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Improved dung beetle optimization for feature selection tasks

Xu Qin

(College of Computer and Control Engineering, Northeast Forestry University, Harbin 150000, China)

Li Jun

Abstract: The dung beetle optimization (DBO) algorithm is a novel heuristic algorithm inspired by the behaviors of
dung beetles. It exhibits faster convergence speed and stronger ability to escape local optima compared to other
algorithms. However, the DBO algorithm lacks the capability of performing feature selection. In this paper, propose
algorithm of dung beetle and grey wolf fusion (DBOG) as an improvement to the DBO algorithm specifically designed
for feature selection tasks. The DBOG incorporates three enhancement strategies: elite initialization population
strategy, grey wolf-dung beetle fusion strategy. and runtime acceleration strategy. These strategies aim to further
enhance the performance of the DBO algorithm in feature selection tasks. Additionally, we provide pseudocode for the
overall algorithm. Experimental results demonstrate that, compared to other improved heuristic algorithms, the DBOG
achieves higher accuracy and lower-dimensional feature subsets across 12 classification datasets. Moreover, it offers
advantages such as faster convergence speed and computational efficiency.

Keywords: feature selection;dung beetle optimizer;classification

—

=

Ell
FREEEPER LR 25 2] i — A 2P B S 4 TU AR
FAEF 52 2 BRI AL & 2 > B2 A0 1 4005 g ) 0 o fig e
AR T A R RRIEAR 202 5 H b R R G SC Y s X 4y
RFAE B9 7 AT LA A R A5 At R T AR B TR A 2
TE £ AN [6] 2 5 X AL 2 27 > A5 280 4 i 14 92 Wi 2 AS TR 19
TESK B OLT Ao 2 4 HH LA 5 IR AR 24 52 [ I e 4 1
TR e 70 N BE YRR AE T AR L O T B

JA S A AR ) SR M T i B i A S 5 2R
BR A AR AIE 8 5 SR A 010 R 4 T 5 Tk B e ) A2
BE RS R, g R R A% E
ZAE R A T P VA )Tz T, ] 40 g5 A% 57 1% (genetic

W H 199 :2023-08-03
* BT H . ER ARRFEE S EWH (52071074 % B

algorithm, GA )™, ki T B 5 ¥ ( particle
optimization, PSO) "™ 45 , JT 4F 3 — 2637 RS % 48 R ET 7%
) A I W R AT o 5 4TSkt A R ) R ) D R
W % Ak 1 (Harris hawks optimization, HHO)"' | JK IR
AL S 1 (grey woll optimizer, GWO)™™ K1 B A L 55 1
(salp swarm algorithm, SSA)™ | B8 L4 ek £F 5 10 Ak 55 v
(black widow optimization, BWO)" 45 . B ., F] FH i3 & =X
R EIL TR PR —Fh & B H S A T ik

R A5 T f 9% 2748 o 3, 3 S B A T 1) S W] £ 4T 55
B i AR S BR AR B0 HE AT el it DLR B AR R . A
(10 5 B SR M T L3 O 3 2 A AR AR B 4 Ak
R B A S R BRSO ROk PR,

swarm

« 79



5 AT & v F o

T # K

46 AL 7 2 B B T DL 5 B ) IR 0 2 A L LR SR DU
P75 B AL R BB 2R Y Ak T e B Ak AR
BUAS s R E A S RmG, EEGE A 5 I AT R
B AT S R A reliel BRE X SL A 2T AR B M AW
AR 00 A7 B0 3 7 A A L 0 T Bk B R AR A . X AR R
LA —E PR b o e A0 S R R RP R 1 3R B, (H 5T A &R
B BT e 25 36 R O ek S 6 AT A L RO B B AL
KB M RA SR, B 2 Bk e B m4b B B T Ik
BRI R R PE B Z R B B B Ok T 2 i
R,

e MR B 4k 3B 7 (dung beetle optimization, DBO) J& Hi
Shen 457 2022 4F 11 H4& iy —Foln BUR K 8 R,
T A AL R U P AT O SR S A R A R ORR R i R AEL, i
BAE — AR B R HOR I 3 bR H0h R B TR 2 AL AL 5
TR, M b B T 1) R R B AT 45 B, £ i B
AR ; — & IR W A0 AL B8 T AN R LR IE AT IR B AT 55 . 18
KA L HRE R WA A B30k R T AR AT 3 B B 1 SOk =
D)5 i B 0 £ 3R 32 1) 38 AT ML A S« I8 88 R b A 7 A B R
TR B B, BV 3 R A ) 1 A A 43 4 BROR
AR AR, XWARY R T Bk RN, R
T 8 T80 X 49 A1E S B A 55 B, 056 406 £ 4 530 0k ) 3 40 A AU R
AISNE R T ABA R AR .

B X R M A1 A B A A 1 LA TR R 1 RS B 40 4 4k
TR SR e O D TR 11 0 3 Ak 20 A 5 38 S 5 R AR A Ak Bk
B T U MO A T B 9 1 3 2 XA T KRR AR T T 5 R R
AERBG . [RIIE, Jy T B 5k G A an 1k i ok
M3 52 Z B A ), SR T IS AT I SR L) e
HEAT R A5 0k AR R UE AR 1 R B 40 A B Py iz
T

1 DBOG Eix

1.1 ZEHl kR
i FH e e SRR IR AT RRAE B B )8 T 2 a0 07 ik, T L
GRS LR A 1 2D B 4 R LR o U A R e
BB R B — A EEAE T4 558 2 4 LS 2 3
%5 50T 53 oR BT AN R RE AN R R 25 96 IR X A 25
BE— BN F A bR . R Y e MR Ak R SR AR I S
PR 23 ] v T30 B 00 A 5 T BRI o B4 45 O 7E Bk —
) 2 1] v S PR R U A L T LA TR R S WS KE I 90 £ 1k
B 7R A A 2 A R AT T4
R SR R SR A I B — R O S
0~1 [ 3g,0 A 1 43516 i 1% v 8 R AE 2 Bk . R
FH B35 4 8 1) N A e S R 0~ 1 [l i, D
1. X(d)=0.5
Uld) = D
0, X(d)<<0.5
Ud) BN 805 d 48, BV d ANERIE . X (d) )%
NE S S R A AR A

¢« 80

TNET 17 S AZARAE ) B B 5 SO R S B R A 4 R
N 10, AR 77 R B AR 255 2.5 A8 (L ARIERE L .

o To I o]

4 5 6 7 8 9

wEre[ o [ o [ o [o
WiERFS o0 1 2 3

(S IR S (5 v 2 7 5 ot = o =

1.2 TEEABLFEERRE

BIL T RIS AT, T B 44 T FRE b 19 S Ak — A4
Y S RS & B W A PO R R E IR R e
PEAT WO 38 — ik B2 400 1R AL Fh B SR

Logistic YR T B 55 A= B 1Y Bl AL 55 B B 1 588 L 43 A 35 5]
LR S 0 Logistic YR 1l ke 565 10 %% W ML 18 28 47 %00 4R
FRERIBENLAL . Logistic TR MM T .

X+ =pexte)« (1—ak)) (2)

Hobr, p Ny XSG (3,569 945 6,41, 2 (k)
MR A Y BEALAE . A 46 (= 8 FELAE (0. D NI BEPLEL .

ST AN RE 8 75 W0 R B Bt R R RE 2 R R R S
() XoF A B A i AT B ) AR T 2 B . AIRE 2B K A
A T A X BSRICA SINE

X, (k) =1b+ub— X&) (3

Ib 1 ub 433 A AR R AT 5.

L3 ik BE AL A B 0 B i B BE L PE R BB AR IE —
FEAETRAALE . B, A SO PR 5 3. B B
2.3 P28 SURKEXS B AR BEAT Sl R, DA T2 3040 4 v b
ARGy A AN A R W 7S G T O, B R AR L P e . N R —
Py AT RliefF FEAE 3 2 M R 40 15 2 5 A FR 4R 19
6 RN B M R A SR KO (E ., R8I 1 S B &
AR 0 F B HE S o 3 T TSR AR A A Y A e R
B4R RS 2R 7, SRELANF .

Z=14+UD—R)Xu—1))/D (4)

X' =Xx-Z (5)

X' RICH SR AR S A, o 8 LR 0.5, u
H1.5,D NYEFEER S YRR E AR G B R AR HE )T AL
B, BORRATRARERENE 2 PR,

1.3 IRIREERRL & HL

Jir G %) MG 88 DI b 5 3% 3 3 ol B v S [ P e AT A A8 =X
SE I TR — S AT R TR AR AR S BT 5 b R BIT
AT IS TR AR O A 53 30 5 A1 4 0 05 11 VR Bk (5
BESR) TR B IX PIANAT S, 4 2 T i 8 O Ak k5 OO
A3l A ) DBOG (dung beetle optimization gray-wolf)
k. AL .

HREMBE P ERERAF N 3 R ab.c, FHEH
Jer A B R 3K ORI T, £ W MO T 283X 3 L B A o7 B T OB

X1 = Xa—A1l -+ Da

X2 =Xb—A2 Db (6)

X3 = Xc—A3 - Dc
AP X1.X2.X3 2 Y HTWE M2l ml aboc B,



¥ 7 F.aafmitFeS e st s ok 1

WHIEFS 0 1 2 3

.—[ Aﬁ:l | rand | rand I rand | rand |
/I\ﬁin| rand I rand | rand I rand |

KRR ER

AMAL I 1-rand I 1-rand | 1-rand | 1-rand |

/MZFm | 1-rand | 1-rand | 1-rand | 1-rand |

KHT3E %A : RliefF/RRliefF

HiR%

BB AR z RliefF/RRliefF

‘I
RE
&= S

FHEAERAER

K2 KRG LR

Xa . Xb . Xc 53590505 aboc A E . P E Da Db .De
A3 Fom BRTBEME S abc RIMER, A1.A2.A3 R AERA
. Da Db .Dc )itEARINT .

Da =C1+ Xa—X)

Db =C2+Xb—X() (D

Dc =C3+Xe—X(@)
K. c1.c2.03 ZHdLm &, HHEAX K. C=2-r2

A1 A2 A3WHHEAKXN:A=2d -r1—d

o, rL R r2 S A B AL ) S B AR 0 (8 R A
0~1 M8, d MBS TN 2 3] 0 i, iHEAR
W d = 2= G Rt

e 5 VR TR i A8 R B, W MBS 1 o7 SE AT A Ry

XGt+1)=(X1+X2+X3)/3 ®

X+ 1) YA AR R T — A,

T B A /N M 5 0 0 e DA 9 Ao 8 8 O AT
T o T O I ST S — A R A X

Lb" = max(X" « (1—R),Lb)
Ub" = min(X" « (1+R),Ub) (9
K Lb™ MU 432 7= 0 KB 0~ B 7, Ho
R=1—t/Tw X" HHHRHEALE

VR MRS R A IRk B AR T .

XU+1 =X"+bls (X&) —Lb ) +b2-X®)—Ub")

(10

K b1 M b2 ABAK/NH XD WEEHLIE R . D A5
MY,

AN LR VA R /A W

Xt+D =X"4+Seg- (| X@®)—X" |+ X@®)—X"D
an

K. g ABENLI &, RN IESSM i, K/ANHA 1 X D,S AH
i, X" A& R,

SRR B 2 B LL 8] A DR AR AR X A ) 0 W
0.3, EFEHRAMEH 0. 3, /IMATHEAE A 0. 4,
1.4 IE1TH0E R EE

X 2k 5 & I R R B AL, RO A o
A A 23 1) T A 75 1 — Se AR SRR, SR B AT R
VEZ ARG 77 AR AR A+ 330 S 4 L 1Y) i 76 45 F 22 4T 55
g Sy A B EA RS AR R, E
ST AR [R) 1) 5 T X N B T R 43 TR R K ik A B ]
PR A SCBE T — Tl s A7 0 S SR R AN B 3 BT

BITHEREN

P 3 Bk o o g s R
. 81 .



5 AT & v F o

T # K

ZHGHWRABNE R AR RMM S, @il
N 3, AE BRI T RS AS R 7 AR Y A A e B B L3 R
BEAE TR T 5358 P BE(H Z 10, K R A A A R Y 1 2 2 4
THE Ik 3 7BE (A RS, W B RO R A (e, n
REAHE S W RE A RN,
1.5 EME ST

I8 B R A TR A =t .

n

error + 3 » (lfﬁ) 12)

fitness = a

error = 1 —acc (13)

B 1 7] 4 AT 45 1 43 25 B R accuracy 1R N
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PEHL UCT Sl e Hr iy 12 D8t SR 7 M R S 38 2 10 F
X DBOG 5% b 55 325 386 47 92 56, 35 B0 08 42 W 35 T M
19 MR R AE B AT 1 203 D ERE (9 7 4 S 42,k
ARBN 87 A/NEEAR K HEH] 6 598 N REAR T 1 IR 4
WHEE. %2 B HiRMER,

*1 DBOGHZEMMHRBE *2 HEENEEHER
The framework of the DBOG algorithm B4 FEAE £ FEA KL F %
1. Initialize the population X wusing the initialization absentism 19 740 2
strategies (2,3,4,5) for i=1 to n. ChurnData 27 200 2
2. Calculate the fitness values of the population and select Darwin 450 174 2
the top three best grey wolves, and their corresponding Toxicity 2 1203 171 2
solutions Xa, Xb, Xec. Musk 1 163 476 2
3. while (; <=T) Musk 2 163 6 598 2
4. fori=1to N LSVT 313 126 2
5 if i ==grey wolf then Flowmeters A 35 87 2
6 Initialize parameters d, A and C Flowmeters B 50 92 3
7. update grey wolf position by using (8) Flowmeters C 42 181 4
8 end if Flowmeters D 42 180 4
9 if i==brood ball dung then ParkinsonDatabase 46 240 2
10. update brood ball beetle position by using (10)
11.  end if 9 T UE B OHE S 0 W O A B s AR R AR I SR AT 5 B
12.  if i ==thief dung beetle then B M SR EUE 5 A SR BUBT A SO BT w5 A [ BGH
13. update dung beetle position by using (11) WMy 5 PRt Bk AT e, HOE MBI A R
14.  end if KR BEAE Bk £ 5 3 (two-phase mutation grey wolf

15. end for

16. if the newly generated position is better than
before then

17. Update it

18. end if

19.  Update the first three grey wolves Xa, Xb, and Xc
20, r=t+1

21. end while

22. return the best grey wolf Xa
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AROCA B AP AH R AR Y AR ARG Ak 35 1 77 4R 1R
PEPEAE 55 LRIE N FE™ . th T DBOG 5 [ FE R
TIRARAL SR AL, 8RR A TMGWO 583k 45 S X 1R
Wi i o 5 X 7 2 > R R Ry S 4 AR L vk 1 R B R AR
BB P (improved salp swarm algorithm, ISSA) ™ 5 %t
T X 37 2% 2 1 fig {8 4k 55 3% Copposition-based whale
optimization algorithm) ™", % P f 8 1A F X 57 2% 27 3w
1497 SR AL PR A R0 46 e L 4R SR R R R . Rk &
Ja A€ I B ¥y B ¥ (modified global flower pollination
algorithm , MGFPA)™" % B HBSS A 5L 48 & 23 [a] #L #l 34
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Y sh S A U E, 72 0038 o AR 1 A T B PRI . X
R PR G B RSO E R 3 iR,

®3 MEEENFAFRRIBRSEIRE

N7 X S i ik ZHIRE
TMGWO P B B Rl 78 S IR R AIE 1 B 0k MU=0. 5
ISSA B F 37 2 2 RUH B R 48 A% TRk 1 R B R AT S B AR 1k LSA=10
OBWOA X 37 2 3 1 i A A Ak B B=1
MGFPA WL A 4 R A6 A A B Gamma=0.01,beta=1.5,P=0.8
DBO LT R AERTR S=0.5.k=0.1,b=0.3
MSADBO WL IE 5% 58k 5] R 0 W A R Ak vk Dx = 0. 9@, =0. 782,k =0.1,6=0.3,R=1

2.2 THERERBHIEE

S TR A M55 python3. 10, B {4 31 45 CPU W
i3-10100,RAM Jy 16 GB.### 1 TB,

DBOG 51 5 %} le 5 iy 5 SR 35 R FH Al ST 38 4T 20 IR
B S A 1A 8 AR S R AR S R 5 AR i, SR A 10
Prae SUBAIE, s 4 v i 80 % Ml 2R 45, 20 % ik 4E .

A AR NIR FH KNN 432645 Hh K =5, i A B i
B 30, AR ECR 50, P HEFRIEEL 3 Bl B ATHSE T,
FRAEZERE FD A2 UEff % ACC,
2.3 ZTWHEREWTL

DBOG 55X Ak 7E 12 MR LY TP 28
HERf X LR A5 SR AR 4 iR,

R4 DBOG 55 Mt EEETHNLERHE LA

G S DBOG DBO ISSA TMGWO OBWOA MGFPA MSADBO
Absentism 0.995 9 0.992 4 0.994 5 0.995 5 0.995 5 0.994 9 0.987 4
ChurnData 0.807 9 0.787 9 0.805 5 0.807 9 0.789 5 0. 809 4 0.796 9

Darwin 0.882 6 0.846 5 0.811 8 0.842 2 0. 845 2 0.836 2 0.857 3
Toxicity 2 0.713 7 0.683 5 0.617 4 0.683 2 0.683 3 0.632 9 0.704 3

Musk 1 0.872 1 0.844 8 0. 846 2 0.845 8 0.827 5 0.861 2 0.8355

Musk 2 0.899 5 0. 886 5 0.864 0 0. 886 5 0. 868 6 0. 884 2 0.894 5

LSVT 0.816 6 0.797 9 0.667 1 0.796 1 0.800 8 0. 664 2 0.817 1

Flowmeters A 0.754 7 0.690 8 0.705 5 0.733 8 0.713 7 0.715 0 0.715 5
Flowmeters B 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Flowmeters C 0.9159 0.907 1 0.910 6 0.910 0 0.901 3 0.908 5 0.907 2
Flowmeters D 0.849 9 0.840 5 0.847 7 0.849 4 0.845 5 0.849 9 0.847 7
ParkinsonDatabase 0.828 7 0.820 4 0.8350 0.821 6 0.822 9 0.832 0 0.825 4

F T3 N B RO 1R T Ol 45 A 2 IR AR A N A3 2
TR L 204k ) A AT B e 2 Ak SR e i R e IR B A
A L R 2 BE R, BT R RE X R 4 DBOG Sk e e
AIF 24 J5 0 43 26 7 B0 25 3K 79 B R B v i RS — R Gk f T
HAbX b s, W LLE L, DBOG B 7E 12 MR 4
B 11 AN B0 4 b AR S AR T 2 A 2 SR A B e L A
ParkinsonDatabase ${#5 4 H 8 S8 3% 6B HUAS B &0k B L {H AR
B AR T R I 3 AN A EUR T B S

DBOG 55 Hoflh 5 Fh Xt b 55 1k £ 32 17 o 18] A48 E
AT LRy Lk aE R ansk 5 Ml 6 .

TE32 47 I 8] AVRFAE 4E BE 45 B 1 DBOG A FC B0 HE 3
AR AT I [ R AR B AR 11 B 4R O O R R
et Z i DBO Bk Ul W A7 i e AT 8 . T
TERFE4E 158 b5 L. DBOG £ 9 A %ods 5 L 4 F¢ 0 #5 . il
W] DBOG 55 1 RERS 7 - 1 di i 70 JERE BE 95 00 T LB AR
AR 3247 I B2 L 5 A /)N B AR I A8 JBE L BT B A 58 BURE AIE B 4%
1% .

TR DBOG 53k -4% o 416 1F o 119 A 5403 52 0 48
A ROKS T AR 400 1 SR s O AT 28 L 4 i1 DBOG ik 15
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&5 DBOG 55 #xt b HiEFEE{THE EAIRTEE

LGS DBOG DBO ISSA TMGWO OBWOA MGFPA MSADBO
absentism 18 69. 1 121.3 106. 3 204.9 71.4 76.4
ChurnData 37.3 64.2 85.9 98.5 138.7 64.2 71.4

Darwin 121.2 167.0 236.2 1224.5 599. 6 143.9 133.4
Toxicity 2 123.5 203.0 374.8 1025.2 727. 4 270.0 207.2

Musk 1 111. 2 84.3 111.7 304. 4 168. 2 84.9 102. 1

Musk 2 1 046.0 1333.7 2 116.5 5 849.7 6 523.6 1477.3 5698.0

LSVT 65.1 149. 1 273.0 1110.8 334.5 196. 4 113.8

Flowmeters A 20.0 59.2 79.3 107.1 146. 2 62.0 67.0
Flowmeters B 25.6 65. 3 94. 3 138.2 221.5 68. 2 74.0
Flowmeters C 65.8 71.9 105.1 139.4 177. 4 77.2 79.0
Flowmeters D 23.6 69. 1 93.3 123. 6 157.5 77.1 78. 4
ParkinsonDatabase 40.8 70.0 111. 7 143. 6 149.9 83.2 69. 8

&R 6 DBOG 55 Mixi b HiATEHFE4E ERRTLL

Bl DBOG DBO ISSA TMGWO OBWOA MGFPA MSADBO
absentism 1.2 1.0 3.7 1.0 1.0 1.4 1.5
ChurnData 8.5 7.4 10. 2 12.5 8.7 8.7 6.2

Darwin 27.0 62.0 190. 4 67.4 37.8 213.1 58
Toxicity 2 22.6 67.1 520. 9 33.1 27.3 586. 1 44.5

Musk 1 36.8 52.0 80. 4 57.0 51.6 79.8 47.7

Musk 2 16.7 22.2 75.1 20. 8 18.2 67.8 18. 2

LSVT 5.9 8.3 101. 4 16. 4 6.8 111.9 12.5

Flowmeters A 2.7 3.6 2.9 2.9 3.3 8.0 4
Flowmeters B 2.0 2.4 8.6 2.0 2.3 2.0 2.5
Flowmeters C 5.7 8.6 12.5 9.5 12.7 10. 4 11.8
Flowmeters D 3.5 6.8 9.6 5.9 7.4 7.4 5.1
ParkinsonDatabase 10. 0 10. 7 20. 2 8.5 10. 3 21.0 13.1
0.30
0.020 o 025 -ISSA
" 0.015 : - TMGWO
= 2 0.20 ~DBOG
2 0010 8 015 +DBO
0.005 £, : : ; : , ; ; -~ OBWOA
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 —MGFPA
RARK B RARK B RARK B ~MSADBO
(a) absentism (b) ParkinsonDatabase (c) Darwin
0.24
o ﬁ 035 % 10,003
= 0.22 b g;g SRER; 130002
83 0.20 R 00 890,001
010 20 30 40 50 010 20 30 40 50 010 20 30 40 30
(d) ChurnData (e) Flowmeters A (f) Flowmeters B
0.12
Eod
P 0.11

5 0.10
% 0.08
010 20 30 40 50

AR
(g) Flowmeters C (h) Flowmeters D (1) toxicity-2
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Bl 4 DBOG 5k 5 HAth 55 1k 59 Ui 8l = X L

W SR AT AR e B8 0 0 0 A ORI SIS
SRR . KRR IR LRI 12 DN ERE Y 11 AP ag
i L 55 LU i R 5 T RG24 T B IR A I SO 3 el R 2
T B B R i 8 R e O R B R A T AE S
PR B KSR 15 45 L DBOG B ¥ 7E 11 M % b
WAL T H Ah & B, U FE Flowmeters B 23 £ 5 %
ISSA DIAMW I M 38 vk R ILAH R . B 2 50, T AT 6 & 3
DBOG 5 878 5 4k 04 42 (Darwin 450 N4FAE | Toxicity 2
1 203 AMHEAE, Musk 1 163 445 1iF . Musk 2 163 4~ 4#1iF .
LVST 313 M4k R TAEAR4E SR AR h iR, B
TE = AE B0 46 P 5 H A B 7k A 22 B ER IR AR B R R Y
KLUEH DBOG 8k 7 FRAE e #4550 HR o 4 s 48
HA e

MSADBO.TMGWO,OBWOA , MGFPA % 1 fit ol
HARR T AR AR RN 4R 1 0 Sk 2R S RN AR T I
ERFETR N R A Gl N R Nl [ 2SIy = W i T A N
FEAE — 78 T2 B BE ML PE , 0 02 6 R AF 28 B4 45 1, —
AR 22 ARG SR 1Y S 1) iR RS i IE AR — ST Y
R e A S A A . DA B T JR) 0 0 £ R Rk TR TR M 8K
FNE A, Hh MSADBO [AlRE & % H 51 A H Al 55 3k it 47
Rl 04 5K B, O ELXT AP RE T 46 AL 5 AT T . B
DBOG B #: 4t F MSADBO H1H Ath i i 1 8 5k 2 b7 F
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