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摘 要:针对基于图卷积的骨架行为识别方法在建模关节特征时严重依赖手工设计图形拓扑,缺乏建模全局关节间

依赖关系的缺点,设计了一种时空卷积Transformer实现对空间和时间关节特征的建模。空间关节特征建模中,提出

一种动态分组解耦Transformer,通过将输入骨架序列在通道维度进行分组并为每个组动态生成不同的注意力矩阵,
允许建模关节之间的全局空间依赖关系,无需事先知道人体拓扑结构。时间关节特征建模中,通过多尺度时间卷积实

现对不同时间尺度行为特征的提取。最后,提出一种时空-通道联合注意力模块,进一步对所提取到的时空特征进行

修正。在NTU-RGB+D和NTU-RGB+D
 

120数据集的跨主体评估标准上达到了92.5%和89.3%的Top1识别准

确率,实验结果表明了所提方法的有效性。
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Abstract:In
 

the
 

methon
 

of
 

skeleton
 

action
 

recognition
 

based
 

on
 

graph
 

convolution,
 

the
 

rely
 

heavily
 

on
 

hand-designed
 

graph
 

topology
 

in
 

modelling
 

joint
 

features,
 

and
 

lack
 

the
 

ability
 

to
 

model
 

global
 

joint
 

dependencies.
 

To
 

address
 

this
 

issue,
 

we
 

proposed
 

a
 

spatio-temporal
 

convolutional
 

Transformer
 

network
 

to
 

implement
 

the
 

modelling
 

of
 

spatial
 

and
 

temporal
 

joint
 

features.
 

In
 

the
 

spatial
 

joint
 

feature
 

modeling,
 

we
 

proposed
 

a
 

dynamic
 

grouping
 

decoupling
 

Transformer
 

that
 

grouped
 

the
 

input
 

skeleton
 

sequence
 

in
 

the
 

channel
 

dimension
 

and
 

dynamically
 

generated
 

different
 

attention
 

matrices
 

for
 

each
 

group,
 

establishing
 

global
 

dependencies
 

between
 

joints
 

without
 

requiring
 

knowledge
 

of
 

the
 

human
 

topology.
 

In
 

the
 

temporal
 

joint
 

feature
 

modeling,
 

multi-scale
 

temporal
 

convolution
 

was
 

used
 

to
 

extract
 

features
 

of
 

target
 

behaviors
 

at
 

different
 

scales.
 

Finally,
 

we
 

proposed
 

a
 

spatio-temporal
 

channel
 

joint
 

attention
 

module
 

to
 

further
 

refine
 

the
 

extracted
 

spatio-temporal
 

features.
 

The
 

proposed
 

method
 

achieved
 

Top1
 

recognition
 

accuracy
 

rates
 

of
 

92.5%
 

and
 

89.3%
 

on
 

the
 

cross-subject
 

evaluation
 

criteria
 

for
 

the
 

NTU-RGB+D
 

and
 

NTU-RGB+D
 

120
 

datasets,
 

respectively,
 

demonstrating
 

its
 

effectiveness.
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0 引  言

  人体行为识别是视频理解中一个重要的研究课题,已
被广泛的应用在智能视频监控、人机交互和机器人等领域。
近年来,随着深度相机和先进姿态估计[1]算法的出现,基于

骨架的行为识别受到越来越多研究者的关注。骨架数据采

用一系列人体关键关节坐标作为行为信息载体,这种高度

抽象的表示使得骨架数据在具有极高紧凑性的同时,对于

光照、背景和人体外观变化具有很好的鲁棒性。
骨架数据包含了用于行为识别的全部时空信息,有效
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建模关节的时空依赖关系对于从骨架序列中识别行为至关

重要。近年来,基于深度学习的传统解决方案以循环神经

网络(recurrent
 

neural
 

network,RNN)和卷积神经网络

(convolutional
 

neural
 

network,CNN)为主干,将原始骨架

数据转化为向量序列或伪图像以满足输入要求。然而,人
体骨架具有一定的自然拓扑结构,关节和骨骼之间具有一

定的相关性。通过将骨架数据转化为向量序列或伪图像,
人体骨架所包含的结构信息将被破坏,这无疑对于正确识

别类间差异较小的行为是不利的。
人体骨架作为一种非欧几里德结构数据,如何有效建

模所包含的结构信息有利于更好的提升识别结果。得益于

图卷积网络(graph
 

convolutional
 

network,GCN)在建模非

欧几里德数据方面的优势,通过将骨架序列表示为一个时

空拓扑图,有效的利用了人体骨架的拓扑信息,使基于

GCN的深度学习方法获得了最先进的性能。其中,Yan
等[2]首次将GCN引入骨架行为识别,将骨架序列表示为一

个时空拓扑图,提出一种时空图卷积网络(spatial
 

temporal
 

graph
 

convolutional
 

network,ST-GCN)来分别实现对空间

和时间特征的建模。此后,在ST-GCN的基础上一些改进

方法[3]被陆续提出,这些基于GCN的方法通过预先设定的

拓扑图进行关节之间的信息交互,从而实现关节特征的更

新。然而,预设的拓扑图通常需要一定的人体结构先验知

识,且简单的以骨架为基础的图结构通常只能够得到关节

之间的局部空间依赖关系,缺乏建模全局空间关节依赖关

系的能力。
最近,Transformer[4]作 为 一 种 新 范 式 被 提 出 作 为

RNN的替代方案,成为自然语言处理任务中性能最先进的

模型。Transformer遵循编码器-解码器结构,仅仅依赖于

自注意力机制,在打破RNN并行处理局限性的同时可以

更好的建模长序列。随着Transformer在自然语言处理领

域中的成功,其在各种计算机视觉任务中也获得了显著的

性能提升。得益于骨架数据中关节数量的稀疏性,通过将

其视作一个单词,最近的一些工作[5-6]开始将其扩展到基于

骨架的行为识别中。其中,Plizar等[7]提出了一种时空

Transformer网络,该模型由基于骨架的行为识别任务中

的 Transformer 编 码 器 和 GCN 模 块 组 成,使 用

Transformer自注意力算子代替了空间和时间上的正则图

卷积。Kong等[8]通过图卷积网络块和多尺度时间嵌入模

块对原始骨架进行嵌入,将多尺度时间嵌入模块设计为多

个分 支,提 取 不 同 时 间 尺 度 的 特 征,然 后 引 入 了

Transformer编码器来集成嵌入及建模长期时间模式。

Sun等[9]提出使用多流时空相对Transformer来克服图卷

积接受域较小的缺陷,通过引入中继节点打破了空间上固

有的骨架拓扑和时间维度上骨架序列的顺序。然而,这些

基于Transformer的方法在进行特征更新时所有通道共享

同一个注意力矩阵,相较于卷积神经网络中使用的解耦聚

合机制[10],其特征建模的灵活性受到限制。

本文针对基于图卷积的方法在建模空间关节特征时严

重依赖于手工设计拓扑图及缺乏建模全局关节依赖关系的

缺点,提 出 一 种 时 空 卷 积 Transformer(spatial
 

temporal
 

convolutional
 

transformer
 

network,ST-ConvTR),通过引入

Transformer的自注意力机制和卷积操作分别对空间和时间

关节特征进行建模。在空间关节特征建模中,受卷积神经网

络解耦聚合机制启发,提出一种动态分组解耦Transformer。
它将输入骨架序列在通道维度进行分组并为每个组动态生

成不同的注意力矩阵,允许建模关节之间的全部空间依赖关

系,而不需要事先知道人体拓扑结构。时间关节特征建模

中,采用多尺度时间卷积提取不同时间尺度行为特征。最

后,为进一步对所提取到的时空特征进行修正,提出一种时

空-通道联合注意力模块,通过计算整个骨架序列中所有关

节的权重,实现对提取到的时空特征进行加权。

1 相关工作

1.1 基于骨架的行为识别

  过去,基 于 骨 架 的 行 为 识 别 主 要 依 赖 手 工 设 计 特

征[11],虽然这类方法可以更好地理解行为特征,但由于骨

架数据中包含大量非结构化信息,其难以捕捉所有行为特

征,因此识别准确率相对较低。随着深度学习发展,基于

RNN和CNN的方法被引入骨架行为识别,取得了显著优

于手工设计特征方法的性能。基于RNN的方法[12]转化原

始骨架数据为向量序列,旨在建模骨架序列的时间依赖关

系。基于CNN的方法[13]转化原始骨架数据为伪图像,通
过卷积操作提取骨架数据的时空信息。骨架数据是一种典

型的非欧式数据,有效利用骨架的拓扑信息有助于更好的

进行行为识别。近年来,通过将骨架序列表示为一个时空

拓扑图,基于GCN的骨架行为识别方法[14]得到了广泛的

应用,它可以在不丢失人体骨架拓扑信息的情况下有效的

建模关节的时空依赖关系。

1.2 Transformer的自注意力机制

  自注意力机制作为Transformer的重要组成部分,其
计算过程为:首先,通过线性变换将输入序列映射到查询向

量(query,Q)、键向量(key,K)和值向量(value,V);然后,
计算Q 和K 之间的点乘并经过一个Softmax(·)函数,得
到一个包含各元素权重的注意力矩阵;最后,使用注意力矩

阵实现对V 中对应元素的加权,计算公式如下:

Attention(Q,K,V)=Softmax
QKT

dk  ·V (1)

其中,dk 表示键向量维度,缩放因子 dk 用来缓解梯

度爆炸问题。
为了增强模型的表达能力和学习能力,在Transformer

中提出一种多头注意力机制,允许模型同时关注输入的不

同部分,从而捕捉更多的信息和关联性,计算公式如下:

headi =Attention(Qi,Ki,Vi)

MHA(Q,K,V)=Concat(head1,…,headH)WO
(2)
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其中,H 为头数,WO ∈ℝ
(H·dv)×dout 为权重矩阵,dv 和

dout 分别表示值向量维度和输出维度。

2 时空卷积Transformer网络

2.1 动态分组解耦Transformer网络

  在卷积神 经 网 络 的 特 征 提 取 中,不 同 的 输 出 通 道

都具有独立的卷积核,这种机制可以极大的提高空 间

建模能力,称之为解耦聚合。受此启发,提出一种动态

分 组 解 耦 Transformer(dynamic
 

grouping
 

DeCoupling
 

transformer,DGDC-TR)。如 图 1所 示,DGDC-TR 主

要由位 置 编 码(position
 

encoding,PE)模 块、空 间 注 意

力 模 块 和 空 间 全 局 注 意 力 (spatial
 

global
 

attention,

SGA)矩阵三部分组成。下面将 分 别 对 这3个 部 分 进

行阐述。

图1 动态分组解耦Transformer

1)位置编码

由于 Transformer的网络结构不同于传统的神经网

络,因此在处理序列数据时无法捕捉到序列顺序信息的。
例如,按行打乱K、V 的顺序并不影响注意力计算的结果,
但是在涉及序列信息的任务中,序列的位置信息是非常重

要的,因此必须将序列的位置信息利用起来,以便在计算

注意力时正确地考虑输入序列中元素的顺序和关系。由

于仅对空间关节特征进行建模,这里采用所有帧共享同一

组位置编码的方式,仅对空间上的关节位置进行编码。不

同的是,在网络中我们将位置编码看作一个参数,采用不

同频率的正弦和余弦函数[4]作为初始化,在训练过程中进

行学习更新以增强位置编码对不同输入样本的适应性,计
算公式如下:

PE(p,2i)=sin(p/10
 

000
2i/Cin)

PE(p,2i+1)=cos(p/10
 

000
2i/Cin)

(3)

其中,p 表示 元 素 的 位 置,i 表 示 位 置 编 码 向 量 的

维度。

2)空间注意力模块

在图1的上半部分方框中展示了DGDC-TR中所使用

的空间注意力模块。首先,对于原始输入骨架序列X ∈
ℝT×N×C 经过位置编码得到输入序列XPE ∈ ℝT×N×C,通过

一个线性变换(Linear)将 XPE 映射到一个值向量V ∈

ℝ
T×N×Cout,然后将值向量在通道维度分为G 组,每组包含

的通道数为|Cout/G|,线性变化公式如下:

V =XPEWL (4)

其中,WL ∈ ℝ
C×Cout 表示线性变换的权重矩阵,C 和

Cout 分别表示空间注意力模块的输入通道数和输出通

道数。
经过上述操作,值向量V 的通道被平均分为G 组,下

一步的工作在于如何根据组数生成解耦注意力矩阵ADC。
如图1下半部分所示,首先,通过式(5)和(6)将XPE 经过两

组线性变化映射到两组不同的查询和键向量。

Q1,K1=XPEWQ
L1,XPEWK

L1 (5)

Q2,K2=XPEWQ
L2,XPEWK

L2 (6)

·171·



 第47卷 电 子 测 量 技 术

其中,WQ
L1∈ ℝ

C×Cm、WK
L1∈ ℝ

C×Cm、WQ
L2 ∈ ℝ

C×Cout 和

WK
L2∈ ℝ

C×Cout 分别表示所用线性变换的权重矩阵,Cm =
Cout/2。

对于得到的查询向量Q1 ∈ ℝ
N×(TCm)和键向量K1 ∈

ℝ
(TCm)×N,通过式(7)可以得到一个注意力矩阵 AS ∈

ℝN×N。

AS=Softmax
Q1KT

1

Cm  (7)

对于得到的查询向量Q2 ∈ ℝ
T×N×Cout 和键向量K2 ∈

ℝ
T×N×Cout,首先,经过时间平均池化(Temporal

 

Pooling,T-
Pooling)、逐对相减(Pair-wise

 

Subtract)和Tanh激活函数

后将得到一个通道注意力矩阵AC∈ℝ
Cout×N×N;最后,将通

道注意力矩阵AC 通过一个分组卷积将得到一个动态分组

注意力矩阵ADG ∈ ℝG×N×N,计算公式如下:

ADG =Conv2d(1×1)(AC,groups=G) (8)
最后,对上述得到的注意力矩阵AS、ADG 和ASGA 经过

式(9)相结合得到A ∈ ℝG×N×N,然后经过repeat操作将

AS 的每个通道扩展到对应组所包含的通道数,得到一个解

耦注意力矩阵ADC∈ℝ
Cout×N×N。 这里,将ADC 中的Cout 个

通道划分为G 组时,每组的注意力矩阵则是相同的,和经

过分组后的值矩阵V 相对应。最后,将经过分组的值矩阵

V 和得到解耦注意力矩阵ADC 对应的组相乘即得到最后的

空间建模输出XS。

A=α·AS+β·ADG+ASGR (9)
其中,α和β表示两个可训练的标量,用来调整注意力

矩阵AS 和ADG 的强度;ASGA 为空间全局注意力矩阵。

3)空间全局注意力

原始的Transformer网络中使用多头注意力来获得

不同层面的信息,每个头都具有特定的意义。为了迫使

模型学习不同行为的更多一般注意事项,在计算分组注

意力矩 阵 时 添 加 了 一 个 空 间 全 局 注 意 力 矩 阵 ASGA ∈
ℝN×N,ASGA 被添加进第2.1节生成注意力矩阵A 的过程

中。由于所有的数据样本共享全局注意力矩阵,它代表

了人体关节间通用的联系。我们将其设置为网络的参

数,直接用正态分布初始化ASGA,并与模型一起对其进行

优化。该模块简单且重量轻,但如消融研究所示,它是有

效的。

2.2 时间关节特征建模

  由于Transformer对输入数据的归纳偏差几乎没有假

设,其泛化性能的好坏严重依赖于训练数据的数量,难以

在小规模的数据集上进行训练,对于类内差异很大的骨架

序列 来 讲 进 一 步 加 大 了 这 种 限 制。因 此,目 前 将 纯

Transformer应用到骨架行为识别并未取得较好的效果,
多数方法仍主要以 Transformer和卷积的结合为主。因

此,对于时间关节特征建模,采用被广泛使用的多尺度时

间卷积(multi-scale
 

temporal
 

convolution,MST),如图2所

示。MST由5条分支组成,1×1卷积用于划分各分支通

道,其中d表示卷积分支的膨胀系数,各分支通道数满足

C =Ca+4Cb。MST通过不同时间尺度大小的卷积核,有
效的提取了不同时间尺度上的行为特征,在减少参数量和

提高建模能力方面已被证明是有效的。

图2 多尺度时间卷积

2.3 时空-通道联合注意力模块

  在基于骨架的行为识别中,常采用一种类SENet[15]模
块的注意力机制,该注意力不同于Transformer中的自注

意力机制。自注意力机制计算不同关节之间的注意力分

配,而类SENet注意力则基于关节本身进行注意力分配。
研究者使用这些模块独立的在通道[16]、空间[17]或时空[18]

上应用注意力。然而,直观的讲,空间信息、时间信息和通

道信息之间可能彼此相关。因此,单独的考虑通道、空间

和时间对于骨架序列中关节的加权可能并不是最优的。
为了解 决 这 个 问 题,提 出 一 个 时 空-通 道 联 合 注 意 力

(spatiotemporal-channel
 

joint
 

attention,STC
 

JointAtt)模
块,如图3所示。对于一个输入骨架序列X ∈ ℝT×N×C,对
时间和空间维度进行平局池化,然后经过一个输出通道数

为1的全连接层(fully
 

connected
 

layer,FC)分别生成对关

节的空间注意力Aspatial∈ℝN 和时间注意力Atemporal∈ℝT,
对时空维度进行平均池化以获得通道注意力Achannel∈ℝC,
然后对得到的三个注意力使其通过一个激活函数,最后对

于这三个维度的注意力通过一个函数 (·)得到一个注意

力图,该注意力图用来加权骨架序列中的每个关节特征,
计算公式如下:

Aspatial=θ(FC(C,1)(AvgPoolt(X)))

Atemporal=θ(FC(C,1)(AvgPools(X)))

Achannel=θ(AvgPoolst(X))

A =θ((Achannel×(Aspatial+Atemporal))

(10)

其中,θ表示Sigmoid(·)激活函数。
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图3 时空-通道联合注意力模块

2.4 网络总体架构

  网络的总体框架如图4所示,在空间关节特征建模中

以DGDC-TR为基础,采用原始Transformer中的多头注

意力机制,整个空间建模一共包含 H 个头。在时间关节

特征建模中,使用 MST提取不同时间尺度行为特征。最

后,通过STC
 

JointAtt进一步的对所提取到的时空特征进

行修正。此外残差连接被分别添加在空间和时间建模

中,整个网络层数为L=10。具体网络设置如表1所示,
默认C=64、T=64,V=25分别表示通道、帧和关节的

数量。

图4 网络总体架构

表1 网络设置

层名称 输出 头维度

L1~L4 [C,
 

T,
 

V] C/4
L5~L7 [2C,

 

T/2,
 

V] C/2
L8~L10 [4C,

 

T/4,
 

V] C

3 实验结果与分析

3.1 数据集介绍及评价指标

  NTU-RGB+D[19]数据集是一个大规模人类行为识别

数据集,该数据集包含60个不同的行为类别,由56
 

880个

行为片段组成。这些行为片段由3台不同角度的 Kinect
 

v2传感器从40名不同的志愿者身上采集得到。该数据集

提供两种评估基准:1)跨主体(cross
 

subject,CS):训练集

由来自20名志愿者的40
 

320个行为片段组成,测试集由

来自剩余20名志愿者的16
 

560个行为片段组成。2)跨视

角(cross
 

view,CV):训练集来自传感器2和3采集的

37
 

920个行为片段组成,测试集来自传感器1采集 的

18
 

960个行为片段组成。

NTU-RGB+D
 

120[20]作为 NTU-RGB+D的扩展版

本,共有 120 个 行 为 类 别,由 从 106 位 志 愿 者 采 集 的

114
 

480个行为片段组成。此外,在相机高度和水平距离

上提供了32种设置组合,每种组合设置都具有独立的ID。
该数据集同样提供两种评估基准:1)跨主体(cross

 

subject,

CS):训练集由来自53名志愿者的63
 

026个行为片段组

成,测试集由来自剩余53名志愿者的51
 

454个行为片段

组成。2)跨设置(cross
 

setting,CE):训练集由设置ID为

偶数的54
 

471个行为片段组成,测试集本由设置ID为奇

数60
 

009个行为片段组成。
骨架行为识别作为一个多分类问题,本文采用识别准

确率(Accuracy)作为评判模型泛化性能的主要方式。对于

指定测试集,识别准确率定义为正确分类的样本个数占总
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样本个数的比例。

3.2 实验设置

  本文中所有实验都是基于Pytorch深度学习框架在

Ubuntu18.04操作系统上完成,使用2张Tesla
 

T4
 

GPU,
显存大小为32G。对于消融实验,从每个行为样本中选择

均匀采样一个 长 度 为64的 骨 架 序 列 作 为 输 入。对 于

3.4节提供的最优识别准确率,输入骨架序列长度为100。
在两个数据集上使用一些共用设置:优化策略使用权重衰

减为0.0004,Nesterov动量大小为0.9的随机梯度下降算

法;批次大小和总训练迭代轮数分别为64和80,初始学习

率为0.1,在第35轮、55轮和75轮时学习率减小到前一轮

的1/10。此外,一个热身策略[21]在前5轮被使用。

3.3 消融实验

  为了验证所提网络的有效性,本节在 NTU-RGB+D
数据集的跨主体(CS)基准上进行了消融实验。除非特别

说明,否则所有的消融实验使用头数为4,分组数G 等于该

层网络的输出通道Cout。

1)网络中模块的有效性

通过删除ST-ConvTR中的位置编码(PE)模块、空间

全局注意力矩阵(ASGA)、动态分组注意力矩阵(ADG)以及

时空-通道联合注意力(STC
 

JointAtt)模块,研究了不同模

块对识别性能的影响,结果如表2所示。从表中可以看

出,完整的ST-ConvTR取得了最佳的识别性能,测试识别

准确率为89.9%。删除PE后,识别准确率仅下降0.1%,
这说明为每个关节提供位置信息对于ST-ConvTR仍是有

效的,但骨架序列可能并不像机器翻译那样,句子中单词

之间存在逻辑关系。删除ASGA 后,ST-ConvTR的识别准

确率下降幅度最大,达到了0.6%,这说明虽然多头注意力

机制可以从不同层面捕捉关键之间的依赖关系,但学习关

节之间的通用依赖关系对于模型来讲是十分必要的。删

除ADG 后,识别准确率和完整的ST-ConvTR相比下降了

0.4%,这说明为不同通道建模注意力矩阵对于捕捉不同

通道上关节之间的依赖关系是有效的,极大的增强了ST-
ConvTR的空间关节建模能力。最后,删除STC

 

JointAtt,
识别准确率下降了0.2%,这表明空间、时间和通道之间是

存在联系,建模它们之间的联系对于骨架行为识别是有

效的。

表2 不同模块的识别准确率

模型 PE ASGA ADG STC
 

JointAtt Acc/%
ST-ConvTR × √ √ √ 89.8
ST-ConvTR √ × √ √ 89.3
ST-ConvTR √ √ × √ 89.5
ST-ConvTR √ √ √ × 89.7
ST-ConvTR √ √ √ √ 89.9

2)不同解耦组的识别准确率

为了研究对注意力矩阵进行分组解耦的有效性,对不

同的解耦组进行了消融实验,识别准确率如图5所示,其
中C表示图1中空间注意力模块所得值矩阵(V)的通道

数。可以看到,不进行分组时的识别准确率为89.2%,和
其他分组相比处于最低点。当将注意力矩阵分为4组、

8组和16组时,识别准确率相比于不进行分组时逐步提

高,分别为89.4%、89.5%和89.6%。最后,将注意力矩阵

分为C 组时的识别准确率为89.9%,在所有的分组中处于

最高点。这表明了不同通道上每个关节对其他关节的关

注程度是存在差异的,所提DGDC-TR通过将值向量的输

入划分为G 组,并为不同的组生成各自的注意力矩阵可以

有效的捕捉不同通道上的运动模式。

图5 不同解耦组识别准确率

3)多头自注意力机制的有效性

为了研究多头自注意力机制对模型识别准确率的影

响,在图6中展示了使用不同数量的头时的识别准确率。
可以看到,仅使用一个头时识别准确率最低,仅为88.7%。
进一步增加使用头的数量时识别准确率持续上升,并在头

数量为4时实现最好的性能,识别准确率为89.9%。但

是,当继续增加头数到6和8时,可以看到识别准确率开始

随着头的数量增加而下降。这可能时因为Transformer采

用的是以纯粹的点乘为基础的自注意力机制,随着头数量

的增多整个网络无论是对数据量的要求还是对数据分布

的要求都趋向于更加严格的限制。对于以骨架数据为基

础的行为识别来讲,数据类内分布差异很大,进一步的加

大了这种限制。

4)多尺度时间卷积的有效性

为了证明 MST的有效性,使用 MST和一个在时间维

度上核大小为Kt=9的卷积分别代替时间建模(temporal
 

modeling,TM),在NTU-RGB+D数据集的CS评估标准

上使用关节数据进行了对比试验。实验结果如表3所示,
使用 MST的识别准确率较单独使用卷积高,这是因为

MST可以从多个时间尺度上提取丰富且具有差异的时间

信息。同时由于每条分支上通道数较小,整体模型在参数
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图6 不同头的识别准确率

和计算量方面也较使用卷积出现了降低。综上所述,证明

了 MST对提高识别准确率的有效性。

表3 MST对模型识别准确率的影响

模型 TM 参数/M FLOPs/G Acc/%
ST-ConvTR MST 1.73 1.90 89.9
ST-ConvTR Kt=9 3.47 3.97 89.5

5)注意力矩阵可视化

如图7所示,为了对DGDC-TR具有更直观的认识,可
视化了“喝水”行为在网络第3层、第6层和第9层中的空

间全局注意力矩阵(SGA)和动态分组注意力矩阵(ADG)
中的3个。其中,橙色越深表示受到的注意越大,蓝色越

深表示受到的注意越小。结果表明:1)每层中的空间全局

注意力矩阵分布趋于密集,它代表了人体关节间通用的联

系,能够捕捉空间全局关节依赖关系,有助于更好的识别

不同行为。2)对于动态分组注意力矩阵,在不同通道上关

节之间的依赖关系存在差异化,表明了DGDC-TR可以更

好的建模不同通道上的行为特征。

图7 注意力矩阵可视化

3.4 与其他方法比较

  本节将ST-ConvTR与NTU-RGB+D和NTU-RGB+D
 

120数据集上的最先进方法的识别准确率进行了比较,结
果如 表 4 和 5 所 示,包 括 基 于 GCN 的 方 法 和 基 于

Transformer的方法。提供的最优识别准确率采用广泛使

用的多流融合框架[17],其中2s表示使用关节和骨骼两种

数据的融合得分,4s表示使用关节、骨骼、关节运动和骨骼

运动四种数据的融合得分。可以看到,在 NTU-RGB+D
和NTU-RGB+D

 

120上所提方法使用4种数据融合的识

别准确率均优于其它方法,表明了该模型提取时空关节特

征的有效性。

表4 NTU-RGB+D数据集的识别准确率比较

模型 CS/% CV/%
ST-GCN[2] 81.5 88.3
NAS-GCN[22] 89.4 95.7

DC-GCN+ADG[10] 90.8 96.6
DualHead-Net[23] 92.0 96.6
STime-TR[24] 87.1 91.8
MSST-RT[9] 88.4 93.2
ST-TR-agcn[7] 90.3 96.3

MTT+Shift-GCN[8] 90.8 96.7
ST-ConvTR

 

(Joint) 90.0 95.3
ST-ConvTR

 

(Bone) 90.5 94.9
ST-ConvTR

 

(2s) 92.1 96.5
ST-ConvTR

 

(4s) 92.5 96.9

表5 NTU-RGB+D120数据集的识别准确率比较

模型 CS/% CE/%
ST-GCN[2] 70.7 73.2
2s

 

MS-G3D[25] 86.9 88.4
Dynamic-GCN[26] 87.3 88.6
EfficientGCN-B4[18] 88.7 88.9
MSST-RT[9] 79.3 82.3
ST-TR-agcn[7] 85.1 87.1
MTT+AGCN[8] 86.1 87.6
ST-ConvTR

 

(Joint) 85.0 87.8
ST-ConvTR

 

(Bone) 87.0 87.0
ST-ConvTR

 

(2s) 89.0 90.4
ST-ConvTR

 

(4s) 89.3 90.6

4 结  论

  在基于人体骨架的行为识别中,提高模型识别准确率

的关键在于如何更好的提取骨架序列的时空特征和捕捉

关节 间 的 全 局 依 赖 关 系,本 文 提 出 一 种 时 空 卷 积

Transformer 网 络。 空 间 上,使 用 动 态 分 组 解 耦
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Transformer实现对空间上全局关节依赖关系的建模,与
基于GCN的方法相比并不需要人体结构先验知识。时间

上,采用多尺度时间卷积,在有效降低参数量和计算量的

基础上增强了时间关节特征的建模能力。最后,通过时空-
通道联合注意力模块对多提取到的时空关节特征进一步

修正。实验结果表明,与现有先进的方法相比,所提方法

具有更高的识别准确率。此外,详细的消融实验得以证实

所提方法的每个组件在骨架行为识别中都具有重要的

作用。
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