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Cloud detection algorithm for remote sensing images based on

semantic-guided and adaptive convolution

Xu Zichuan
(College of Electrical Engineering, Sichuan University,Chengdu 610065, China)

Gong Xiaofeng

Abstract: Cloud detection of remote sensing satellite data is a crucial component in the processing of remote sensing
images. To address the issue of low accuracy in detecting broken-clouds and thin-clouds, this paper proposes a novel
cloud detection method that utilizes high-order semantic-guided decoding and adaptive convolutional encoding. The
method leverages the spatial distribution relationship between the main cloud and broken-clouds by introducing an
A high-order

semantic-guided decoding module is then utilized to decode semantic features, thus restoring high-resolution cloud mask

adaptive convolutional encoder to extract correlation information between the main cloud clusters.

images. Moreover, a dynamic fusion loss function is designed to calculate the weight by dynamically computing the
missed and wrong pixels in the prediction, guiding the network to focus on broken-clouds and thin-clouds, features,
thereby enhancing the overall accuracy. Experimental results demonstrate that the proposed algorithm achieves an
accuracy of over 96. 5% and an intersection over union of over 88.1%, effectively detecting broken-clouds and thin-
clouds.

Keywords: remote sensing image;cloud detection;attention mechanism;loss function;deep learning

Ell

18 J T ) 2 A ) S R T R 10 1 3R (DG 5
AEZAT » LASFURN DX 23 P8 B 2 2 5 9 406 00 HCTE 9 fy 14
ARG . B TR A I R Y 32 H A U
TERPER I 2 )2 D WE 58 3 1 3t S O il 1) K0 AN A L. 7
AU 8 TR AR I AR AT DU T H AR R | 42 1
AN SOR PSR T 38 A ol R SR TR A B R
7 AT LS 7 5 90 BA B 3% Sl 1 B 4R i RO AR R

il

W H 199 :2023-08-29

TE T AT 38 8 TR S AG I R 20 TR Bl R
PRI, (2GR B 5 18T 328 S T 2 A I AR T A
BRI A 3 B R U 0L IR 1R K X AT
AT B o R PRI DR 47 05 T 3 SR TR s A I R a2
1 By M R 0 G TR T G S B0 o AT B SR RS i £t
PR R SRR B R W 5T A AR RO T R R Y BE
JAFEN AR TE SRR D R S = BRI R I
Wi R B — P HERE SR, 2B 5%
PR IL LR 0 5 H AR IR AR R A R KRR . =46

* B4 H L pUIA E AT LI E (2020YFG0051) A& 1EW H (21H1445) ¥ B

* 136 -



AN FEATELRFAAELERGERZ DX

%1

TR 531 2 1 P 38 JR T PR 1 S B 20 3R RS 1 = Rl 7T
LS BT 5% 35 Ak B0 U T MR R R B v A T A 1 Ak 3

R R 7k i R BRI E £ S
AL I Y T v R B S 1 2 R T I B (R L
PE BT M T RS Wk, 2T Uk B A F1 4L
PG B kTR FAE R B AL . B T B
I R 20 BEAF L = R R e R Zha SRR B
FMask 5, i it 22 3 Be iy SE R AT =k . B — %
S5 R FE v TR MR DK 1 A 7 T e R AR 1 AR
{8 53 ) B S50 RS 50Kk 908 & K I 4 1. Otus B3 3% A
K-means $3: 7 #8238 i THET 22 )2 15 A &8 PR 358 22 [0] 114 A {0
PEFEAT RN, 3E DL X 43 5 2% b 38 B B, X b 3% MR 7S URR, &
Mtk 22 . X ST R SRS TE N L TS AR B A A RO
FHEMG IR Z (5 B E I E 8 Fat  JiR M ae 22 . 5 5
R .

HTREFINTEATENTH T B A FER
) g AR e L A SR R 1) G A B 8 B T3 B U LA P i IR
JEFRAE 7 HL R R Y SR B S R I B i H AR 4
Jai PR A5 B, R AR Y R AR R LR, HC b e AR 1 B
ST BB Z M 45 (1) CNN BERI Li %7 42 1 MSCFF
BRI 2 RO B R AT R AR Al A B2 B, S T i o B
RS 2 4] . Guo %W 42 1 19 CDNetV2 i 5 4%
T SUHE AR OB i R SOk A FR R RL R, 45 5 = R Y R
W E 0 H#% 5T RS T Mt m &R . Wieland
SER Y MS-UNet ST HE 19 UNet BERIS5 4, S2HL T
MEBREG D ZMBAFNEEERLN, BEET
Transformer #0122 0 4 500550 78 24~ R AL 3G %509
Ferh R T A AE 71, Transformer B2 78 2 KRB {5 B
AU LR BTN XRERmNEREA BENR LS. Xie
SR Y SegFormer & 6 Transformer 5| A 2| E %
Sy B AE 2 A R r BVECE SR Th BUS T B R R

XoF T A I DA 15, G 4y AR A T A5 4G I Mk LA AT . 5]

Encoder

/N RR ) 25 TR AR 48 G AR T AR ) o A . & AL AF
W35 sl G RIS . 2 e b R s 2 b 3% 5 ) R
16 2 52 A AR B5CRE i A R (5

Shy i e b R () B A SCH T S N 2 RUE B LR D
FiHk Cadaptive multi-scale convolutional block, AMSCB),
ZAHA B CNN 42 IR 38 1 S8 RRAF I 2 7 6 20 B
B F Transformer 8 AR H )5 S AR AERLA T 2 )5
AT 3 H i BT 4 i O = 9 25 TR B T
BRSO AR LB T B R R, 2
T R B E X AT B Ts AR B XA A SRR T —
e B il 38 SR 15 AR B Chigh-order semantic-guided
decoding module, HSDM) , 7 fift i i 2 7 it & 155 2 v XL 11
FEEE RSB A K. &5 P& B4 51k
% (dyanmic fusion loss function, DFLoss) 34 il 2k #1 6] Js
R 1 2 T 2 B30 A0 T A SRR, DB/ DI R A T A SR 11
A T e R R A o =T S ER Y € 1K
S, TE WY AR SCEA R RE AR R e 2 S PR R 2 A o E

1 #HEEEENAR

A

T RERE i D L 2 A DN X L T AR TR 0 R Y ()
RO AR SO 3 T 0 Y o SCHR T A R O A B 4 6 1Y
RIS A 1 FrR. FEAMMAT AEN 2R
JBE A5 B it A T ohe X D e 3o JR PR AR R A 2 B L AR S A i
B e SCHE S fifp B 4SS TR A i P 0 AT A B, 2B BB I B9 =
WA S T RERE ISR = A5 B Z 1] I R L 3 etk T fE B AL
R B 3 G R O R AN [R] 14 S ) RRE
X AE AT TH 8 AN [ /I (9 A AIE P i 2 B 45 4 7
SR I i v s ] A AR RN A SRR RE L 4R I TR
TR UG B . SR E A v B i SC3E T A I R s T2 1 X
R AEAE D 4 3 3 R figp A5 A ) 1) T SCARRAIE 51 45 310 B 94 1 114 3
. i P Bl A I 40 % bR O 5 I 265 X 2 R Y
TR ST AU SRt 7R

1.1

I
I
——  AMSCB :—-: AMSCB | — AMSCB — AMSCB |—
1 1 I
Ve e /Il ________ /I\ ________ /I\ ________ ,I
Decoder
l—_______‘ [—_______\ '—_______\

I 1 [ 1
«— HSDM +~—  HSDM <+  HSDM ———
1 1 U 1
__________________ N e m =

B R4

« 137 -



5 AT & v F o

T # K

1.2 HENSRESMREBREHR

TE 0 R 38 S GBI T = P 22 i) A A o7 B OQTEK
W Wz 5 32w W Z )i 23 6] 53 A3 77 76 3 FH B0 5%
Z fH Transformer F {5 J7 B AR R Ak $2 PO 72 A xR
Ak TR R ARAIE o R IH ) 2 AR AR IR 3R ) B O 2R R E ) A
AV T A E N2 ROBE s UG A A B R B Al
T2 /IS 4 - B A 2 3 A AR AR A R ROBE T A R AL
T 2 160 245 RN 245 ) 37 1 SR RE 0 1k I 4 T LAY R A
BAFZHRZ BB RER . AN Z RE S G
Yol — A B g an sl 2 o,

&

o ———— -

Bl 2 AMSCB #5#E

B—AHr B IG B, #8058 FH Embedding J2 R #47 K¢
TE R e N 3 BTR .

BatchNorm

Conv3x3

Conv3x3

(a) FB1ELHE (b) -4 Z M E
3 Embedding M 2% 2% ¥4 &

TESR — R A5 Kl 3Ca) iR . A8 9 Ik 45 PR BN 1%
R ORAE G IERF AR 0 240 SRR B, 9 7E W OR R AE
GELU ¥ ROk S0 W 45 180, e R A3 3N RAE 1/4 19
FRAE P, 7EH A2 R B 3 (b) BS54 T R AE 1/2 153
HRAE I

+ 138 -

14—, e i Norm J2 AT 000 — 1L B2 1 .
RGN BEENITE &G HLE Norm ZIH L5 %
AHT ] 2 (feed-forward network, FFN) H, 11 [4] ) 5t
JZnE 2 iR sl 3X3 KN B BE AT 43 B TR 1 X T K
AN R B, L H MR X AR (S B AT — 4RI, A
FEATAFEAINNEAENZREERTEREN
(adaptive multi-scale convolution attention, AMSCA), H

EFUNE 4 FiR,

convolutional attention

Convlx1

/

LV
[ I
[ DWConvH, x1 ] DWConvH,x 1 DWConvH;x1

i t
[ DWConvlxH, ] [ DWConvl1 xHjy J

DWConv5x 5

B4 AMSCA BEHLZ 1 &l

TE A=K/ R 5X5 MR E R4 5 5 LUk iR
BURRIEAR B, AR5 T H 2 6 2508 W 4 88 6 BUR TS AR R
JEF B FCRFRAEMA TR NNE, BFS5FERN A
A, e gE R =R (D M) B,

3
attention = Conv(ZSc‘ale,(DWConv(F))) @D

Out = attention X F 2)

Ha, F RFEH AWM, DWConv IREIRE 0] 085
B, Conv IREFEH L H P Scale, FTomi N, HEED
S A BT AN IR O R AR TE B RURIT LA A K
BB, B0 R/ CH W IR AE 8 A4S 23 32 19 A%
KRB A H/2-+H1 . H/A+1 F1 H/8+1, X B0l LU
ik E B BRI = 2 ) ] L3R S 70 R 5 Bk L i AN i B 6
T R

FF Mg A 2 R A R Ay R KN CH L, W,
EE— 2R EE S # R R (H/4,W/4), (H/8,W/8),
(H/16,W/16) HI(H /32,W/32) , i &£ ZHEZ WHCH 3.
3.12.3, &3 £ T M4 G 2% 2 8 B B h 64, 128,
256,512,
1.3 EMIENIESHEEER

AL GE Y R A e v, B8 i s () RS T VR R T Bl
i 3 2 5 A A R MLk R AT s 1R A R AE
BB AR R — 2 A AR A S T, (R X RE
B4 2% 220 B i o 1 SCHRRAE M 38 SAE . W B iE S g



AN FEATELRFAAELERGERZ DX

%1

A I G SO S R SO AR B A T SRR R A Y
LA P A AN AT 2 A

T RS F T B 1 SRR AE TR B9 48 54 L R R
VA 2 (1) L 38 245 b 9 15 8 S8 » A SCBETE 1w B i
e A, O T REAEH AR 23 (0] M E b XUE A5 B M
P26 AR S A A R B O AR A R R 2

ABH AR X, € R MEKRBHTEE X, €

ROV, RN 5 R .

X,
—_ "
CxHW. Position Y,
CxH<W
X
e —— Channel
2C*<H/I2%W/2

5 i iR AR R R R ORI

7 25 () 15 SRR I, 3 ) T v B A 15 7 2 i) oz
RSB AE AR R AR 1A A7 A R A, L A 6
B .

. / @ YP |
ZCXFJTW CxHXW CxH*xW 1xHxW CxHA W

CxH*xW

Cat

(1x1)
| Pixel Shuffie |—»(

Xn+l ’ g
2CXH2 2 K&

WOk X, FRESE R AR X, € ROV 4R
A Query, HaFE =X () PR,

X, = F.(Conv(X,.1)) (3)

Hrp, F, R REEEH ., R FHBREIR X, T
EUAAR bR EIR B AR P, € RV, Hit
BN () FTR

pP,=F, @, (Conv(X,)))) 4

HeiF, FReRbEAE,. 0 %R Reshape #1E,
F., 3/~ Softmax MR, RJEH X, F1 X, MRAE(E B PF
B X, € R*"Y VER Value, HiHE N (PR,

X, = Cat(X,,X,) (5

Hoi,Car FRanPrisrE. MABREAE X, P HiE
YEBIEEAE R P, € RO™, HitEm=(6) iR,

P, = 0(Conv(X,)) 6)

%P, 5P, IR P, € R, Hats =)
FTR

P,=P,XP, )

P,, %o B A Sigmoid A E E AR P, €

Conv(1x1) Conv(1x1)
(_Pooling ]

b3
£y
=

Cx1x
6 25 [l 5 B Al A0 45 44 &

IZ5)

Ry zs [AARARAE S R O PR,

P, =0c@@P,) ®

H, o & Sigmoid . FJEHh P, SIEHHFE X,
AH3FE , 75 3 2 [A] R AE B O AR AE B YT

Y, =X,+P,, €

123 [R5 B A5 43 32 v, T 0 OG 25 (M) 3R B, 48
A2 W e S A SCHRAL S AR A AR .

38 B TR SCRRAD B, A1) P = B R AE B e S AR B R AE
XT 4G E AR B AT RN, Hd R AN R 7 TR

. ¢ Ync I
2C<HAW CxHXW CxHW Cx1x1 g \ﬁ

CxHxW

¢lF 8 o €§§§ |("mfb
SiE (2 ElS
2 <> 3| 5
&8 T 18578
c [d (g [&\mmaxa
% S AF
8 5\
20xHRWI2 o

CXHXW 1xH*W
B 7 i SR 2 E

AR X, FRE R E AR X, € ROV
A Query, HT B = (10) frx .,

X, = F.(Conv(X,.)) (10

RIG X, L BRRBUE XFEEIFHERERC, €
R AR D FR .

C, = 0(Conv(X,)) an

RIEHs X, MX, MREREPHER X, € R*TY 4R
A Value, it 80 (12) fros .

X, = Cat(X,X,) (12)

FAGEHRAS X, BXFEIFEREEMC, €
R, HAtE = A3 iR,

C, = 0Conv(X,)) (13)

¥ C,5C, MR C, € RO, it mas
Fr 7

c,=C,XxcC, (14

Z ) % B RN Sigmoid PRECENE S RV E C,, €
R BRI S Kt E XS prs.

C.p = Conv (e (LN (Conv(C,)))) (15)

HA, LN #£/R LayerNorm, & i C,, SN HHE X,
AR AT B 33 18 FRAE A AD R AE A Y

Y =X,:C.pn (16)

T 38 B TR SCARAD 43 3 v, TN G VE 4% P s U
B RS MAMBHEAFREE LW EEINE . &5
A4 23 [V REAE A8 JE RRAE AR B &N SRAFZE S il LI T
i R B R AR AR S

Y, =Y, +Y, (17

HSDM 7 fif fith i) 32 A8 vh S W n 3 A% B o SL 1 R AiE 15

+ 139 -



5 AT & v F o

BB MO AL A R R 26 I RRAE A S 18 I 45 3k A5
1o A R R 0 T 4R TH ST I 76 = A I - A B
1.4 hEBAEREXEH

R EUR 2R = s K — BRI T AR
fEULR IS, MR 52 FRmN T, 2 # s E
ER, e AEsE8sd. B2 AEGREY
R, SRR M TR, FHIbiRit Tah &AL R
Bk fif e — ] 1, 45 2k B AN = (18) BT .

Lor = 2 [w (anL. 4+ awLu)] 1)
=1

Loy AENSBAMKREn BB KDL, IR
SRR PRE L e AT R R o, HENEE, L.,
R A F R 2 MR R, B IR R B 4 BT 5
O REKINGE A AT E AR N ER  BHAa2 s,
NGB P HFTEEREARN T AAHRE . L. $IE
WA T LAAR B 1) gt e 0 A 3 A A Y 4805 08 175 100 3 e o 451 2% R
HOR A AE— A & MR e ol B . %
JE B W2 W B B AE RO S T AR A — /N4 A 2R
T AR AR B Bl 2w DR s T T 3 A SR R I R R A Y A
w, SRR U 45 F Rk AR AL 1 o A B R P L &,
24 [ 4% 1) e 10 45 SR v A A T R A R A B 5 3R A, O 46 i
R 110 AR T K 2 L A9 B g R 4 ke URe AG 1R AG 1) B AT
HIBNE o, BE XX A BN,

w;, = line(a(E”:“Z“‘:“ | Proe = L ‘) ) 19

H XW
P, RTINS R (how) BHIGEEME, L,.. R

FRESAE Chow) AR, D) D | Py — L, | FRTEX

K 11w AG A G 5 3R S A Sigmoid BRBGUTG
JE AW I FIE w, .

2 XBWEHR

2.1 SRIEEIE

ARSCHYSLIEE J2 ok B Lantast-8 T2 ) 2 Y63 1 5%
AR A 3 AN AT UL I BRI 21 A0 8k B L A Ald 4R h
FbHh S A KR S 22 R R, 32 AR R T AR
T B T I 26 AR 1) S A

N T B AR ST T RN B B AE T AT
TSGR B, BynE b s 95 i T2 BRI AL . 5 ik 4
HATR NG A = Bk - Wik R 6:2: 2, AT
YL o A SO R AR Fn 3R 4R b i B4 43 Bk 384 <384 1Y
KNG I 45 46 AL & 26 300 IR R, 56 UE 4E b £ 5
8 400 e 1115, d5c 5 72 M 3 4R v il 42X 0 45 14 2= 46 DU e
2.2 FHriEER

B — N BE TE AL 48 B i L o B 57 2 00 {4 B ) 45 455 Y [
SEBRVERE . PR 2k 1T 22 B P A 48 AR - 22 9 H (intersection-
over-union, loU) B & E (overall accuracy, OA) fl F,-

* 140 -

K8 g

score = Fifs SCOr IR F8 AR 0 2 4 I O ik AT PR
TP

IoU=9p 1 Fp T PN 20
B TP +FN

0A TP +FP+FN+TN zD

F,-score = TP (22)

2TP +FP +FN

1E ER A TP ACRIEA S = B h = i ¥
FP REEA Rz BN = MR FN R E R = B
T A AE = f g, TN AR IR A Sy Ak = B b = 1
Bk, ToU J&2008 = M BUNE M TS Z M M E A 5.
ST TR BE 7 . OA Sy 5 T00I 1F 9 1) 45 36 A B A v
B P L o S AR Y () B (R UE B %R . F\-score /20K B 1 A
I 22 4 38 FE 3408, B PS8R 2R 1B oL, @
NG VAR R AR » T AR 2 A8 A 55 224 b 19 20 280 iR AT
My ik, T HE T 28 A R 1) 25 R RE
2.3 LBRHEERE

R Y PRAE S g Y T A P AR B R A AT A ] B 1
g i IO PBRE R 4 WAL T ] AdamW i
A BT = AR AR 2. B4R 2% 21 %4 0. 000 01,
FEARMA 2 L R WK, B S R WO AT
0. 9,k P28 LU 85 (0 1R 2 20 R kA7 P b 2% >, 9 BLAE
W4 Ak 2k AR JE 30 B BB B BRI 2R 2T R, LR TE
NVIDIA RTX 3080 GPU 12 G [ Pytorch 523K,
2.4 ZWHER

B IE R 2R W45 7E 45 TAR bR T M RE . ik L
SegFormer,MS-UNet,CDNetV2 il CloudNet ™ £ & i jf
PTG, 7 3 AT LB B, B S8 TR AR AR NF B 4 il
384 X384 MR/, FEAH YN LR LT 1y I £ 452 U 3647 T

BT BT A5 0 3 AR v R AN [ ARk A T Y
TR 485 LI A5 3R 1 iR .

AT e SE G 5 B dpa] DL & B, SegFormer 89k M A i
i, A CH B M B F E W B MS-UNet, CDNetV2
CloudNet fE& T8 fr ¥ H — B B E MR T+, ToU,OA Fl
F,-score M4 T MS-UNet 43 342 & T 8. 41% . 2. 65% i



AN FEATELRFAAELERGERZ DX

%1

R1 FEEEREREX L

=R R IoU OA F,-score
SegFormer 0.774 6 0.922 1 0.873 0
MS-UNet 0.797 4 0.938 7 0.887 2
CDNetV2 0.833 4 0.942 9 0.909 1
CloudNet 0.7850 0.964 8 0.879 2
Ak 0.8815 0.965 2 0.937 0

SegFormer

MS-UNet

4.98% B T CDNetV2 43l #8151 4.81%, 2. 23% Al
2.79% % F CloudNet 43 542 5 T 9. 65% . 0. 04 % F
5.78% . MIULUEBAA SCRVE A R . X 45 B A R
R I R I IEAT RS HT X LE S SR AR 9 R

TEE 9 H X b 45 S d i L& B, SegFormer ¥ 4
Dy IR VE R e I A AR R W T R L. MS-
Unet Al CDNetV2 53 £8 £ W 3 72 v 68 42 5 48 19 31 500
B = Z 0 X BT = T A 0 3 5 T AT SR A7 A 1R

” l E 1
lﬁ""" ‘ =

CDNetV2 CloudNe

Ko ARBEELBERRE

K By1E B . CloudNet BE 88 AR 4 19 IX 43 = #3522 [] (4 R AR
ZR MHEZMTRZNHZH D, AEEREHER.
AR SCBE T AN [F] 3 50 T A AR G 00 35 N1 S B 0 A R X )
= FIT T L 7R SE 30 45 2R vh e A R DR A 1 O D . AP AR
CE R B TR = s i U e 7, HRCR Al 10
Fs .

M 10 Ca) T LA 2] 21 68 7 HE o0 77 76 8 — i
= ,SegFormer, MS-UNet, CDNetV2 #l1 CloudNet ] 7k fE
T 33X — BN o AR SO R MR B S50 A
FTE AR, Ji R 4R AR SCBR I 7 6 2 A I v B8 R A 3R = 2 22 1]
MR R ., FREBRERATIEDFEE -l s, 7]
VLB BIEAR SR L = S P S 5, R AR
ABREE BN RNIL S BE S, A ERAER S
i BN 5y JF BREE T4 BRI =

T RESE TN R 43 A AR SCHR L R4 1 5 T L 3t
B HE 0 45 BT T AR A A L X S 6 b Y 45 S i AT IR
FEEEERWE 2 iR, 123K 2 h Params N S ¥R UE
TR S HOR /N, FPS Jy B I (] 40 B Ay &1 45 4~ %5 AR
TTBBIR T . AR L AE AMSCB 4 i% i 72 v

i A B AR (9 VR T 4 B 4 FROR S BURRAIE . & 7T AR fR 5
PERERY R, KRB B L it B 2. 78 HSDM f#f 5 5
PR 1X1 KNSR R T/l & 4 E B Bk
% LUARAR 9 BUAS SRR A 320 47 B 4, /N Tk i B o
WA CHEEE YN SHE T IS TR R R,
2.5 HRhEIE

o T AR AR SCHE I Y 45 A AR H AR BRI 45 b R HE Y
o AR SR s AS [7) 79 3 il 552 56 9 45 . #E AblationNetV1
12 % AMSCB, 7£ AblationNetV2 1 % & HSDM, 7£
AblationNetV3 £ DFLoss, H45 03 3 i n .

AR ) A 52 50 FR B R, X R[] A58 e 30 A7 T il S 50
HFBLE R 4 AWK 11 R,

AT AR AR SR AR 45 SR A 28 B A AR
FAH VITAE 11 () FHEL B 38 N 2 R A B4 i 15
S5, o i o LA B R AR R A 4R A A AL, Bk AR
BIKKEE LT TA 2%, £4E 247 ME 11(b) F I
2 5 B A AR S A A A ek R v TG ik R VR R AR AE
B4 ¥R G SRR 2 (0 R AE 3 R, BRTR FE RS B - N RE
T 2.5%., FAEIFTAMMAE 11(c) FE W B2 B A 0 5%

o 141 »



947 % v F oM & OH K

e
- !
” ol ¥ ,. el
oF \
EN A
(b) AblationNetV2 (c) AblationNetV3

Bl JE RS 2 R

Jer

(a) AblationNetV1

UL B IR TR A R
2.6 A[E LB 5 iR T 220

PEIZ /NG B 33 38 SR 0L 2% bR B50ORT B T 458 2k oR B0 L
{5 %6 5 K W AE ST B2 . B @, t ey HETEM 02 10,1 9,
2:8,3:7,4:6,5:5,6:4,7:3,8:2,9:1F110: 0
P a5 e 12 BiR.,

— IoU
0.880
0.875 A
' F
: o #0.870
(e) CDNetV2 (f) CloudNet (g) A3CHB:
P10 A [ B 5 4 SR ) 9 8k S Pl 08651
%2 FEEEHSH L osObl . .o L
10:0 9:1 82 7:3 6:4 55 4:6 3:7 2:8 1:9 0:10
RS | Params (M) FPS(1/9) Heft
SegFormer 43. 68 38 (a) RFIHAET ToU
MS-UNet 34.33 29 —O0A
CDNetV2 67.08 40 0.964
CloudNet 36. 47 31
N N 0.962
AR 41. 16 44 -
#0.960 -
R3 HBMTWEZERRELEY
N7y | AMSCB HSDM DFLoss 0.958 1
AblationNetV1 X Vv Vv gose
AblationNetV2 v X Vv 10:0 91 82 73 64 55 46 37 28 19 0:10
AblationNetV3 v v X PefE
A Sk v Vv WV ) (b) R W FHIOA
—Fl1
0.936
R4 HBLBER
0.934 +
AR AR TR IoU OA F,-score
AblationNetV1 0.836 0 0.944 8 0.910 7 @0‘932 r
AblationNetV2  0.823 8 0.940 8 0. 903 4 #0930 L
AblationNetV3  0.867 5 0.956 0 0.929 1
AR Sk 0.8815  0.9652  0.9370 e
0926+ /
PR o 78 VI 2 B R 2 2 B ) AR SRR A 100 91 82 73 64 55 46 37 28 19 010
K FTRET 0.9%., 45 417K 10(g) T, A3 HAE
R 1 10 45 A5 B 5 I8 1 AT B R 2+ 5 B E 5 19 25 4 20 (6) IR AR T HIE-score
BE 1. H IR B AR SCE k A9 4% AN AE BR 3 X6 T 2 4G T 43 1 Bl 12 AN H AR R 19 45 1 4 i

o 142 »



HAEN F

ATENLIE T AEEER

#4 i J = A ik %1

MAE S 02 10 F1 10 = 0 WEFA 845 OA . ToU FI
F\-score AR FHAth 175 B 56 AIK , iF BA S 55 FH 2000 1) 45 2K o
BB PEREA AT B2 . M HE A 5 ¢ 5 B LI HE AR OA L ToU
N Fi-score fix K. HRILAT LIS 58T a., ¢ ag. MY HL{EEX
5+ 5 B MR A &ﬂuﬁcﬁ,&.&zﬁc o B L 81 1 A
5% bR KUY L ALE

3 & i

1R I 2 A ) 2 %o 0 U T3 R TR B R AT 3 43 ) T I I

P& o A SR TR 2 R T 0 o s L A O X Y ]

MIET BN 2 RO PR g R e, SR B = A1 9 2 [ 43 A

FRAE , SR 5 T i B o SLAE R A A B A 0 AT =

AE LR A7 38 B fige B L 8 O 1Y = R B S R 3 2

I5CA 458 2% R BSCHS B Ao 28 IO 2 IR N R AS T W iR = F i = L 7

B 4 LR T 96. 500 (1 RO AN 88. 1040 I 32 e L I

HREWS T AF B AR 8 B E SO i = o R e LR

TR B a3 B R 8 o i

S % 3Lk

(1] X¥FJ1, BFEE, EXHF, F. &EEG= BN &
ZURLT]. mE=EBAH A, 2023, 43(D): 1-17.

[2] ZHU Z, WOODCOCK C E. Object-based cloud and
cloud shadow detection in Landsat imagery [ J J.
Remote Sensing of Environment, 2012, 118. 83-94.

[3] ZHU Z, WANG S, WOODCOCK C E. Improvement
and expansion of the Fmask algorithm: Cloud, cloud
shadow, and snow detection for Landsats 4-7, 8, and
Sentinel 2 images [ ] ]. Remote
Environment, 2015, 159: 269-277.

[4] BT HEM . PN A 25 T8 T IR 5 A ik Y |
PR DRG] ROUR 24 (F B A
S0 ,2017.42(6) ; 782-788.

[5] ZEI. K-means BRE LIk & HAEE O BZ 5
Frh R HID]. BIE . & #OR%,2018.

[6] MOHAJERANI S, SAEEDI P. Cloud-Net: An end-to-end
cloud detection algorithm for Landsat 8 imagery [ CJ.
IGARSS 2019-2019 IEEE International Geoscience and
Remote Sensing Symposium, IEEE, 2019: 1029-1032.

[7] LI Z, SHEN H, CHENG Q. et al.

based cloud detection for medium and high resolution

Sensing  of

Deep learning

remote sensing images of different sensors[J]. ISPRS
Journal of Photogrammetry and Remote Sensing,
2019, 150: 197-212.

[8] GUOJ, YANG J, YUE H, et al. CDnetV2; CNN-
based cloud detection for remote sensing imagery with
cloud-snow coexistence [ J]. IEEE Transactions on
Geoscience and Remote Sensing, 2020, 59(1): 700-713.

[9] WIELAND M, LI Y, MARTINIS S. Multi-sensor
cloud and cloud shadow segmentation with a
convolutional neural network[J]. Remote Sensing of
Environment, 2019, 230: 111203.

[10] DOSOVITSKIY A, BEYER L, KOLESNIKOV A,
et al. An image is worth 16X 16 words: Transformers
for image recognition at scale[ ]J]. ArXiv Preprint,
2020, ArXiv:2010. 11929.

[11] GUO M H, LU C Z, HOU Q, et al
Rethinking convolutional attention design for semantic
segmentation [ J ]. ArXiv Preprint, 2022, ArXiv:
2209. 08575.

[12] T&IT.Z= 4, 585K, %. & T Transformer 1 % 18
Lo WA EY o LT 7 W& 5 408 4 . 2022,
36(10):227-234.

[13] XIE E, WANG W, YU Z. et al. SegFormer: Simple

Segnext :

and efficient design for semantic segmentation with

transformers [ J ]. Advances in Neural Information
Processing Systems, 2021, 34: 12077-12090.

[14] VASWANI A, SHAZEER N, PARMAR N, et al.
Attention is all you need [J]. Advances in Neural
Information Processing Systems. 2017, 30.

[15] WANG X, GIRSHICK R, GUPTA A, et al. Non-
local neural networks [ CJ. Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, 2018, 7794-7803.

[16] FU]J, LIU J, TIAN H, et al. Dual attention network
for scene segmentation[ CJ. Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern
Recognition, 2019: 3146-3154.

[17] LIU H, LIU F, FAN X, et al. Polarized self-attention:
Towards high-quality pixel-wise regression[]J]. ArXiv
Preprint, 2021, ArXiv:2107. 00782.

EEE N

BN GERGEF LR A, FENFRES Y 8

R G AL B 5T

E-mail: 765026654 (@qq. com

BRRUE, JOZ . EEANHR AR S A S L% B ST

o 143 -



