
  电 子 测 量 技 术

ELECTRONIC MEASUREMENT TECHNOLOGY
第47卷 第1期

2024年1月 

DOI:10.19651/j.cnki.emt.2314287
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摘 要:蜣螂优化算法是一种基于蜣螂不同行为模式的新型启发式算法,与其他算法相比的收敛速度更快,逃脱局部

最优的能力更强。针对蜣螂优化算法不能进行特征选择的问题,在蜣螂优化算法的基础上提出了蜣螂灰狼融合算法。
该算法基于3种改进策略:精英初始化种群策略、灰狼蜣螂融合策略、运行加速策略,进一步提高蜣螂优化算法在特征

选择任务上的性能,并给出了算法整体的伪代码。实验结果表明,比较其他改进型启发式算法,蜣螂灰狼融合优化算

法在12个分类数据集中能够得到更高精度、更低维度的特征子集,同时兼备收敛速度、运行速度更快的优点。
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Abstract:The
 

dung
 

beetle
 

optimization
 

(DBO)
 

algorithm
 

is
 

a
 

novel
 

heuristic
 

algorithm
 

inspired
 

by
 

the
 

behaviors
 

of
 

dung
 

beetles.
 

It
 

exhibits
 

faster
 

convergence
 

speed
 

and
 

stronger
 

ability
 

to
 

escape
 

local
 

optima
 

compared
 

to
 

other
 

algorithms.
 

However,
 

the
 

DBO
 

algorithm
 

lacks
 

the
 

capability
 

of
 

performing
 

feature
 

selection.
 

In
 

this
 

paper,
 

propose
 

algorithm
 

of
 

dung
 

beetle
 

and
 

grey
 

wolf
 

fusion
 

(DBOG)
 

as
 

an
 

improvement
 

to
 

the
 

DBO
 

algorithm
 

specifically
 

designed
 

for
 

feature
 

selection
 

tasks.
 

The
 

DBOG
 

incorporates
 

three
 

enhancement
 

strategies:
 

elite
 

initialization
 

population
 

strategy,
 

grey
 

wolf-dung
 

beetle
 

fusion
 

strategy,
 

and
 

runtime
 

acceleration
 

strategy.
 

These
 

strategies
 

aim
 

to
 

further
 

enhance
 

the
 

performance
 

of
 

the
 

DBO
 

algorithm
 

in
 

feature
 

selection
 

tasks.
 

Additionally,
 

we
 

provide
 

pseudocode
 

for
 

the
 

overall
 

algorithm.
 

Experimental
 

results
 

demonstrate
 

that,
 

compared
 

to
 

other
 

improved
 

heuristic
 

algorithms,
 

the
 

DBOG
 

achieves
 

higher
 

accuracy
 

and
 

lower-dimensional
 

feature
 

subsets
 

across
 

12
 

classification
 

datasets.
 

Moreover,
 

it
 

offers
 

advantages
 

such
 

as
 

faster
 

convergence
 

speed
 

and
 

computational
 

efficiency.
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0 引  言

  特征选择是机器学习中的一个重要步骤,高维冗余的

特征子集会降低机器学习模型的拟合能力和可解释性[1]。
特征子集中的特征很多是与目标属性无关的,或者这部分

特征的作用可以被其他特征替代,也就是冗余的,而特征之

间的不同组合对机器学习模型性能的影响也是不同的[2]。
在这种情况下,如何挖掘出具有最低特征维度同时发挥出

最高分类精度的特征子集就尤为重要。
启发式搜索算法的策略相较于过滤式、嵌入式、穷举搜

索等其他特征选择策略的优点是平衡了算法的时间复杂

度、精度和搜索的深度[3]。一些传统的启发式搜素算法已

经在特征选择领域有广泛应用,例如遗传算法(genetic
 

algorithm,GA)[4]、粒 子 群 算 法 (particle
 

swarm
 

optimization,PSO)[5]等,近年来一些新型启发式搜索算法

的改进被证明在特征选择领域也有良好的性能,例如哈里

斯鹰优化算法(Harris
 

hawks
 

optimization,HHO)[6]、灰狼

优化算法(grey
 

wolf
 

optimizer,GWO)[7]、樽海鞘优化算法

(salp
 

swarm
 

algorithm,SSA)[8]、黑寡妇蜘蛛生殖优化算法

(black
 

widow
 

optimization,BWO)[9]等。因此,利用启发式

搜素算法进行特征选择是一种合理且高效的方法。
但根据无免费午餐定理,这些算法在面向不同的任务

时需要根据实际情况进行改进,以达到更好的效果。现有

的算法改进策略可以分为3类:优化种群初始化方式[10-12]、
改进算法学习策略[13-15]、算法混合策略[16-18]。具体来讲,初
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始化方式的改进可以增强算法初始的多样性,让算法以更

优秀的起点出发,但复杂的初始化方式会增加算法的计算

成本;改进算法学习策略,主要通过引进诸如莱维飞行系

数、柯西变异系数、relief系数、对立学习等方法,对产生的

个体解进行扰动产生新解,进而跳出局部最优。这种方式

可以一定程度上改善最优个体和种群的表现,但引入的系

数需要通过经验和大量实验进行调整,且效果的随机性较

大;算法的融合策略,利用各算法的优势互补,有助于克服

单一算法的局限性,但算法之间的交互带来了更多的计算

复杂性。
蜣螂优化算法(dung

 

beetle
 

optimization,DBO)是由

Shen等在2022年11月提出的一种新型启发式搜索算法,
通过模拟蜣螂的行为来实现全局搜索和求解最优值,该算

法在一众基准函数和测试函数中表现优于许多其他优化算

法[19]。但当蜣螂优化算法面向特征选择任务时,会出现两

个问题:一是蜣螂优化算法不能直接运行特征选择任务,还
未有直接将蜣螂优化算法应用于特征选择算法的文献;二
则与蜣螂优化算法的运行机制相关:蜣螂优化算法本质属

于亚群类型的算法,即划分种群为不同的个体,分别按照不

同的公式更新个体解。这极大扩展了算法的搜索空间,然
而在面对特征选择任务时,蜣螂优化算法的部分公式效果

不尽人意,浪费了本就有限的计算资源。
针对蜣螂优化算法存在的以上问题,使用精英初始化

种群策略改进种群的初始化分布,通过与灰狼优化算法融

合改善蜣螂优化算法的部分公式在面对特征选择任务表现

不佳的现象。同时,为了改善算法融合和初始化策略带来

的计算复杂度增长问题,又提出了运行加速策略以改善算

法的运行表现,使得算法在保证效果的同时拥有更快的运

行速度。

1 DBOG算法

1.1 二进制策略

  使用启发式算法进行特征选择属于包装式方法,可以

分为两个步骤:第1步,算法按照其设定准则生成种群,种
群中的个体即为一个个特征子集;第2步,使用机器学习算

法参与的评分函数评估种群中个体的优劣,循环这两个步

骤一直到某个停止标准。原始的蜣螂优化算法是在连续的

搜索空间中寻找最优解,而特征选择任务则是在离散的二

进制空间中寻找最优解,所以需要二进制策略将蜣螂优化

算法产生的解编码为特征子集。
二进制策略就是把算法产生的每一个解离散化为二值

0~1向量,0和1分别对应该位置的特征是否被选中。采

用阈值法将种群的个体解映射为0~1向量,即:

U(d)=
1, X(d)≥0.5
0, X(d)<0.5 (1)

U(d)即为向量的第d 维,即第d 个特征。X(d)则对

应算法更新的个体解。

如图1所示,该特征向量的含义为:数据集的特征维度

为10,而算法产生的某个解,是第2、5和8位特征被选中。

图1 特征选择任务中的二进制向量说明

1.2 精英初始化种群策略

  算法开始运行时,需要给予种群中的每个个体一个初

始解。为了使算法快速收敛到最优位置,对算法的初始化

进行改进,提出一种精英初始化种群策略。

Logistic混沌映射生成的随机数随机性强、分布均匀

等特点[20],故使用Logistic混沌映射代替随机值进行初始

种群的随机化。Logistic混沌映射公式如下:

X(k+1)=μ·x(k)·(1-x(k)) (2)
其中,μ为分支参数,范围为(3.5699456,4],x(k)为

当前产生的随机值,初始值是范围在(0,1)内的随机数。
为了使种群能够在初始阶段就尽可能多的探索解空

间,对生成的解进行反向,生成更多的解。种群中第 K 个

个体的反向解Xf 的求取公式如下:

Xf(k)=lb+ub-X(k) (3)

lb和ub分别为种群的上界和下界。
但通过随机数生成的初始解具有随机性,不能保证一

定处于较优位置。因此,本文先使用两种抽样方法:自助

法、3折交叉采样对所有样本进行抽样,以改善数据集中样

本分布不均和噪声等问题,提高模型的鲁棒性。再对每一

份样本计算其 RliefF特征重要性系数,得到每个特征的

6个特征重要性系数,求其平均值。根据该平均值,得到每

个特征的重要性排序,进而计算种群个体解的每个编码值

的缩放倍率Z,求取公式如下:

Z =l+((D-R)×(u-l))/D (4)

X'=X·Z (5)

X'即为更新后的精英个体解。其中,设定l为0.5,u
为1.5,D 为维度数,R 为当前特征在鲁棒特征排序中的位

置。整个算法的初始化策略流程如图2所示。

1.3 灰狼蜣螂融合机制

  原始的蜣螂优化算法通过种群中不同的蜣螂行为模式

实现算法的寻优,但一些行为在特征选择任务上的表现并

不优秀,因此引入灰狼优化算法[21]替代换蜣螂的滚球(含
跳舞)、觅食这两种行为,提出基于蜣螂优化算法与灰狼优

化算法融合的DBOG(dung
 

beetle
 

optimization
 

gray-wolf)
算法。算法的模型如下:

首先在种群中选择最优秀的3只蜣螂a、b、c,种群中

原本的滚球和觅食蜣螂围绕这3只蜣螂进行位置更新:

X1=Xa-A1·Da
X2=Xb-A2·Db (6)

X3=Xc-A3·Dc
式中:X1、X2、X3是当前蜣螂分别向a、b、c移动的步长。
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图2 精英初始化策略

Xa、Xb、Xc分别为当前a、b、c的位置。式中的Da、Db、Dc
分别表示当前蜣螂与a、b、c的距离,A1、A2、A3是系数向

量。Da、Db、Dc的计算公式如下:

Da=C1·Xa-X(t)

Db=C2·Xb-X(t) (7)

Dc=C3·Xc-X(t)
式中:C1、C2、C3是随机向量。计算公式为:C=2·r2

A1、A2、A3的计算公式为:A=2d·r1-d
其中,r1和r2为两个随机向量,每个维度的值都在

0~1之间。d 为收敛因子,从2到0线性递减。计算公式

如下:d =2-t·(2tmax

),t为当前迭代次数。

替换后的滚球蜣螂和觅食蜣螂的位置更新公式即为:

Xt+1  = (X1+X2+X3)/3 (8)

X(t+1)是当前蜣螂在本轮迭代中的下一个位置。
而繁殖和小偷蜣螂则按照原本的位置更新方式进行

更新,繁殖蜣螂会先确定一个繁殖的区域:

Lb* =max(X*·(1-R),Lb)

Ub* =min(X*·(1+R),Ub) (9)
式中:Lb* 和Ub* 分别是产卵区域的下界和上界,其中

R =1-t/Tmax,X* 为当前局部最优位置。
繁殖蜣螂产下的卵球位置更新公式如下:

Xt+1  =X*+b1·X(t)-Lb*  +b2·(X(t)-Ub*)
(10)

式中:b1和b2为两个大小为1×D 的随机向量,D 为数据

集的维度。
小偷蜣螂的位置更新公式:

Xt+1  =Xb+S·g· X(t)-X* +|X(t)-Xb|  
(11)

式中:g 为随机向量,服从正态分布,大小为1×D,S 为常

量,Xb 为全局最优位置。
算法的种群组成比例为:以灰狼模式迭代的蜣螂为

0.3,繁殖蜣螂为0.3,小偷蜣螂为0.4。

1.4 运行加速策略

  由于这些启发式搜索算法的“逐优”机制,即群体中其

他个体都会向最优秀的一些个体靠拢,在算法运行后期,
许多个体会产生相似的解,这些相似的解在特征选择任务

上被映射为二值向量后,便有可能会产生相同的向量。重

复的计算相同向量所对应的适应度值会浪费大量的时间,
因此本文设计一种运行加速策略如图3所示。

图3 算法加速策略示意图

·18·



 第47卷 电 子 测 量 技 术

受禁忌搜索算法的启发,仿照禁忌表的概念,建立适

应度表,存储种群中每个个体产生的二值化向量及其适应

度值,在计算适应度值之前,检索是否有相同的向量已经

计算过适应度值,如果计算过,则直接取用表中的值。如

果没有计算过,则计算后存储入表内。

1.5 适应度函数设计

  适应度函数值计算公式如式(11):

fitness=α·error+β·(1-
n
N
) (12)

error=1-acc (13)
由于面向分类任务,使用分类准确率accuracy作为

acc。 其中α设置为0.99,β设置为0.01,n为解中包含的

特征数量,N 为特征总数。

1.6 算法的整体描述

  为了更好的说明算法的整体流程,给出算法的伪代码

表如表1。

表1 DBOG算法的伪代码表

The
 

framework
 

of
 

the
 

DBOG
 

algorithm
1.

 

Initialize
 

the
 

population
 

X
 

using
 

the
 

initialization
 

strategies
 

(2,3,4,5)
 

for
 

i=1
 

to
 

n.
2.

 

Calculate
 

the
 

fitness
 

values
 

of
 

the
 

population
 

and
 

select
 

the
 

top
 

three
 

best
 

grey
 

wolves,
 

and
 

their
 

corresponding
 

solutions
 

Xa,
 

Xb,
 

Xc.
3.

 

while
 

(t
 

<=T)

4.
 

 for
 

i=1
 

to
 

N
5.

  

 if
 

i==grey
 

wolf
 

then
6.

  

    Initialize
 

parameters
 

d,
 

A
 

and
 

C
 

7.
  

    update
 

grey
 

wolf
 

position
 

by
 

using
 

(8)

8.
  

 end
 

if
9.

 

  if
 

i==brood
 

ball
 

dung
 

then
10.

  

    update
 

brood
 

ball
 

beetle
 

position
 

by
 

using
 

(10)

11.
  

 end
 

if
12.

  

 if
 

i
 

==thief
 

dung
 

beetle
 

then
13.

 

    update
 

dung
 

beetle
 

position
 

by
 

using
 

(11)

14.
  

 end
 

if
15.

    

end
 

for
16.

  

 if
 

the
 

newly
 

generated
 

position
 

is
 

better
 

than
 

before
 

then
17.

 

   Update
 

it
18.

  

  end
 

if
19.

  

 Update
 

the
 

first
 

three
 

grey
 

wolves
 

Xa,
 

Xb,
 

and
 

Xc
20.

  

 t=t+1
21.

 

end
 

while
22.

 

return
 

the
 

best
 

grey
 

wolf
 

Xa

  DBOG算法的时间复杂度分析:假设数据集有D 个特

征,算法的种群数量为N,迭代次数为T,种群适应度排序

的时间复杂度为O(Y),每种采样方法的Relief重要性系

数时间复杂度为O(R)。循环开始时,按照精英初始化策

略进行种群初始化的时间复杂度为O(Y×2×D×N+2×
R),灰狼行为、繁殖蜣螂行为、小偷蜣螂行为以及最后更新

种群排序的时间复杂度为 O(Y×T×N×D+Y),则
DBOG 算法的总时间复杂度为O(2×R+Y+Y×N×
D×(T+2))。

2 实验与讨论

2.1 数据集信息及对比算法

  选取UCI数据库中的12个数据集在相同实验条件下

对DBOG与对比算法进行实验,选取的数据集涵盖了从

19个特征的低维数据集到1
 

203个特征的高维数据集,样
本数从87个小样本数据集到6

 

598个样本充足的数据集

均有涵盖。表2是其详细信息。

表2 数据集的信息描述

数据集 特征数 样本数 类别数

absentism 19 740 2
ChurnData 27 200 2
Darwin 450 174 2
Toxicity

 

2 1203 171 2
Musk

 

1 163 476 2
Musk

 

2 163 6
 

598 2
LSVT 313 126 2

Flowmeters
 

A 35 87 2
Flowmeters

 

B 50 92 3
Flowmeters

 

C 42 181 4
Flowmeters

 

D 42 180 4
ParkinsonDatabase 46 240 2

  为了证明改进后的蜣螂优化算法在特征选择任务上

的有效性,选取近5年来较新颖、效果较好、覆盖不同改进

策略的5种改进算法进行对比。首先是两阶段融合变异

灰 狼 特 征 选 择 算 法 (two-phase
 

mutation
 

grey
 

wolf
 

optimizer,TMGWO),采用了遗传算法的交叉变异优化灰

狼优化算法迭代机制,相比较原始的灰狼优化算法在特征

选择任务上表现更为优秀[22]。由于DBOG算法同样采用

了灰狼优化算法机制,故采用 TMGWO 算法作为对照。
随后是基于对立学习和新型局部搜索算法的樽海鞘特征

选择算法(improved
 

salp
 

swarm
 

algorithm,ISSA)[23]与基

于对 立 学 习 的 鲸 鱼 优 化 算 法 (opposition-based
 

whale
 

optimization
 

algorithm)[24],该两种算法使用对立学习策略

的方式优化个体解和初始解,提高算法的性能。改进的全

局 花 卉 授 粉 算 法 (modified
 

global
 

flower
 

pollination
 

algorithm,MGFPA)[25]采用 HBSS有界搜索空间机制调
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配两个父代个体进而产生更优秀的个体解。
为了进一步证明改进的先进性,选取改进正弦算法引

导的蜣螂优化算法(modified
 

sine
 

algorithm
 

dung
 

beetle
 

optimization,MSADBO)作 为 对 比,该 算 法 首 先 使 用

Bernoulli映射改进种群初始化方式,采用改进的正弦算法

替代滚球蜣螂的跳舞行为公式,使用自适应高斯-柯西变异

扰动最优个体值,在测试函数上取得了较好的效果[26]。对

比算法详细信息及参数设置如表3所示。

表3 对比算法的详细信息及实验参数设置

算法名称 描述 参数设置

TMGWO 两阶段融合变异灰狼特征选择算法 MU=0.5
ISSA 基于对立学习和新型局部搜索算法的樽海鞘特征选择算法 LSA=10
OBWOA 基于对立学习的鲸鱼优化算法 B=1
MGFPA 改进的全局花卉授粉算法 Gamma=0.01,beta=1.5,P=0.8
DBO

MSADBO
蜣螂优化算法

改进正弦算法引导的蜣螂优化算法

S=0.5,k=0.1,b=0.3
ωmax=0.9,ωmin=0.782,k=0.1,b=0.3,R=1

2.2 实验环境及参数设置

  算法的软件环境为python3.10,硬件环境 CPU 为

i3-10100,RAM为16
 

GB,硬盘1
 

TB。

DBOG算法与对比算法的结果均采用独立运行20次

重复实验后计算的指标平均值来作为检验标准,采用10
折交叉验证,数据集中的80%为训练集,20%为测试集。

分类器则采用KNN分类器,其中K=5。所有算法的种群

规模为30,迭代次数为50。评价指标选取3种:运行时间T、
特征维度FD、分类准确率ACC。

2.3 实验结果与讨论

  DBOG算法与对比算法在12个数据集上的平均分类

准确率对比结果如表4所示。

表4 DBOG与5种对比算法在平均分类准确率上的对比

数据集 DBOG DBO ISSA TMGWO OBWOA MGFPA MSADBO

Absentism 0.995
 

9 0.992
 

4 0.994
 

5 0.995
 

5 0.995
 

5 0.994
 

9 0.987
 

4

ChurnData 0.807
 

9 0.787
 

9 0.805
 

5 0.807
 

9 0.789
 

5 0.809
 

4 0.796
 

9

Darwin 0.882
 

6 0.846
 

5 0.811
 

8 0.842
 

2 0.845
 

2 0.836
 

2 0.857
 

3

Toxicity
 

2 0.713
 

7 0.683
 

5 0.617
 

4 0.683
 

2 0.683
 

3 0.632
 

9 0.704
 

3

Musk
 

1 0.872
 

1 0.844
 

8 0.846
 

2 0.845
 

8 0.827
 

5 0.861
 

2 0.835
 

5

Musk
 

2 0.899
 

5 0.886
 

5 0.864
 

0 0.886
 

5 0.868
 

6 0.884
 

2 0.894
 

5

LSVT 0.816
 

6 0.797
 

9 0.667
 

1 0.796
 

1 0.800
 

8 0.664
 

2 0.817
 

1

Flowmeters
 

A 0.754
 

7 0.690
 

8 0.705
 

5 0.733
 

8 0.713
 

7 0.715
 

0 0.715
 

5

Flowmeters
 

B 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Flowmeters
 

C 0.915
 

9 0.907
 

1 0.910
 

6 0.910
 

0 0.901
 

3 0.908
 

5 0.907
 

2

Flowmeters
 

D 0.849
 

9 0.840
 

5 0.847
 

7 0.849
 

4 0.845
 

5 0.849
 

9 0.847
 

7

ParkinsonDatabase 0.828
 

7 0.820
 

4 0.835
 

0 0.821
 

6 0.822
 

9 0.832
 

0 0.825
 

4

  由于适应度函数被设计为综合考虑特征维度和分类

准确率,当算法间的收敛的最终效果也就是最低适应度值

没有足够大的差距时,就有可能造成某些DBOG算法在特

征维度和分类准确率这两种指标中的某一种无法优越于

其他对比算法。可以看到,DBOG算法在12个数据集中

的11个数据集中能够取得平均分类准确率的最高值,在
ParkinsonDatabase数据集中虽然没能取得最高精度,但相

较对比算法中的其中3个算法仍取得了较好的成绩。

DBOG算法与其他5种对比算法在运行时间和特征

维度上的比较结果如表5和6所示。

在运行时间和特征维度指标上,DBOG相比较对比算

法在运行时间指标上在11个数据集上取得领先,对比未

改进之前的DBO算法,说明运行加速策略是有效的。而

在特征维度指标上,DBOG在9个数据集上维持优势,说
明DBOG算法能够在保持最高分类精度的情况下,以更快

的运行速度选择最小的特征维度,更好的完成特征选择

任务。
为了证明DBOG算法寻找最优值时的收敛速度优势

以及精英化种群初始策略的有效性,给出DBOG算法与其

他算法的收敛对比如图4所示。
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表5 DBOG与5种对比算法在运行时间上的对比

数据集 DBOG DBO ISSA TMGWO OBWOA MGFPA MSADBO
absentism 18 69.1 121.3 106.3 204.9 71.4 76.4
ChurnData 37.3 64.2 85.9 98.5 138.7 64.2 71.4
Darwin 121.2 167.0 236.2 1

 

224.5 599.6 143.9 133.4
Toxicity

 

2 123.5 203.0 374.8 1
 

025.2 727.4 270.0 207.2
Musk

 

1 111.2 84.3 111.7 304.4 168.2 84.9 102.1
Musk

 

2 1
 

046.0 1
 

333.7 2
 

116.5 5
 

849.7 6
 

523.6 1
 

477.3 5
 

698.0
LSVT 65.1 149.1 273.0 1

 

110.8 334.5 196.4 113.8
Flowmeters

 

A 20.0 59.2 79.3 107.1 146.2 62.0 67.0
Flowmeters

 

B 25.6 65.3 94.3 138.2 221.5 68.2 74.0
Flowmeters

 

C 65.8 71.9 105.1 139.4 177.4 77.2 79.0
Flowmeters

 

D 23.6 69.1 93.3 123.6 157.5 77.1 78.4
ParkinsonDatabase 40.8 70.0 111.7 143.6 149.9 83.2 69.8

表6 DBOG与5种对比算法在特征维度上的对比

数据集 DBOG DBO ISSA TMGWO OBWOA MGFPA MSADBO
absentism 1.2 1.0 3.7 1.0 1.0 1.4 1.5
ChurnData 8.5 7.4 10.2 12.5 8.7 8.7 6.2
Darwin 27.0 62.0 190.4 67.4 37.8 213.1 58
Toxicity

 

2 22.6 67.1 520.9 33.1 27.3 586.1 44.5
Musk

 

1 36.8 52.0 80.4 57.0 51.6 79.8 47.7
Musk

 

2 16.7 22.2 75.1 20.8 18.2 67.8 18.2
LSVT 5.9 8.3 101.4 16.4 6.8 111.9 12.5

Flowmeters
 

A 2.7 3.6 2.9 2.9 3.3 8.0 4
Flowmeters

 

B 2.0 2.4 8.6 2.0 2.3 2.0 2.5
Flowmeters

 

C 5.7 8.6 12.5 9.5 12.7 10.4 11.8
Flowmeters

 

D 3.5 6.8 9.6 5.9 7.4 7.4 5.1
ParkinsonDatabase 10.0 10.7 20.2 8.5 10.3 21.0 13.1

·48·



 

李 珺
 

等:面向特征选择任务的改进蜣螂优化算法 第1期

图4 DBOG算法与其他算法的收敛图对比

  收敛图可以反映算法的初始化效果、收敛速度、最终

收敛效果。精英初始化策略在12个数据集中的11个中能

够让算法以更高的起点开始运行,算法在收敛初期就找到

更好的位置,为后续寻找最优解奠定基础。而在收敛速度

以及最终收敛效果指标上,DBOG算法在11个数据集上

表现优于其他算法,仅在 Flowmeters
 

B数据集中与除

ISSA以外的其他算法表现相同。除此之外,我们还发现

DBOG算法在高维数据集(Darwin
 

450个特征、Toxicity
 

2
 

1
 

203个特征、Musk
 

1
 

163个特征、Musk
 

2
 

163个特征、

LVST
 

313个特征)中表现优于在低维数据集中的表现,且
在高维数据集中与其他算法的差距要比低维数据集中的

大,证明DBOG算法在特征选择任务尤其是高维数据集上

具有优越性。

MSADBO、TMGWO、OBWOA、MGFPA算法的改进

虽然采用了优化种群初始化、改进算法学习策略等方法,
但依靠初始化改进、变异、反向学习等方式去更新个体解

存在一定程度的随机性,尤其是面对特征选择任务时,一
个很差或很好个体解的反向解、扰动解并不一定会优于当

前种群中的最优解,从而陷于局部最优导致算法无法收敛

到更优解。其中 MSADBO同样是采用引入其他算法进行

融合的策略,并且 对 种 群 初 始 化 方 式 进 行 了 改 进。但

DBOG算法优于 MSADBO和其他改进型算法之处在于,
面向特征选择任务的针对性改进。即针对蜣螂的滚球和

跳舞行为公式在特征选择任务上表现不佳的问题进行有

效算法的融合替换,更充分的利用种群中每个个体的计算

资源,从而达到优于其他算法的效果。

3 结  论

  本文使用二进制策略使蜣螂优化算法能够运行特征

选择任务,针对原始蜣螂优化算法存在的问题,使用三种

优化策略:精英初始化种群策略、蜣螂优化算法与灰狼优

化算法融合策略、运行加速策略。首先使用精英初始化策

略优化算法的初始种群。其次针对原始蜣螂优化算法中

部分行为在特征选择任务中表现不佳的问题,引入灰狼优

化算法行为进行替代,有效改善了种群的寻优性能。最

后,对于算法种群中存在相同解的问题提出运行加速策

略。实验数据显示,相比原本的蜣螂优化算法以及同类特

征选择算法,蜣螂灰狼融合优化算法DBOG能够在更短的

时间内收敛到更优秀的适应度值,以更少的特征维度获得

更高的特征子集,证明了DBOG算法的有效性。

但DBOG算法还存在由精英初始化策略带来的算法

时间复杂度稍高的问题,未来可以考虑采用轻量化初始化

策略进一步优化。算法中一些固定参数也可以尝试使用

自适应策略进行调整,或将进一步提高 DBOG算法的性

能。在未来的研究中,可以考虑将DBOG算法应用于更多

的公共数据集,或者将其应用于优化支持向量机或神经网

络的参数等研究。
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