过将损失函

数联合在一起使得神经网络在训练过程中更加平滑。考

虑到薄云碎云部分在数据集中往往只有一小部分,在训练

过程中极易被忽略,因此设计了动态感知漏检误检的权重

ωi 来感知检测结果中误检和漏检的云在整体中的比重。
当网络的检测结果中存在漏检和误检的像素时,网络检测

错误的惩罚将按比例增加,加强网络对漏检误检的感知,
动态权重ωi 的定义如式(19)所示。

ωi =lineσ ∑
H

h=0∑
W

w=0|Ph,w -Lh,w|
H ×W    (19)

Ph,w 表示预测结果在 (h,w)处的像素值,Lh,w 表示

标签在(h,w)处的像素值,∑
H

h=0
∑
W

w=0
|Ph,w-Lh,w|表示在这

张图片中误检和漏检的像素总数,通过Sigmoid函数激活

后线性映射得到权重ωi。

2 实验与结果

2.1 实验数据

  本文的实验数据是来自Lantast-8卫星的多光谱的影

像数据[6],包含3个可见波段和近红外线波段,在数据集中

有林地、雪山和水体等多种下垫面,丰富的下垫面可以很

好提升网络模型的实用性。
为了构建数据集本文舍弃了近红外波段,仅选用了可

见光波段。数据集中包含95幅卫星遥感图像,将数据集

进行划分训练集∶验证集∶测试集为6∶2∶2。为了方便

训练,本文将训练集和验证集中的图像分割成384×384的

大小,最后训练集中包含26
 

300幅图像,验证集中包含

8
 

400幅图像,最后在测试集中测试网络的云检测能力。

2.2 评价指标

  单一精度评估指标难以准确完整的体现网络模型的

实际性能,因此选用多种评估指标:交并比(intersection-
over-union,

 

IoU)、总体精度(overall
 

accuracy,
 

OA)和F1-

图8 数据集

score三种语义分割评价指标对云检测方法进行评价。

IoU =
TP

TP+FP+FN
(20)

OA =
TP+FN

TP+FP+FN +TN
(21)

F1-score=
2TP

2TP+FP+FN
(22)

在上述公式中TP代表原本为云且预测为云的数量,

FP代表原本为非云且预测为云的数量,FN代表原为云且

预测为非云的数量,TN代表原本为非云且预测为非云的

数量。IoU 是类别为云的预测值和真实值之间的重合度,
反映模型的预测能力,OA 为被预测正确的像素在整体中

的占比,反映模型的整体准确率。F1-score是精确度和召

回率的调和平均值,反映这两个指标的综合情况。通过上

述精度评估指标,可以对云检测任务当中的分类精度进行

衡量,判断出网络模型的综合性能。

2.3 实验环境配置

  为了保证实验的可靠性,每个模型都使用相同的训练

策略。批量大小设置为4,网络优化方法使用AdamW,该优

化方法计算高效,内存使用很少。初始学习率为0.00001,
学习率使用多步衰减策略,每两轮学习率衰减为前者的

0.9,让网络以较高的初始学习率进行快速地学习,并且在

网络 优 化 迭 代 的 后 期 阶 段 逐 步 降 低 学 习 率。实 验 在

NVIDIA
 

RTX
 

3080
 

GPU
 

12G上利用Pytorch实现。

2.4 实验结果

  为 验 证 神 经 网 络 在 各 项 指 标 下 的 能 力,选 取

SegFormer、MS-UNet、CDNetV2和CloudNet[7]等算法进

行对比。在进行比 较 时,首 先 将 原 始 图 像 顺 序 切 分 成

384×384的大小,再使用训练好的网络模型进行预测。
首先进行定量分析,在测试集中测试不同算法模型的

评价指标,实验结果如表1所示。
从对比实验结果中可以发现,SegFormer算法性能最

低。本 文 算 法 相 较 于 主 流 的 MS-UNet、CDNetV2 和

CloudNet在各项指标均有一定程度的提升。IoU、OA和

F1-score相较于 MS-UNet分别提高了8.41%,2.65%和
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  表1 不同算法的性能对比

算法模型 IoU OA F1-score
SegFormer 0.774

 

6 0.922
 

1 0.873
 

0

MS-UNet 0.797
 

4 0.938
 

7 0.887
 

2

CDNetV2 0.833
 

4 0.942
 

9 0.909
 

1

CloudNet 0.785
 

0 0.964
 

8 0.879
 

2
本文算法 0.881

 

5 0.965
 

2 0.937
 

0

4.98%,相较于 CDNetV2分别提高了4.81%,2.23%和

2.79%,相较于 CloudNet分别提高了9.65%,0.04%和

5.78%。由此证明本文算法的有效性。对各算法在测试

集中的表现进行定性分析,对比结果如图9所示。
在图9中的对比结果中可以发现,SegFormer算法容

易混淆地表的高亮物体,存在着明显的漏检情况。MS-
Unet和CDNetV2算法在检测过程中能够较好的识别下

垫面与云之间的区别,但在云雪共存的场景下仍然存在误

  

图9 不同算法实验结果图

检的情况。CloudNet能够很好的区分云和雪之间的特征

差异,但是忽视了较多的碎云薄云,存在着漏检的情况。
本文算法在不同场景下有很好的适应性,能够有效地区别

云和下垫面,在实验结果中漏检和误检情况最少。此外本

文算法还具备更好的碎云薄云检测能力,其效果如图10
所示。

从图10(a)可以观测到红色方框中心存在着一片碎

云,SegFormer、MS-UNet、CDNetV2和 CloudNet均未能

预测出这一片较小的云。本文算法准确的预测出其位置

和形状,展现出本文算法在碎云检测中更能捕获云层之间

的关联关系。原始图像在黄色方框中存在着一块薄云,可
以看到在本文算法中薄云的纹理细节更加丰富,展现出本

文算法能够更完整的识别出云层覆盖。本文算法在碎云

检测上更加容易,并且能够更好的探测薄云。
为了能够更加有效的分析本文提出网络的易用性,计

算对比网络所消耗的性能,对实验中的各算法进行测试。
实验结果如表2所示。在表2中Params为参数量,代表

了模型的参数大小,FPS为单位时间处理的图像个数,代
表了模型的计算速度。本文算法在 AMSCB编码过程中

使用轻量化的深度可分离卷积来提取特征,它可以在保持

性能的同时,大大降低算法的计算量。在 HSDM 解码过

程中利用1×1大小的卷积核来充分融合特征信息,它能

够以很低的成本对特征进行降维,减小算法的计算量。因

此本文算法在适当的参数量下,取得了最快的计算速度。
2.5 消融实验

  为了验证本文算法的各个模块在总体网络中发挥的

作用,本文构造不同的消融实验网络。在 AblationNetV1
中去 除 AMSCB,在 AblationNetV2 中 去 除 HSDM,在
AblationNetV3中去除DFLoss,其结构如表3所示。

在相同的实验环境下,对不同的模块进行消融实验,
其表现结果如表4和如图11所示。

可以发现本文算法在各项指标中均具有更好的效果,
表4第1行和图11(a)表明缺失自适应多尺度卷积编码模

块后,编码器难以提取云特征和掌握云分布规律,算法在

整体精度上下降了约2%。表4第2行和图11(b)表明缺

失高阶解码模块后,在解码过程中无法利用深层特征图中

的高级语义来加强云的特征还原,算法在整体精度上下降

了2.5%。表4第3行和图11(c)表明缺失动态联合损失
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图10 不同算法实验结果局部效果图

表2 不同算法的参数对比

算法模型 Params
 

(M) FPS(1/S)
SegFormer 43.68 38
MS-UNet 34.33 29
CDNetV2 67.08 40
CloudNet 36.47 31
本文算法 41.16 44

表3 消融实验算法模型结构

算法模型 AMSCB HSDM DFLoss
AblationNetV1 × 􀳫 􀳫
AblationNetV2 􀳫 × 􀳫
AblationNetV3 􀳫 􀳫 ×

本文算法 􀳫 􀳫 􀳫

表4 消融实验结果

算法模型 IoU OA F1-score
AblationNetV1 0.836

 

0 0.944
 

8 0.910
 

7
AblationNetV2 0.823

 

8 0.940
 

8 0.903
 

4
AblationNetV3 0.867

 

5 0.956
 

0 0.929
 

1
本文算法 0.881

 

5 0.965
 

2 0.937
 

0

函数后,在训练过程中感知碎云薄云能力降低,算法在整

体精度上下降了0.9%。表4第4行和图10(g)表明,本文

提出的各模块能够很好的相互配合,表现出优异的云分割

能力。由此证明本文算法的各个模块均对于云检测分割

图11 消融实验结果图

效果的提升是有效的。

2.6 不同比值损失函数的影响

  在该小结探索交叉熵损失函数和骰子损失函数的比

例对云检测能力的影响。取αce∶αdice 比值为0∶10,1∶9,

2∶8,3∶7,4∶6,5∶5,6∶4,7∶3,8∶2,9∶1和10∶0进

行实验,结果如图12所示。

图12 不同比值时网络的性能
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当比值为0∶10和10∶0时评价指标中 OA、IoU和

F1-score相对于其他情况更低,证明仅使用单独的损失函

数时性能相对较差。当比值为5∶5时,评价指标OA、IoU
和F1-score最大。因此可以得出结论在αce∶αdice 的比值取

5∶5时网络的综合性能更加优异,故本文选取此比例作为

损失函数的比例权值。

3 结  论

  高效的云检测是对遥感卫星图像进行充分利用的前

提。本文为解决云检测算法中薄云、碎云检测难的问题,
构造了自适应多尺度卷积编码模块,提取云团的空间分布

特征,然后利用高阶语义指导解码模块,有效的利用云特

征图进行还原,解码出高质量的云掩膜图,最后利用动态

联合损失函数帮助神经网络感知样本中的碎云和薄云,在
数据集上取得了96.5%的整体精度和88.1%的交并比,并
且能够更好的捕获遥感图像中的薄云、碎云,提高卫星遥

感图像分析利用的质量。
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