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摘 要:针对倒立摆系统控制过程中易受外界干扰和自然不稳定的特点,以及深度强化学习SAC算法采样数据利用

率较低和随机离线策略网络收敛较慢的问题,提出了一种结合近端经验采样和优化策略网络结构的改进算法PRER_

SAC。构建神经网络拟合函数,策略网络使用性能更优的 Mish函数作为激活函数,设置自调节温度系数以增强智能

体的探索能力;设计远、近两个经验池,及一种改变数据存放频率的训练策略,提高数据样本的利用率。通过仿真实验

对比,所提方法在同等训练次数下所得回报值和算法收敛速度优于DDPG和
 

SAC
 

算法,同传统控制方法PID和LQR
相比,有更好的控制效果。最后,对训练好的智能体加入角度扰动,可在2

 

s内被消除抑制,证明提出的算法具有较强

的适用性。
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Abstract:
 

In
 

response
 

to
 

the
 

characteristics
 

of
 

external
 

interference
 

and
 

natural
 

instability
 

in
 

the
 

control
 

process
 

of
 

inverted
 

pendulum
 

systems,
 

and
 

the
 

problems
 

of
 

low
 

utilization
 

of
 

sampling
 

data
 

and
 

slow
 

convergence
 

of
 

random
 

offline
 

strategy
 

networks
 

in
 

deep
 

reinforcement
 

learning
 

SAC
 

algorithm,
 

an
 

improved
 

algorithm
 

PRER_SAC
 

is
 

proposed
 

that
 

combines
 

recency
 

experience
 

sampling
 

and
 

optimize
 

policy
 

network
 

structure.
 

The
 

neural
 

network
 

fitting
 

function
 

is
 

constructed,the
 

policy
 

network
 

uses
 

the
 

better
 

performance
 

Mish
 

function
 

as
 

the
 

activation
 

function,
 

and
 

sets
 

the
 

self-adjusting
 

temperature
 

coefficient
 

to
 

enhance
 

the
 

exploration
 

ability
 

of
 

agent.
 

Design
 

two
 

experience
 

pools,
 

far
 

and
 

near,
 

and
 

a
 

training
 

strategy
 

to
 

change
 

the
 

frequency
 

of
 

data
 

storage.
 

Through
 

simulation
 

experiments,
 

the
 

return
 

value
 

and
 

convergence
 

speed
 

of
 

the
 

proposed
 

method
 

under
 

the
 

same
 

number
 

of
 

training
 

times
 

are
 

better
 

than
 

DDPG
 

and
 

SAC
 

algorithms,
 

and
 

have
 

better
 

control
 

effects
 

than
 

the
 

traditional
 

control
 

methods
 

PID
 

and
 

LQR.
 

Finally,
 

the
 

angle
 

disturbance
 

added
 

to
 

the
 

trained
 

agent
 

can
 

be
 

eliminated
 

within
 

2
 

s,
 

which
 

proves
 

that
 

the
 

proposed
 

algorithm
 

has
 

strong
 

applicability.
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0 引  言

  倒立摆系统是一种独立控制变量个数小于系统自由度

个数的非线性系统,该系统具有不稳定、高阶次、多变量、强
耦合等特点[1-2]。对倒立摆系统的研究始于20世纪50年

代,在过去的几十年里,被国内外学者研究扩展,该系统已

广泛应用于军工业和航天工业的控制模型基础。

针对倒立摆的稳摆控制,有诸多广泛应用的方法。

PID(proportional
 

integral
 

derivative)控制需要依赖控制经

验来调整参数,对设计人员的理论和应用能力要求较高[3];
模糊控制(fuzzy

 

control,FZ)控制器规则表的设计十分依赖

专家经验,且对于连续动作控制具有局限性[4];BP(back
 

propagation)网络中网络参数的学习和更新需要借助完整

的控制模型生成数据来进行训练[5]。线性二次调节器
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(linear
 

quadratic
 

regulator,LQR)可得到状态线性反馈的

最优控制规律,构成闭环最优控制,但线性控制器的局限性

是不可调和的[6];滑模变结构控制(sliding
 

mode
 

variable
 

structure
 

control,
 

SMC)控制器虽然在理论上控制效果较

好,但该控制方法复杂,不易于实时应用[7]。
深度强化学习(deep

 

reinforcrment
 

learning,DRL)兼
具了强化学习的决策能力以及深度学习的感知能力,无需

数学模型,也不需要人工提供训练数据,能通过机体自身与

环境交互不断完善自身,并作出利益最大的决策,具有很强

的通用性,使其在控制领域占据了重要的地位[8-10]。杨文

乐[11]设计了3种奖励方式,使用DQN(deep
 

q-network)算
法实现了一级倒立摆的稳摆控制实验,并改进Q学习(Q-
learning)引入一个参数粗调的

 

PID
 

控制器以获得状态变

量边缘位置的训练样本,提高了样本利用率。翁士博[12]使

用柔性演员-评论家(soft
 

actor
 

critic,SAC)算法实现了一

级倒立摆的稳摆控制实验,但算法采用了固定的熵正则化

系数,策略随机性不强,且采样策略无法最大化利用所有的

训练数据。王雨轩等[13]将PG(policy
 

gradient)算法中神经

网络激活函数替换为性能更优的
 

Swish
 

函数,并添加了基

线函数以提高训练效率,并应用于小车倒立摆仿真实验,证
明了算法的有效性。

在训练过程中,智能体需要大量的数据用以形成最优

策略,以至在面对干扰的时候能够更有效率的做出调整,使
系统具有更强的鲁棒性。因此智能体如何探索到更多的有

效路径,以及充分利用训练数据最大化训练效率是要解决

的关键问题。
因此,本文提出一种基于柔性演员-评论家的PRER_

SAC(piecewise
 

recency
 

experience
 

replay
 

soft
 

actor
 

critic)
控制算法。设置自调节温度系数,增强智能体策略的随机

性和有效性,策略网络引入新的 Mish激活函数,采用两个

经验池以及新的经验训练策略,提高样本的利用率和算法

速率。搭建仿真环境,与深度强化学习算法SAC、DDPG
(deep

 

deterministic
 

policy
 

gradient)和传统控制方法PID、

LQR方法的控制效果进行对比,分析本文所提方法的适

用性。

1 问题描述

1.1 倒立摆系统数学模型
 

  小车倒立摆系统的模型主要由小车、摆杆及导轨组成,
小车通过受力左右移动并使摆杆保持竖直不倒。

该系统的简化物理模型如图1所示,mc 为小车的质

量;m 为摆杆的质量;l为摆杆的长度;θ为摆杆与竖直方

向的夹角;X 为小车移动的距离;I 为摆杆的转动惯量;F
为作用于小车的推力;Ff 为与F 相反的摩擦力,摩擦系数

为b。
利用牛顿—欧拉方法建立的倒立摆数学模型为:

图1 车杆模型示意图
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(1)
为了简化倒立摆系统分析,需将上述模型在平衡点进

行线性化处理。需设θ=π+φ,在θ
 

较小时,cosθ= -1、

sinθ= -φ。 线性化后的数学模型为:
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1.2 算法结构

  2018年由 Haarnoja等[14]提出的SAC算法,融合了随

机策略和经验回放机制,并引入了最大化熵。算法在保障

最大化累计奖励的同时,还要增强策略的随机性,不遗忘任

何一个可能有用的动作和轨迹。熵与累计奖励的和期望最

大的策略π*表示为:

π* =argmax
π

E(st,at)~π ∑
∞

t=0
r(st,at)+αH(π(·|st))  

(3)

式中:∑
∞

t=0
r(st,at)为t时刻倒立摆系统累积到的所有奖

励;H(π(·|st))= -Eα[log(π(at|st))]为该时刻动作的

熵;α为温度系数,决定熵的权重,根据策略π*来随机选择

动作。
该算法共有5个神经网络:1个actor演员策略网络

π(s|a;θ)和4个critic
 

评论家价值网络(包括
 

2个目标Q
网络Q(s,a;ω-1,2)和2个Q网络Q(s,a;ω1,2)),每次更新选

择网络时会选择Q 值比较小的那个,以缓解Q 值的高估

现象。

1)评论家网络

动作价值函数采用三层全连接网络拟合。智能体在t时

刻的状态st 和动作at 为网络的输入,ReLU函数 (f(x)=
max(0,x))作为激活函数,网络输出at 的估计值。

Q 值网络的损失函数为Q(s,a)函数和目标Q-(s,a)
函数的均方差:
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LQ(ω)=Ε(st,at)~D
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(4)
其中,

Q-

ω-
(st,at)=r(st,at)+γE(st+1,at+1)~π

(Q-

ω-
(st+1,at+1)-

αlog(π(at+1|st+1)) (5)

式中:ω 和ω- 分别为Q 网络和目标Q 网络的网络参数;γ
为回报折扣因子;D 为经验缓冲池。

2)演员网络

动作策略函数采用三层全连接网络拟合。网络输入为

状态st,ReLU
 

作为激活函数。对于连续动作空间环境来

说,策略网络的输出为高斯分布的均值和标准差,是不可导

的,无法计算损失函数[15]。因此使用重参数化的方法,先
从单位高斯分布N 中获取采样值,将采样值乘以标准差后

加上均值,可将at 表示为at =fθ(εt;st),其中εt 是噪声随

机变量。
策略网络的损失函数由 KL散度得到,同时考虑两个

Q 函数,重写化简后策略的损失函数为:

Lπ(θ)=Εst~D,εt~N[αlog(πθ(fθ(εt;st|st))-
min
j=1,2

Qωj(st,fθ(εt;st))] (6)

3)自调节温度系数

为了提高策略的随机性,设置自调节温度系数[16],在
倒立摆系统中,当最优动作未知时,增大α的值鼓励智能体

随机探的索更多动作;当探索到最优动作时,减小α 的值,
将最优动作确定下来。因此将目标改写为一个约束问题:

max
π
Επ ∑

t
r(st,at)  

 

s.t.
 

Ε(st,at)~ρπ
[-log(πt(at|st))]≥H0

(7)
设置熵的阈值 H0,当 H >H0 时,α 减小,确定动作;

反之增大α 的值,鼓励探索。简化后自调节温度系数α 的

损失函数为:

L(α)=Εst~D,εt~π(·|st)
[-αlog(π(at|st))-αH0]

(8)

2 算法改进

2.1 改进神经网络结构

  激活函数可以增强神经网络的表示能力和学习能力,
对训练效果有着至关重要的影响。目前,ReLU函数已成

为神经网络的默认激活函数,本文引入 Mish激活函数作

为SAC算法策略网络的激活函数进行训练,以提高神经网

络体训练效率。

Mish函 数 受 Swish函 数 自 门 控 性 质 的 启 发,是 由

Misra[17]2019年提出的一种自正则化的非单调函数。Mish
函数定义为:

f(x)=x·tanh(ln(1+ex)) (9)
其中,f(x)的范围大概在 [-0.31,∞]之间。Mish

 

函数是平滑的,非单调的,使得它区别于其他大多数常用的

激活函数。Mish
 

函数的导数公式为:

f'(x)=
ex(4(x+1)+4e2x +e3x +ex(4x+6))

(2ex +e2x +2)2

(10)

Mish
 

函数和
 

Swish函数是很相似的,又可将导数公式

写为:

f'(x)=sech2(softplus(x))·x·sigmoid(x)+
f(x)
x =Δx·swish(x)+f(x)

x
(11)

这里的Δx 就是模仿了优化器的行为,给函数本身提

供了一种更强的自正则化的效果,使梯度更平滑。Mish函

数的曲线和导数曲线图如图2所示。

图2 Mish函数曲线和导数曲线图

由图2可知,Mish函数是一个光滑、连续且非单调的

激活函数,它在负值的时候允许比较小的负梯度流入,从而

保证信息流动;其有上界无下界的特点,避免了饱和问题,
不仅不会导致梯度消失,也保证了函数正则化的特性;较于

ReLU激活函数负值区间的导数为
 

0,Mish
 

函数避免了神

经元的“坏死现象”。Mish函数又是连续可微的,避免了奇

异点,在执行基于梯度的优化时避免了不必要的副作用。

Mish函数的性能相比函数更好,而且随着网络的深度加

深,信息可以更深入的流动。在多数实验条件下,Mish函

数相比其他激活函数获得了更好的训练结果[18-19]。

2.2 近端经验采样策略

  智能体与环境每交互一次会生产一个五元数组(st,

at,rt,st+1,done),并存入经验缓存池中,即智能体当前所

处的状态,当前执行的动作,下一时刻的状态,执行动作获

得的奖励值以及当前回合是否结束。
传统SAC算法在更新网络时会从经验缓存池进行批

量化的随机采样。这种方式是假定缓存池中的每条数据都

具有同等的重要性[20],但实际情况是会有许多价值不高的

数据被采样,会导致算法的效果和收敛速度受到影响。因

此提出一种结合近端经验回放的策略RER_SAC(recency
 

experience
 

replay
 

soft
 

actor
 

critic),强调在对缓存池进行批

量化随机采样的时候,着重考虑近期放进去的数据,同时也

·59·



 第47卷 电 子 测 量 技 术

不能忘记以前的经验[21],该策略的经验回放过程如图3
所示。

图3 近端经验回放过程

由图3可知,所提的近端经验回放策略RER_SAC的

经验缓存设计为:

1)
 

设置近端缓存池E和远端缓存池F;

2)
 

缓存池E的容量为m,缓存池F的容量为
 

n;

3)
 

两个缓存池都为先入先出的队列;

4)
 

智能体与境交互产生的五元组会首先存入近端缓

存池E中;

5)
 

当近端缓存池E填满之前,此时缓存池F是空的,
训练所需批量数据从E中采样;

6)
 

当近端缓存池E填满之后,交互产生的新数据会淘

汰近端缓存池中最早的一条数据,将淘汰的数据作为新数

据加入远端缓存池F中,并将新数据存入缓存池E中,并
而当F存满之后,也将抛弃最早的数据;

7)
 

此时分别从近端缓存池E中采样 M 条数据,从远

端缓存池F中采样N 条数据,共采样 M+N 条数据送入

神经网络训练更新;

8)
 

继续下一步交互更新。

2.3 回放训练策略

  随着训练的进行,缓存池里数据不断增加,但放入缓存

池中数据的频次不变,一定范围内会导致缓存池中新数据

的比例变小,使得一些有用数据可能没有被采样到,就被淘

汰了。因此在适用上文近端经验采样策略的基础上,提出

一种分段近端经验回放算法PRER_SAC,随着池内新数据

比例的下降,根据缓存池中数据的多少增加智能体的训练

次数,将数据最大化利用。分别设经验缓存池E和F的最

大容量分别为Cmax_E,Cmax_F,且Cmax_E<<Cmax_F;缓存池的

最小容量都为Cmin。将交互过程产生的经验数据逐条放入

缓存池,经验缓存池的当前数据量分别为CE,CF;每次批

量采样的数据量为B;其批量数据采样策略适用图3的步

骤,具体的训练策略为:

1)
 

当缓存池E的容量满足Cmin≤CE≤Cmax_E,且缓存

池F的容量CF≤Cmin 时,每增加100组新数据,训练智能

体10次;

2)
 

当缓存池E的容量满足CE=Cmax_E,且缓存池F的

容量Cmin<CF<0.3Cmax_F 时,每增加100组新数据,训练

智能体
 

20
 

次;

3)
 

当缓存池E的容量满足CE=Cmax_E,且缓存池F的

容量0.3Cmax_F≤CF<Cmax_F 时,每增加100组新数据,训练

智能体
 

30
 

次;

4)
 

当缓存池E的容量满足CE=Cmax_E,且CF=Cmax_F

时,每增加100组新数据,训练智能体
 

40
 

次。

2.4 算法流程

  以小车倒立摆系统为研究对象,结合上述算法设计,应
用到该系统中。图4所示为基于该算法的倒立摆DRL控

制过程。PRER_SAC的算法流程如下:

1)
 

初始化actor网络参数θ,critic网络参数ω1,ω2,

ω-1,ω
-
2 及其他参数。

2)
 

初始化经验缓存池E,F;

3)
 

每个回合(episode)循环以下步骤;

4)
 

获取倒立摆初始状态st;

5)
 

对回合里的每一步(step)循环以下步骤:

6)
 

根据策略选择动作at =π(st);

7)
 

执行动作at,获得奖励rt,环境状态变为st+1;

8)
 

将(st,at,st+1,rt)依次存入近端缓存池E,F中;

9)
 

当Cmin≤CE≤Cmax_E 且CF≤Cmin 时,采样在E里进

行;当存至Cmin<CF 后,在E里采样 M,F里采样N,总采

样M+N;
10)

 

缓存池每存入100组数据,进行分段训练;

11)
 

对每组数据,根据式(5)计算目标Q 值;

12)
 

对两个critic
 

Q 网络,根据式(4)计算损失函数,更
新当前critic网络;

13)
 

重参数采样获取动作at,根据式(6)计算损失函

数,更新当前actor网络。

14)
 

根据熵的阈值和式(8)更新熵的系数α;

15)
 

更新目标网络参数,即:ω-1 ←τω1+(1-τ)ω-1 和

ω-2←τω2+(1-τ)ω-2;
16)

 

结束每步(step)循环;

17)
 

结束每回合(episode)循环。

3 仿真测试

3.1 仿真平台搭建

  为了验证所提算法的有效性,进行仿真实验。本文实

验的操作系统为64位 Window10,内存为8
 

GB,处理器为

Intel(R)
 

Core(TM)
 

i5-8250U
 

CPU@1.60
 

GHz。
定义小车倒立摆环境,当摆杆竖直向上时,摆杆角度θ

为0,向小车施加一个连续的[-1,1]
 

N的力,使小车左右

摆动保持摆杆平衡。其中,摆杆初始角度在[-4°,4°]间随

机取值,当摆杆角度满足θ∈[-12°,12°]时,稳摆成功。小

车位置x 的范围不能超出[-2.4,2.4]的单位长度。仿真

环境示意图如图5所示。
智能体在t时间的状态s用向量[x,x·,θ,θ

·]表示,分
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图4 倒立摆DRL控制过程

图5 仿真环境示意图

别代表小车位置、小车速度、杆子与竖直方向的夹角和角

度变化率,其中小车速度和角度变化率不设值域范围。其

余主要参数如表1。

表1 倒立摆的主要参数

环境参数 取值

小车质量/kg 1
摆杆质量/kg 0.1

摆杆长度一半/m 0.5
每回合最大步数/step 200

摩擦系数 0.1

  在训练过程中,设环境与智能体总交互500个回合,
每个回合200步,每个Episode的结束条件为:

1)
 

θ
 

超出[-12°,12°]的范围;
 

2)
 

x
 

超出[-2.4,2.4]的单位长度;

3)
 

200个step全部走完。
每个回合内,每保持1步平衡得到的reward为1。若

连续100回合奖励都保持在200,则智能体训练完成。

3.2 实验1:Mish函数对训练效果的影响

  为验证本文引入的
 

Mish
 

激活函数在训练中的优势,
策略网络采用3层全连接网络,为避免深层网络结构对实

验数据的影响,设置隐含层神经元个数为16。隐藏层的激

活函数分别选取Sigmoid、ReLU、sTanh、Swish
 

函数以及

本文引入的
 

Mish
 

激活函数。随机初始化神经网络的权重

值,计算该仿真环境初始状态下
 

100
 

回合的平均回报值,
结果如表2。

表2 不同激活函数的平均回报

激活函数 平均回报

Mish 50.13
Swish 48.47
ReLU 42.37
Tanh 39.35
Sigmoid 19.33

  由表2可知,策略网络在采用了 Mish激活函数后,在
相同的网络结构下,在100回合内可以获得更高的回报

值,且远高于Sigmoid函数,相较于常用的ReLU函数,性
能提高了18.4%;相比与之性质相似的Swish函数,性能

提高了3.5%,具有更优的算法性能。Mish激活函数避免
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了神经元的“坏死现象”,而且随着网络的深度加深,信息

可以更深入的流动,训练效果会更好更明显。

3.3 经验采样策略对训练效果的影响

  实验算法超参数的确定:折扣因子用来计算未来累计

奖励,折扣因子越小越肯定当前的回报;神经网络学习率

决定着每次权重更新的步长大小,影响神经网络的训练过

程和结果;批量大小越大,训练的精度越高,但会使神经网

络梯度变化减缓,从而无法走出局部最优点;软更新系数

控制网络之间的权衡,较小的话会导致更新相对较快,也
可能使网络不稳定;温度系数用来调节智能体不同状态下

的探索策略;熵的阈值决定温度系数的自更新,一般取动

作维度的相反数。通过实验1,策略网络引入 Mish激活函

数,多次训练比对100回合内的平均回报值,确定出较优

的算法超参数如表3。

表3 神经网络训练参数

参数名 取值

折扣因子 0.99
学习率 0.001

批量大小 256
软更新系数 0.05

初始温度系数 0.01
熵的阈值 -1

  为验证提出的近端经验采样策略,遵从增大近期经验

在样本数据中重要性的原则,该策略中近端缓存池E的容

量大小m 以及该缓存池中小批量采样的数据M 的占比都

对算法的性能起到至关重要的作用,因此本节将从以下两

点展开实验:

1)
 

实验2:近端经验采样数据量M
为了避免近端缓存池大小m 对实验结果的影响,设置

近端缓存池大小与小批量数据中近端经验数据量相同,即
M=m。分别取

 

M=8,16,32,56,128
 

进行实验,每10个

回合的平均回报曲线如图6所示。

图6 不同数据量的平均回报

由图6可知,M 的取值在从128依次减小到16时,M

的取值越小,算法的收敛性能越好。M 取值为16的时候

算法性能最佳,但在M=8的时候效果反而变差了。证明

当小批量采样数据中近端数据量 M 占比较低时,算法可

以更好的兼顾近端数据和远端数据的平衡。

2)
 

实验3:近端缓存池E的容量m
由实验2得,在M=m 的前提下,m 此时不发挥作用,

确定了在近端经验缓存池采样数M=16的时候,算法性能

最佳。因此,为了使M 和m 共同在实验中发挥作用,取最

佳 M=16,分别取m=1
 

000,1
 

500,2
 

500,7
 

500,10
 

000进

行实验,每10个回合的平均回报曲线如图7所示。

图7 不同经验池大小的平均回报

由图7可知,M=16的情况下m 的取值在从10
 

000
依次减小到1

 

500时,m 的取值越小,算法的收敛性能越

好。m 取值为1
 

500的时候算法性能最佳,但在近200个

回合的时候,回报值发生了大幅度降低。但在m≥2
 

500
的情况下,却没有这种情况。因此可得,m 的最优取值应

该在1
 

500<m<2
 

500之间。

3.4 实验4:强化学习算法性能对比

  结合上述实验,取近端缓存池E的容量Cmax_E=m=
2

 

000,批量采样数据量 M =16;远端缓存池 F的容量

Cmax_F=n=100
 

000,批量采样数据量N=256-M。分别

对比了DDPG,SAC,RER_SAC和PRER_SAC算法的训

练效果,算法收敛条件为连续100回合回报值保持在200,
回报曲线如图8所示,训练数据如表4。
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图8 不同算法的回报曲线

表4 不同算法的训练效率

算法名

回报首次

达到200/

eposides

首次达到

200的时间/

min

收敛回合/

eposides

收敛

时间/

min
DDPG 180 1.27 495 9.34
SAC 143 1.06 392 19.22

RER_SAC 83 0.46 285 16.03
PRER_SAC 73 0.33 233 13.56

  由图8可知,PRER_SAC算法在500个回合的训练中

表现最优,其训练回报值方差明显变小,回报曲线的波动

变小,且上升的更快更稳定,有更好的算法性能。
由表4可知,PRER_SAC训练在73回合时回报值首

次达到200,历经0.33min;4种算法均可在倒立摆训练中

收敛,PRER_SAC算法比RER_SAC算法快52个回合,收
敛速率提高了15.4%;比SAC算法快159个回合,收敛速

率提高了29.4%;可见,PRER_SAC算法训练完成用时最

短,明显快于其他算法。由于SAC算法结构比较复杂,参
数也较多,所以其总体训练时间比DDPG算法长,但其控

制效果比DDPG算法更稳定。
实验证明了PRER_SAC算法能着重考虑近期产生的

数据,并根据已产生的数据量进行分段训练,能更快速有

效地探索到系统最优动作,一定程度避免了对无用数据的

学习,提高了数据利用率和算法的训练效率。

3.5 实验5:小车倒立摆控制效果对比

  为验证本文所提方法的控制效果,根据文献[22~25]
采用传统控制方法 PID和 LQR 与本文提出的 PRER_

SAC算法进行仿真对比。
由图9可知,3种方法均可在系统初始角度偏差较大

的情况下,在较短时间内进入稳摆阶段。其中,本文提出

的PRER_SAC算法相比PID和LQR方法花费时间最短,
在6.5s的时刻之后,即可使摆杆稳摆角度一直保持在

[-0.1°,0.1°]的偏差范围内,证明了所提算法的优越性。

图9 不同方法的摆杆角度曲线

3.6 实验6:鲁棒性测试

  在通过不同算法训练好的智能体上,在稳摆的第30s
加入角度扰动,测试系统的鲁棒性,扰动下的小车摆杆角

度曲线如图10所示。
由图10可知,通过PRER_SAC算法训练好的系统,

相比PID和LQR方法,系统的反应更迅速,摆杆角度的偏
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图10 不同方法摆杆扰动角度变化

差可在2s内被有 效 地 消 除 和 抑 制,之 后 一 直 保 持 在

[-0.005°,0.005°]的范围内,系统的稳定性更强,证明了

所提方法具有较强的鲁棒性和优越性。

4 结  论

  提出一种基于柔性演员-评论家的PRER_SAC控制算

法。以小车倒立摆为实验环境,对比仿真结果表明,所提

算法相比原SAC算法收敛速率提高了29.4%,提高了算

法性能;对比PID和LQR传统算法,有较强的自主控制能

力,仅需通过试错式的训练而不需要人为调整即可完成控

制任务,且该算法具有较强的鲁棒性,可以在倒立摆稳摆

控制中达到设定要求,具有较强的适用性。
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