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摘 要:为了表征逆变器故障中IGBT模块的老化趋势,提高老化过程的预测精度,本文提出一种基于改进蜣螂搜索

算法(IDBO)优化双向长短期神经网络(BiLSTM)超参数的IGBT老化预测模型。首先提取老化过程中Vce.on 的时频

域特征,利用核主成分分析进行降维构建归一化综合指标。其次,针对蜣螂搜索算法(DBO)的不足,通过引入改进

Circle混沌映射、Levy飞行和自适应权重因子提升了DBO寻优能力和收敛性能,利用IDBO对BiLSTM 预测模型超

参数实现全局寻优。最后,通过实际IGBT退化数据验证了基于IDBO优化BiLSTM 老化预测模型的有效性和优越

性。结果表 明,所 构 建 的IDBO-BiLSTM 模 型 与 BiLSTM 模 型 相 比 RMSE 平 均 下 降36.42%、MAE 平 均 下 降

31.77%、MAPE平均下降41.03%。
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Abstract:In
 

order
 

to
 

characterize
 

the
 

aging
 

trend
 

of
 

IGBT
 

modules
 

in
 

inverter
 

faults
 

and
 

improve
 

the
 

prediction
 

accuracy
 

of
 

the
 

aging
 

process,
 

this
 

paper
 

proposes
 

an
 

IGBT
 

aging
 

prediction
 

model
 

based
 

on
 

improved
 

dung
 

beetle
 

optimizer
 

(IDBO)
 

optimizing
 

the
 

hyper-parameters
 

of
 

bidirectional
 

long-short-term
 

neural
 

network
 

(BiLSTM).
 

Firstly,
 

the
 

time-frequency
 

domain
 

features
 

of
 

Vce.on
 in

 

the
 

aging
 

process
 

are
 

extracted,
 

and
 

the
 

normalized
 

composite
 

index
 

is
 

constructed
 

by
 

dimensionality
 

reduction
 

using
 

kernel
 

principal
 

component
 

analysis.
 

Secondly,
 

to
 

address
 

the
 

shortcomings
 

of
 

the
 

dung
 

beetle
 

optimizer
 

(DBO),
 

the
 

optimization
 

ability
 

and
 

convergence
 

performance
 

of
 

the
 

DBO
 

are
 

improved
 

by
 

introducing
 

the
 

improved
 

Circle
 

chaotic
 

mapping,
 

Levy
 

flight,
 

and
 

adaptive
 

weighting
 

factors,
 

and
 

the
 

global
 

optimization
 

is
 

achieved
 

by
 

using
 

the
 

IDBO
 

for
 

the
 

hyperparameters
 

of
 

the
 

BiLSTM
 

prediction
 

model.
 

Finally,
 

the
 

effectiveness
 

and
 

superiority
 

of
 

the
 

BiLSTM
 

aging
 

prediction
 

model
 

optimized
 

based
 

on
 

IDBO
 

are
 

verified
 

by
 

actual
 

IGBT
 

degradation
 

data.
 

The
 

results
 

show
 

that
 

the
 

constructed
 

IDBO-BiLSTM
 

model
 

reduces
 

RMSE
 

by
 

36.42%,
 

MAE
 

by
 

31.77%,
 

and
 

MAPE
 

by
 

41.03%
 

on
 

average
 

compared
 

with
 

the
 

BiLSTM
 

model.
Keywords:dung
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0 引  言

  绝缘栅双极型晶体管(insulated
 

gate
 

bipolar
 

transistor,

IGBT)作为电力电子中的核心开关器件,被广泛应用于轨

道交通、新能源发电等领域[1-3]。IGBT在开关器件中的使

用率高达42%[1],对维持电力系统的正常运行至关重要。
但是工作环 境 的 高 温、高 压 引 起 的 热 疲 劳 效 应 会 导 致

IGBT出现退化或物理失效现象,进而会导致电气设备的

损坏。对其开展退化预测研究可以为更换器件提供先验依

据,防止大规模故障的发生,提升系统整体的可靠性和高

效性[4]。
目前IGBT的退化预测研究主要包含基于物理模型、

基于解析模型和基于数据驱动3类。基于物理模型的寿命

预测需要通过分析IGBT内部失效情况,根据实际运行参

数建立物理模型,并结合有限元分析进行预测[5-7]。但在实

际应用中由于IGBT内部结构的复杂性和实际工况的不确
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定性使得相关几何参数获取十分困难。基于解析模型通过

拟合老化数据,建立功率循环和电气参数的数学关系,进而

构建老化预测模型[8],但建立数学关系对数据精度要求较

高且难度较大。
基于数据驱动模型不需要深度了解器件的物理特性和

内部结构,仅通过从数据中提取器件的退化特征,并结合模

型便能获得器件的老化趋势和剩余寿命。文献[9]针对退

化过程中集电极-发射极饱和压降(Vce.on)信号不同阶段的

不同退化趋势,提出了灰色预测和粒子滤波相结合的分段

预测模型,取得了较好的预测效果。文献[10]基于 NASA
加速老化数据集中的尖峰关断电压(Vce.peak),提出了一种基

于逐次变分模态分解和贝叶斯优化长短期神经网络(long
 

short-term
 

memory,LSTM)的寿命预测模型。文献[11]通
过计算Vce.on 和Ice的马氏距离来判断IGBT模块是否进入

退化阶段,当检测到异常行为时触发粒子滤波器算法预测

剩余的使用寿命,设定的失效阈值为Vce.on 增加20%。
虽然基于数据驱动的方法仅需要通过大量的实验数据

提取退化特征就能够得到退化趋势或剩余寿命,但是如何

选取合适的模型才能提升预测精度成为一个关键性难题。

LSTM的网络结构可以解决时间性长期依存问题,已经广

泛应用于寿命预测领域[12-13]。但是神经网络的参数选取却

大都依赖经验。文献[14]使用蜣螂搜索算法(dung
 

beetle
 

optimizer,DBO)对反向传播神经网络(back
 

propagation,

BP)进行优化,优化后的预测精度明显优于单一的BP神经

网络。但相关文献表明DBO搜索算法在准确性和稳定性

方面还存在较大的提升空间[15]。文献[16]使用改进的蜣

螂搜索算法对BP神经网络参数进行寻优来预测热处理后

木材的力学特性,结果表明改进蜣螂搜索算法有助于提高

模型的预测精度。
基于以上问题,本文提出了一种改进蜣螂搜索算法

(improved
 

dung
 

beetle
 

optimizer,IDBO)优化双向长短期

神经网络(bi-directional
 

long
 

short-term
 

memory,BiLSTM)的
IGBT老化预测模型。利用改进Circle映射、Levy飞行策

略和自适应权重因子对蜣螂搜索算法进行改进,然后使用

改进蜣螂搜索算法对BiLSTM 网络的超参数进行优化,得
到IDBO-BiLSTM老化预测模型。将 NASA实验室的加

速老化数据集带入IDBO-BiLSTM 模型进行实验验证,实
验结果表明该模型相较其他模型具有较高的预测精度。

1 IGBT老化指标的选取和处理

  IGBT在退化过程中,其特征参数随着其运行状态的

改变而改变。选取合适退化特征参数会提高模型的预测精

度。能表征IGBT退化的特征参数有很多,包括对闩锁效

应和键合线脱落敏感的集电极-发射极电压(Vce)信号、能
表征栅极氧化层退化的栅极漏电流(Ig)、以及表征焊料层

失效的集电极电流(Ic)信号、门极-发射极电压(Vge)、导通/
关断时间(Ton/Toff)等。相关文献表明从线性、灵敏度、准

确度、通用性、能力和在线测量6个方面综合考虑Vce.on 信

号相对于其他老化参数具有较强的性能[17]。由于加速老

化实验数据 获 取 较 为 困 难,选 取 美 国 国 家 航 空 航 天 局

(NASA)提供的加速老化数据集,原始数据如图1所示。

图1 IGBT
 

Vce 退化数据

提取每个采样周期内Vce.on 信号的时域、频域特征。
表1为具体指标,其中 TF1~TF7 为时域特征,FS1 和

FS2 为频域特征,其具体计算公式参见文献[18]。

表1 能表征退化趋势的时域、频域指标

序号 特征参数 序号 特征参数

TF1 最大值 TF6 方根幅值

TF2 最小值 TF7 能量

TF3 平均值 FS1 谱的均值

TF4 整流平均值 FS2 谱的均方根

TF5 均方根

  大量的时域频域退化特征会造成数据冗余,影响老化

预测模型效率和精度。核主成分 分 析(kernel
 

principal
 

component
 

analysis,KPCA)是一种数据降维方法,其核心

是在主成分分析(PCA)中引入核函数,提取特征空间中的

线性和非线性关系,利用其将时域和频域特征融合为综合

指标,可以降低特征之间的冗余相关性。所选取的多项式

核函数如式(1)所示。

K = (ZZT+1)·para (1)
式中:Z 为n×m 的特征矩阵,para =0.001为核函数参

数,其中n=1
 

000表示所划分的生命周期,m =9表示为

特征维度。PCA的计算过程参见文献[19]。
对降维后的综合指标进行归一化处理得到归一化综合

指标G,如式(2)所示。

G =
g-gmin

gmax-gmin

(2)

式中:gmax,gmin 为KPCA降维后综合指标的最大最小值。
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2 基于IDBO 优化 BiLSTM 的IGBT老化预测

模型

2.1 基于BiLSTM的IGBT老化预测模型

  LSTM 是对循环神经网络(rerrent
 

neural
 

network,

RNN)的优化,继承了RNN的可记忆性功能,同时引入了

遗忘门、输入门和输出门改善了信号序列的传输路径,有效

缓解了标准RNN的长期依存问题,避免了梯度消失和梯

度爆炸[20]。其单元结构如图2所示。

图2 IGBT老化预测模型LSTM单元结构

图2中Ct-1 和ht-1 分别表示上一时刻的记忆状态和

隐藏状态,初始时刻为0。G = [G1,G2,G3,…,Gε]表示由

归一化综合指标G 构建的时间序列,Gt 为当前时刻的输

入。LSTM首先利用上一时刻的输出状态ht-1 和当前时

刻的输入Gt 计算输入门it、遗忘门ft、输出门Ot,然后ft

和it 共同作用于上一时刻记忆单元Ct-1,并更新当前时刻

记忆状态Ct,最后输出门Ot 将当前时刻记忆状态传递至

隐藏状态ht。BiLSTM 是由两个方向相反的LSTM 网络

构成,连接了一前一后两个反向的LSTM网络,不仅包含对

过去时刻的信息还加入了未来时刻的信息,使得模型的序列

信息提取能力有了进一步提升。计算过程如式(3)所示。

it =σ(wivt+bi)

ft =σ(wfvt+bf)

ot =σ(wovt+bo)

c
~
=tanh(wcvt+bc)

ct =ft☉ct-1+c
~
☉it

ht =ot☉tanh(ct)

􀮠

􀮢

􀮡
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

 

h
→

t =LSTM(Gt,h
→

t-1)

h
←

t =LSTM(Gt,h
←

t-1)

yt=w
→
h
→

t+w
←
h
←

t+by

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁 (3)

式中:权重向量w = [wi wf wo wc w
→
 w

←]和偏置向

量b= [bi bf bo bc by]为待训练网络参数,vt =
[ht-1,Gt],σ表示Sigmoid函数。

2.2 IGBT老化预测模型超参数优化

  在使用BiLSTM进行IGBT老化预测时,其隐含层神

经元个数M、初始学习率η和正则化系数τ等网络超参数

的选取对预测精度有很大影响。不同的超参数组合直接影

响模型的预测性能,而传统的经验法和试凑法既浪费时间

又不能保证准确性。因此构建老化预测模型超参数空间并

用IDBO 对BiLSTM 老化预测模型的超参数进行寻优,

IDBO优化IGBT老化预测模型超参数原理如图3所示,所
构建的超参数空间如式(4)所示。

x* =argmin
 

f(x),x∈X (4)
式中:f(x)为损失函数;x 表示一组超参数组合;X 表示超

参数组合空间;选取训练过程的均方根误差作为IGBT老

化预测模型的损失函数f(x)。 表达式如式(5)所示。

fRMSE=
1
N∑

N

i=1

(xt.pre-xt.tru)2 (5)

式中:xt.pre 表示训练集的预测值,xt.tru 表示训练集的期

望值。

图3 IDBO优化IGBT老化预测模型原理

2.3 DBO优化IGBT老化预测模型超参数

  蜣螂搜索算法DBO(dung
 

beetle
 

optimizer)是2022年

由东华大学Xue等[21]提出的一种群体智能搜索算法。该

算法通过对蜣螂滚球、繁殖、觅食和偷盗行为进行数学建模

来进行求解,DBO算法在收敛率、求解精度、稳定性方面具

有强大的竞争力,使用DBO对IGBT老化预测模型超参数

进行迭代优化过程如下:
滚球是对IGBT老化预测模型超参数空间进行初步探

索,其探索寻优过程如式(6)所示。
xi(t+1)=xi(t)+∂·0.1·xi(t-1)+0.3·Δx
Δx = xi(t)-Xworst

xi(t+1)=xi(t)+tanθ xi(t)-xi(t-1)

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

(6)
式中:t表示当前迭代次数,xi(t)表示第t次迭代时第i只

蜣螂的位置,∂为自然系数,当蜣螂偏离方向时取-1,无偏

离时间取1,Xworst 表示全局的最差位置。需要注意的是当

θ=0,θ=π/2,θ=π时,位置不更新。
在对超参数空间进行初步探索后,采用繁殖策略增加

搜索种群数量,繁殖蜣螂每个周期产生一个育雏球,育雏球

的位置随产卵区域动态改变,其表达式如式(7)所示。

Lb* =max(X*·(1-R),Lb)

Ub* =max(X*·(1+R),Ub)

Bi(t+1)=X* +α1·(Bi(t)-Lb*)+
 α2·(Bi(t)-Ub*)

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁

(7)
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式中:X* 表示当前局部最优超参数组合,Lb*、Ub* 表示

产卵区域的上界和下界,R =1-t/Tmax,Tmax 为最大迭代

次数,Lb、Ub表示超参数空间的上界和下界,Bi(t)表示第

t次迭代时第i个产卵位置,α1 和α2 表示两个独立的随机

向量,大小为1×D,D =3为待优化超参数的个数。
小蜣螂成熟后,开始进行觅食,觅食是对超参数空间的

全局探索,其探索过程如式(8)所示。

Lbb =max(Xb·(1-R),Lb)

Ubb =max(Xb·(1+R),Ub)

xi(t+1)=xi(t)+λ1·(xi(t)-Lbb)+
 λ2·(xi(t)-Ubb)

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁

(8)

式中:Xb 为食物的来源既蜣螂搜索的超参数空间最优组

合,Lbb、Ubb 表示觅食区域的上下界,λ1 为正态分布随机

数,λ2∈ (0,1)为随机向量。
一些小蜣螂作为小偷从其他蜣螂处偷取超参数组合,

其位置更新方式如式(9)所示。

xi(t + 1)= Xb + S ·ξ · (xi(t)-X* +
xi(t)-Xb ) (9)
式中:ξ 为服从正态分布的随机向量,S 通常取0.5。算法

设置的蜣螂种群比例为6∶6∶7∶11。

2.4 DBO改进策略
 

  利用传统DBO对BiLSTM老化预测模型进行超参数

寻优时发现算法在迭代收敛过程中容易陷入局部最优且收

敛速度慢等现象。为了提高老化预测精度,对传统DBO算

法进行如下优化:通过改进Circle映射对蜣螂种群进行初

始化增加初始种群分布的均匀性;通过自适应权重因子改

进最优个体对种群分布的影响,提高收敛速度;同时在繁殖

阶段引入Levy飞行策略平衡全局寻优能力。

1)改进Circle映射初始化

原始的DBO算法采用随机初始化,在老化预测模型超

参数空间的分布较为随机,不利于种群对超参数空间的探

索。初始种群分布越均匀,其寻找到最优值的概率越大。

Circle作为混沌映射的典型代表,其值较为稳定且混沌值

的覆盖率高。但Circle映射的混沌值集中分布在
 

[0.2,
 

0.6]区间内,所以将Circle映射公式进行改进,使其混沌值

分布更加均匀,改进前和改进后的公式如式(10)、(11)
所示。

Xt+1=bmod(Xt+0.2-(
0.5
2πsin

(2π·Xt),1))(10)

Xt+1=bmod(4.3Xt+0.31-(
0.5
4.3πsin

(4.3π·Xt),1))

(11)

2)Levy飞行策略

Levy飞行是一种模拟自然界随机现象行为的行走方

式,可以产生随机步长,为解增加扰动量。在蜣螂觅食阶段

引入Levy飞行策略,有助于提升蜣螂的全局搜索能力,跳
出局部最优。其步长计算公式如式(12)所示。

levy =μ/|v|
1
β (12)

μ和v服从正态分布μ~N(0,σ2μ),v~N(0,σ2v)。

σu =
Γ(1+β)·sin(

πβ
2
)

Γ
(1+β)
2

􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁

β·2
β-1
2

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁

􀮦

􀮨

􀮧
􀪁􀪁

􀪁􀪁

1
β

,σv =1 (13)

Γ(β)是Gamma函数,更新后的觅食公式如式(14)所示:

xi(t+1)=δ·r·levy·xi(t)+λ1·(xi(t)-Lbb)+
λ2·(xi(t)-Ubb) (14)
式中:r为随机数,δ为飞行步长。

为了更直观的展示 Levy飞行的全局探索能力,将
Levy飞行和随机游走策略进行仿真验证。设置仿真步长

1
 

500步,仿真结果如图4所示。

图4 Levy飞行与普通蜣螂搜索策略对比

从图4中可以看出,在同样的搜索范围内Levy飞行的

搜索范围更广泛,且小步长能对局部搜索区域充分探索,大
步长有利于搜索种群跳出局部最优。

3)自适应权重因子

偷窃者从迭代开始就向全局最优解进行靠近容易过早

缩小搜索范围,陷入局部最优,并且影响算法收敛速度。因

此引入自适应权重因子ψ 对偷窃者进行位置更新,迭代前

期权值小但变化速度较快,有利于全局搜索能力提升,在迭

代后期权值较大但变化缓慢,保证了算法的收敛性和收敛

速度。权重因子和改进后的位置更新如式(15)、(16)所示,

t为当前迭代次数,Maxiteration为最大迭代次数。

ψ=0.2·((π/2)·(1-(t/Maxiteration))) (15)

xi(t+1)=ψ·Xb +S·ξ·(xi(t)-X* +
xi(t)-Xb ) (16)

2.5 IDBO-BiLSTM预测流程及评价指标

  1)IGBT数据处理

首先计算Vce.on 信号的时频域特征,构建特征矩阵,然
后使用KPCA降维并进行归一化。最后将归一化综合指

标G 使用滑动窗口构建时间序列,并划分训练集和测

试集。

2)IDBO寻优IGBT老化预测模型超参数
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(1)设置蜣螂种群的数量为30,其中神经元个数搜索范

围[30,
 

300],正则化参数搜索范围[1×10-10,
 

1×10-2],学
习率搜索范围[0.001,

 

0.5],使用改进Circle映射初始化

种群在超参数空间的位置。
(2)初始化后蜣螂种群的每个个体代表一组解,将每一

组解带入寻优模型进行训练并计算损失函数f(x),将损

失函数值最小的个体作为全局最优个体。
(3)利用IDBO模型更新滚球、繁殖、觅食、偷窃种群在

超参数空间的位置。
(4)对位置更新后的个体重新计算其适应度,并对全局

最优个体适应度进行贪婪选择。
(5)判断是否达到最大迭代次数,未达到则返回(3),达

到则输出IGBT老化预测模型最优超参数组合,寻优结束。

3)最优BiLSTM模型老化预测

根据最优超参数组合训练IGBT老化预测模型,训练

完成后输入测试集进行预测,得到预测值,如图5所示。

图5 基于IDBO-BiLSTM老化预测流程

4)老化预测模型评价指标

为了评估IDBO-BiLSTM 模型的预测精准性,选用均

方根误差(root
 

mean
 

square
 

error,RMSE),平均绝对误差

(mean
 

absolute
 

error,MAE)以及平均绝对百分比误差

(mean
 

absolute
 

percentage
 

error,MAPE)作为模型的评价

指标[12],3个评价指标越小,则代表预测值越接近真实值,
结果越精确。

3 实验验证

3.1 IGBT综合指标提取

  选用美国 NASA研究中心共享的IGBT老化数据进

行实验验证,该老化实验所设置的IGBT栅极信号幅值为

10
 

V,采样频率10
 

kHz,PWM 信号占空比40%。选用其

中的4个IGBT进行老化预测。IGBT1的Vce.on 信号如图6
所示。

图6 IGBT1集射极饱和压降

由图6可知Vce.on 信号在整个退化过程中呈现波动上升

的趋势,能够表征IGBT的退化趋势。提取IGBT1Vce.on 信号

的时域、频域指标,构建9维特征矩阵,然后使用KPCA对特

征矩阵进行非线性降维,得到能够表征IGBT退化趋势的综

合指标。降维后各主元的贡献率如表2所示。

表2 降维后各主元贡献率 %
编号 第一主元 第二主元 第三主元

IGBT1 90.92 8.05 0.7
IGBT2 92.99 5.89 0.76
IGBT3 97.14 1.98 0.43
IGBT4 92.81 6.22 0.66

  由文献[22]知当主成分累积贡献率达到80%时,则该

主成分能够充分表达所需要的信息。因此表2中的第一主

元可以作为综合退化指标,为了避免数据范围过大,对4个

IGBT的综合退化指标进行归一化,4个IGBT的归一化综

合指标G 如图7所示。

图7 4个IGBT的归一化综合指标
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3.2 IDBO寻优迭代对比

  为验证 引 入 改 进 Circle映 射、Levy飞 行 策 略 和 自

适应权重因子后的IDBO搜索算法的可行性。将嵌入

改 进 Circle映 射 初 始 化 后 的 算 法 记 作 DBOS1;嵌 入

Levy飞行后的算法记作 DBOS2;嵌入自适应权重因子

后的算 法 记 作 DBOS3。并 与 原 始 DBO 算 法、灰 狼 搜

索算法(grey
 

wolf
 

optimizer,GWO)[23]和粒子群搜索算

法(particle
 

swarm
 

optimization,PSO)[24]进行寻优迭代

对比试验。所选测试函数如表3所示,各 个 算 法 的 种

群数量均设置为30,寻优迭代次数500次。实验环境

为Intel
 

Core
 

i5-9300H
 

CPU;操 作 系 统:Windows
 

11;
处 理 器 速 度:2.40

 

GHz;内 存:8
 

GB;编 程 环 境:

MATLAB
 

R2020a版本。

表3 测试函数

目标函数 搜索范围 最小值

f1(x)=maxi{|xi|,1≤i≤n} [-100,100] 0

f2(x)=
1
4

 

000∑
n

i=1
x2

i-∏
n

i=1
cos(

xi

i
)+1[-600,600] 0

f3(x)=-20exp(-0.2
1
n∑

n

i=1
x2

i)-

exp(
1
n∑

n

i=1
cos(2πxi))+20+e

[-32,32] 0

  PSO参数为ωmax=0.9,ωmin=0.4,c1=c2=2,GWO
参数a∈ [0,2]。 表中f1 为单峰测试函数,f2 和f3 为多

峰值试函数,实验结果如图8所示。

图8 寻优对比图

  由图8知,对于单峰函数f1,DBOS1与原始DBO的

迭代曲线较为接近,但寻优精度有微小提升,对于多峰函

数f2 和f3,改进Circle映射初始化的均匀分布有助于提

升寻优效率。DBOS2相较于原始的DBO算法收敛速度和

寻优精度均有了大幅度提升,说明引入Levy飞行扩大搜

索范围的可行性。DBOS3在单峰测试函数的寻优结果虽

然不如DBOS2,但在多峰测试函数上的收敛速度超过了

DBOS2,并且仅次于IDBO,这是因为自适应权重因子在迭

代前期权值较小兼顾了算法的搜索全局性,在迭代后期权

值大加快收敛速度。因此所提3种改进策略都有助于提

升算法的寻优能力,并且综合了3种改进策略的IDBO算

法兼顾了算法的收敛速度和全局开发能力,能够提升寻优

效率,有利于提升IGBT老化模型的预测精度。

3.3 老化预测模型横向对比

  为验证所提IDBO-BiLSTM 老化预测模型的可行性,
分别建立BiLSTM 模型、DBO-BiLSTM 模型进行横向对

比。首先将IGBT1、IGBT2和IGBT3的归一化综合指标

前10个数据作为输入,第11个数据作为输出,采用滑动时

间窗构建990组时间序列。其次随机选取75%的时间序

列作为训练集,剩下25%作为测试集。模型训练完成后利

用测试集进行预测,多次试验后的预测误差评价指标平均

值如表4所示。

表4 横向对比模型预测误差

器件

编号
预测模型

误差评价指标

RMSE/V MAE/V MAPE/%

IGBT1
BiLSTM 0.012

 

8 0.005
 

9 0.058
 

3
DBO-BiLSTM 0.009

 

7 0.006
 

8 0.028
 

4
IDBO-BiLSTM 0.008

 

2 0.004
 

7 0.019
 

2

IGBT2
BiLSTM 0.013

 

2 0.006
 

0 0.016
 

7
DBO-BiLSTM 0.009

 

3 0.006
 

7 0.017
 

2
IDBO-BiLSTM 0.007

 

7 0.004
 

5 0.014
 

2

IGBT3
BiLSTM 0.011

 

3 0.006
 

2 0.016
 

5
DBO-BiLSTM 0.008

 

9 0.004
 

2 0.023
 

1
IDBO-BiLSTM 0.007

 

7 0.003
 

1 0.009
 

5

  分析表4所示数据可知,所提IDBO-BiLST老化预测

模型的误差评价指标均小于BiLSTM 老化预测模型。计

算3个IGBT的整体误差评价指标,基于IDBO-BiLSTM
的IGBT老化预测模型与BiLSTM 老化预测模型相比,

RMSE平均下降36.42%、MAE平均下降31.77%、MAPE
平均下降41.03%。充分证明了所提出的老化预测模型能
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够用于IGBT的老化预测,并且相较于基础BiLSTM 模型

有所提升。与基于DBO-BiLSTM 的IGBT老化预测模型

相比,IDBO-BiLSTM 模 型 RMSE 平 均 下 降 15.38%、

MAE平均下降29.94%、MAPE平均下降36.2%,证明了

针对DBO搜索算法所提出的3个改进策略有助于提升老

化预测精度。
箱线图可以进一步反应预测误差的分布情况,如图9

所示,基于IDBO-BiLSTM 的IGBT老化预测模型的误差

分布范围最小,且误差分布更加集中,整体分布范围相较

于其他模型更接近0。综上,使用IDBO搜索算法选取超

参数相比依赖经验选取避免了随机性和偶然性,并且能提

升模型的整体预测精度,具有可行性。

图9 横向预测结果误差分布图

3.4 老化预测模型纵向对比

  为验证所提IDBO-BiLSTM 老化预测模型的优越性,
构建GWO-BiLSTM老化预测模型,PSO-BiLSTM老化预

测模型进行纵向对比,采用3.3节的处理方式,预测结果

评价指标如表5所示。

表5 纵向对比模型预测误差

器件编号 预测模型
误差

RMSE/V MAE/V MAPE/%

IGBT1
PSO-BiLSTM 0.008

 

8 0.006
 

4 0.062
 

7
GWO-BiLSTM 0.009

 

3 0.006
 

1 0.033
 

8
IDBO-BiLSTM 0.008

 

2 0.004
 

7 0.019
 

2

IGBT2
PSO-BiLSTM 0.011

 

3 0.008
 

4 0.042
 

4
GWO-BiLSTM 0.009

 

2 0.005
 

7 0.043
 

5
IDBO-BiLSTM 0.007

 

7 0.004
 

5 0.014
 

2

IGBT3
PSO-BiLSTM 0.009

 

2 0.004
 

9 0.034
 

3
GWO-BiLSTM 0.009

 

7 0.005
 

9 0.015
 

3
IDBO-BiLSTM 0.007

 

7 0.003
 

1 0.009
 

5

  由表5可知,在3个老化预测模型中,IDBO-BiLSTM
老化预测模型的误差评价指标均最小,说明相较于其他模

型,所提预测方法预测精度最高。绘制部分预测结果对比

图和整体误差分布图进行可视化分析如下所示:
从图10~12可以看出对于IGBT1,IDBO-BiLSTM与

PSO-BiLSTM预测残差都很小,但PSO-BiLSTM 模型对

于IGBT2和IGBT3的预测结果较差,不具有稳定性。对

于IGBT2所提模型的预测残差分布在[-0.005,0]之间,

GWO-BiLSTM模型残差在[0,0.01]范围内波动,PSO-
BiLSTM残差集中在[0.005,0.01]之间。对于IGBT3所

提IDBO-BiLSTM模型的预测结果也优于其他模型。

图10 IGBT1纵向预测结果对比

图11 IGBT2纵向预测结果对比

图12 IGBT3纵向预测结果对比
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由图13~15知对于IGBT1,3个模型的1.5IQR范围

长度相差不大,但IDBO-BiLSTM 预测模型的预测误差整

体分布更集中,误差绝对值最小,中位数更接近0异常值

离群程度也更小。对于IGBT2其他两个模型预测误差整

体偏上,IDBO-BiLSTM模型预测误差虽然不以0刻度线

为基准服从正态分布,但相较于其他两个模型更靠近0刻

度线。对于IGBT3
 

所提模型的1.5IQR范围长度、误差分

布集中度、正态分布程度都优于其他两个模型。综上,证
明了IDBO-BiLSTM老化预测模型的优越性。

图13 IGBT1预测误差对比

图14 IGBT2预测误差对比

图15 IGBT3预测误差对比

3.5 不同预测模型性能对比

  为进一步验证IDBO优化BiLSTM 老化预测模型的

优越性,以IGBT4全生命周期做训练集,IGBT3全生命周

期做测试集,选用 LSTM 网络、支持向量回归(support
 

vector
 

regression,
 

SVR)以及BP神经网络进行预测精度

对比。LSTM隐含层神经元个数设置为10,初始学习率为

0.001。SVR核函数选择径向基函数,设置惩罚参数C=
4,g=1。BP误差阈值为1×10-4,迭代500次,学 习

率0.01。

4种模型的预测误差对比如图16所示,图中为各个老

化预测模型的 MAE、MAPE、RMSE预测指标对比,可以

看出所提IDBO-BiLSTM 老化预测模型的各项指标均小

于其他传统预测模型,具有显著优势。

图16 不同预测模型预测结果对比

4 结  论

  本文针对IGBT老化趋势预测精度不高问题,提出了

一种基于优化BiLSTM的IGBT老化预测模型。首先,针
对传统IGBT老化预测模型超参数选取依靠经验法和试凑

法等问题,使用DBO搜索算法对老化预测模型超参数间

进行全局寻优。其次,针对DBO算法收敛速度慢易陷入

局部最优等问题,引入改进Circle映射,Levy飞行策略和

自适应权重对DBO算法进行改进,使用改进后的IDBO算

法对IGBT老化预测模型超参数进行寻优。最后,使用经

过特征提取和KPCA降维处理的IGTB老化综合指标对

本文所提模型进行验证,得出如下结论:
鉴于DBO算法存在收敛速度慢易陷入局部最优的不

足,引入改进Circle映射,Levy飞行策略和自适应权重策

略对其进行改进,通过步长仿真验证和设计寻优对比实

验,证明所提IDBO算法有利于提升DBO的收敛速度,不
容易陷入局部最优,具有可行性和优越性。

所提出的基于IDBO-BiLSTM的IGBT老化预测模型

预测精度较高,与 BiLSTM 模型相比 RMSE平均下降

36.42%、MAE 平 均 下 降 31.77%、MAPE 平 均 下 降

41.03%。与 DBO-BiLSTM、GWO-BiLSTM、PSO-BiLSTM
老化预测模型相比预测误差更小,具有优越性,同时也低

于典型的LSTM、SVR、BP预测模型。
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