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摘 要:视觉目标跟踪算法利用自注意力机制增强上下文联系,但面对复杂场景时,自注意力机制中的相关性易发生

失配,为此提出一种联合高阶目标感知与相似匹配的目标跟踪算法。构建高阶目标感知模型,针对自注意力机制中的

一阶自注意图,利用坍塌的极化过滤方式进行空间和通道维度的正交化建模,优化内部相关性;同时组合非线性拟合

函数避免坍塌引起的信息损失,进而获得高阶自注意图,捕获具有高阶上下文信息的感知特征。通过不同维度分解目

标的感知特征来细化匹配区域,抑制背景噪声并约束当前帧的响应图,提高网络的判别力。在 OTB100和 UAV123
基准的实验结果表明,所提算法有更好的跟踪性能,可以有效应对相似干扰等问题。
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Abstract:The
 

self-attention
 

mechanism
 

is
 

used
 

to
 

enhance
 

context
 

in
 

the
 

visual
 

object
 

tracking
 

algorithm,
 

but
 

in
 

the
 

face
 

of
 

complex
 

scenes,
 

the
 

correlation
 

in
 

the
 

self-attention
 

mechanism
 

is
 

prone
 

to
 

mismatch.
 

Therefore,
 

a
 

high-order
 

target
 

aware
 

and
 

similarity
 

matching
 

object
 

tracking
 

algorithm
 

was
 

proposed.
 

A
 

high-order
 

target
 

aware
 

model
 

was
 

Constructed
 

for
 

the
 

first-order
 

self-attention
 

map
 

in
 

the
 

self-attention
 

mechanism,
 

the
 

collapsed
 

polarization
 

filtering
 

method
 

was
 

used
 

to
 

perform
 

orthogonal
 

modeling
 

of
 

space
 

and
 

channel
 

dimensions,
 

and
 

optimize
 

internal
 

correlation.
 

At
 

the
 

same
 

time,
 

a
 

nonlinear
 

fitting
 

function
 

was
 

combined
 

to
 

avoid
 

information
 

loss
 

caused
 

by
 

collapse,
 

and
 

then
 

a
 

high-order
 

self-attention
 

map
 

is
 

obtained
 

to
 

capture
 

perceptual
 

features
 

with
 

high-order
 

context
 

information.
 

The
 

perceptual
 

features
 

of
 

the
 

target
 

were
 

decomposed
 

in
 

different
 

dimensions
 

to
 

refine
 

the
 

matching
 

area,
 

so
 

the
 

background
 

noise
 

was
 

suppressed
 

and
 

the
 

response
 

map
 

of
 

the
 

current
 

frame
 

was
 

constrained,
 

and
 

improve
 

the
 

discriminative
 

power
 

of
 

the
 

network.
 

The
 

experimental
 

results
 

on
 

OTB100
 

and
 

UAV123
 

benchmarks
 

show
 

that
 

the
 

proposed
 

algorithm
 

has
 

better
 

tracking
 

performance,
 

and
 

can
 

effectively
 

deal
 

with
 

problems
 

such
 

as
 

similar
 

interference.
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0 引  言

  目标跟踪在视频监控、智能交通等领域有着广泛应

用[1-2]。然而,由于跟踪场景的复杂多样性,目标跟踪任务

易遭受目标遮挡、相似干扰等影响[3-4]。早期相关滤波算法

(correlation
 

filter,CF)的手动特征对目标多样性表现出较

差的鲁棒性,因此传统跟踪算法仍有较大提升空间。近年

来,以 深 度 学 习 方 式 驱 动 的 跟 踪 算 法 快 速 发 展,如
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SiamRPN[5]将跟踪视为样本检测问题,利用区域建议网络

(region
 

proposal
 

network,
 

RPN)区分前景和背景,避免多

尺度测试,同时利用互相关聚合模板特征和搜索特征,提高

跟踪器性能。但先前算法中平移不变性易受Padding影

响,为此SiamRPN++[6]加深网络深度,并提出一种采样

策略打破平移不变性的限制,从而提高算法性能。虽然以

上算法更加有效,但易引入无目标背景框,表现出较差的跟

踪鲁棒性。
视觉注意机制被证明可以有效捕获目标的关键信息,

以提升目标表征能力,进而提高跟踪鲁棒性。杨梅等[7]构

建通道联合空间的注意力模型提高目标关键特征的关注

度。SiamDA[8]构建双重孪生网络,每重网络中嵌入非局部

注意模块和通道注意模块,以突出目标区域并抑制背景;

Zhang等[9]使用不同风格的注意力获得更强的语义特征表

达,并利用自适应决策融合策略实现稳定跟踪;Wang等[10]

提出目标感知注意力机制,通过联合局部和全局搜索搜素,
确保预测目标感知注意力图的空间和时间一致性。此外,
部分学者通过设计不同策略来利用语义信息,达到提高跟

踪准确性的目的。付谱平等[11]通过增加语义特征分支与

原有外观特则会那个分支形成互补,以充分利用两分支特

征的异质性来提高算法的判别能力。DaSiamRPN[12]丰富

训练过程中的类别信息,并构造有语义的负样本来提高感

知目标信息的判别力;SiamCAR[13]以逐像素的方式解决视

觉跟踪问题,并嵌入Centerness中心度量,避免预测时出现

过大位移。然而,现有跟踪网络仍存在一定问题:1)视觉注

意力机制内部存在相关性失配问题,即面对复杂背景时易

造成语义模糊性,阻碍跟踪性能提升;2)现有孪生跟踪方法

的互相关操作易造成较大的匹配区域,进而产生干扰响应,
模糊空间信息。

针对上述问题,本文提出联合高阶目标感知与相似匹

配的目标跟踪算法,工作如下:1)本文构建一种新的感知网

络,称为高阶目标感知模型(High
 

Order
 

Target
 

Aware
 

Model,
 

HTA)。高阶目标感知模型直接对提取的特征进

行语义信息优化,该模型利用极化过滤方式,对一阶自注意

图求取高阶注意图以降低错误相关性的可能,更好的捕获

全局上下文信息关联性。2)受文献PG-Net[14]启发,在特

征融 合 时,通 过 构 建 相 似 匹 配 网 络 (Similar
 

Matching
 

Network,
 

SM)分解模板分支输出特征来缩小匹配区域,避
免产生过多的干扰响应点,抑制背景干扰,提高算法判别

力。3)在通用数据集上做消融实验和对比实验,证明本文

算法的有效性。通过对现有问题的探索与改进,算法的跟

踪鲁棒性得到有效提高,且面对相似干扰、遮挡等复杂场景

时拥有更好的跟踪性能。

1 联合高阶目标感知与相似匹配的目标跟踪

1.1 基本原理

  本文算法框架如图1所示。在模板分支中,将第t-1
帧作为初始帧,利用ResNet50网络提取特征,随后引入高

阶目标感知模型优化高阶注意权重间的相关性,在空间和

通道维度上获取高阶目标感知特征;在搜索分支中,将第

t~(t+T)帧作为待跟踪序列帧来提取特征。在特征融合

阶段构建相似匹配网络,以更小的区域实现精确的匹配,得
到最终响应特征。最后送入分类回归网络,得到分类和回

归响应图,并利用中心度得分帮助跟踪目标。

图1 联合高阶目标感知与相似匹配的跟踪网络框架

1.2 高阶目标感知模型

  特征提取部分的CNN(convolutional
 

neural
 

network)
存在感受野形状固定且范围有限,难以捕获全局上下文信

息的问题,进而导致难以判别相似目标。为此DANet[15]引
入自注意力机制捕获全局信息,然而通过键值对来获取自

注意力权值是独立的,这可能导致注意力分散,使键值对

发生计算偏差。为纠正这种负面影响,本文在特征提取网

络中嵌入高阶目标感知模型(HTA),结构如图2所示。本

文首先计算初始注意力权值A,对原始特征内部像素间进

行建模;随后借鉴极化过滤思想[16],采用空间-通道正交方

式对注意力权值A 进行建模,获取仅关注空间和仅关注通

道的高阶注意力权值A2
S 和A2

C,用于获取高阶上下文关

系。初始一阶注意力权值可以动态调整输入特征中像素

间的关系,而本文高阶注意力权值又可以调整一阶注意力
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权值的相互作用,避免因模糊性导致目标与非目标间的错 误相关。

图2 高阶目标感知模型

  如图2所示,高阶目标感知模型从通道和空间两个维

度对一阶自注意权值进行建模。假定输入高阶目标感知

模型的初始特征为fz∈RC×H×W,首先经过3组1×1卷积

(即WQ,WK,WV )的线性变换,将原始输入特征变换为Q,

K,V∈ℝHW×C;随后计算Q和K 之间的矩阵相似度得到一

阶注意力权值AS/C (其中AS ∈ ℝHW×HW,AC ∈ ℝC×C ),其
公式如下:

AS =αQKT

AC =βQTK (1)

式中:α和β是用于对抗数值爆炸的尺度因子。然后,将注

意力权值AS 和AC 作为输入,送入 HTA模型中用于计算

高阶注意力权值,以引导一阶注意力权值更好的调整原始

输入特征中像素间的关系,如图3所示。

图3 高阶注意力图获取

在高阶感知模型(HTA)中,采用正交的方式,将不同

的一阶注意力权值送入两个不同的分支中:AS 被送入仅

空间感知模型(high
 

order
 

target
 

aware
 

model
 

in
 

spatial
 

dimension,HTA-S)的分支,在空间维度帮助其向良好的

方向调整;而AC 被送入仅通道感知模型(high
 

order
 

target
 

aware
 

model
 

in
 

channel
 

dimension,HTA-C)的分支,用于

更好的优化通道关联性,这个过程被表示为非线性映射φ:

input→output。 在 HTA-S分支中,首先通过线性变换

W1 和重塑σ1 将 AS 变为AS1 ∈ ℝ D/2  ×D (其中 D =
HW),目的是将特征的空间维度保持在高分辨率水平,并
适当缓解计算效率的增长趋势;同时通过线性变换W2、全

局池化Fgp(·)以及重塑σ2将AS 转换为AS2∈ℝ1×(D/2);最
后,对AS1和AS2执行矩阵乘法,通过σ3重塑和Sigmoid函

数将参数维持在0~1之间,并和AS 拼接得到最终的A2
S∈

ℝHW×HW。 基于空间维度的高阶注意力计算中,通过保持

空间维度高分辨率并折叠压缩通道维度,实现了极化过

滤;组合非线性拟合函数,用SoftMax函数Fsm(·)增加动

态关注范围,随后用Sigmoid函数Fsig 动态映射,对压缩造

成的损失强度范围进行信息增强,使此模型具备更强的拟

合能力,实现特定空间的加权来感知相同语义的像素。完

整计算过程如下:
A2S =Fsig σ3 Fsm σ2 Fgp W2·AS      ×σ1 W1·AS      

A2C =Fsig Lθ W5 σ4 W3·AC  ×Fsm σ5 W4·AC           
(2)

不同于 HTA-S分支,HTA-C分支仅关注通道维度,
对特定的通道进行加权以输出最佳分数。如式(2)所示,
首先利用线性变换W3 和重塑操作σ4 将AC 转换为AC1∈
ℝ C/2  ×C,同时利用线性变换 W4 和重塑σ5 将转换为

AC2∈ ℝC×1;随后信息压缩的AC2 利用SoftMax进行增

强;最后,通过线性变换W5 和Lθ 将通道数恢复并做层归

一化以捕获权值矩阵中的关系,并利用Sigmoid进行非线

性拟合得到A2
C。 因此,高阶目标感知模型的总体可以表

达为:

HTAQ,K,V  = SoftMaxAS
2  +SoftMaxAC

2    V
(3)

1.3 相似匹配网络建模

  传统孪生跟踪器采用相似性度量的方法,将模板特征

视为卷积核,对搜索特征卷积实现匹配;但真实匹配区域
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大于理想区域,因而运算时易引入背景噪声,掩盖目标特

征信息,增大区分干扰的难度。因此,本文利用相似匹配

网络缩小匹配的有效区域,优化互相关过程,通过迭代搜

索缩小匹配区域实现相似计算。

1)模板特征分解

如图4所示,对模板分支的感知特征进行分解以减小

匹配时的核尺寸,利用局部特征突出目标的细节信息。感

知特征fz 在空间维度划分为ns个1×1×c的空间核,所有

空间核集合用kzs = {k1
zs,k2

zs,…,k
ns
zs},kzs ∈Z

ns×(1×1×c) 表

示。同时将模板特征在通道维度划分为c个1×1×ns 的

通道核,通道核集合表示为kzc = {k1
zc,k2

zc,…,kc
zc},kzc ∈

Z
c×(1×1×ns)。

图4 特征分解模块

2)建立相似匹配模型

相似匹配部分将分解后的感知特征与搜索特征计算

相似度,结构如图5所示。

图5 相似匹配模块

首先将空间核kzs与搜索特征fX(i,j)逐像素计算,获
得空间相似度:

Sl
s(i,j)=ψ(fX(i,j),kl

zs),
 

l=1,2,…,ns (4)
其中,fX(i,j)为搜索特征的第i行第j列位置的像

素特征;kl
zs 为感知特征的第l个空间核;ψ(,)表示高维张

量乘法;Sl
s(i,j)表示第 (i,j)位置的搜索特征与第kzc 个

空间核kzs 的空间相似性。
由于分解空间核kzs 仅关注模板每个小区域上的有效

信息而忽略两分支的整体关联性,因此进一步利用通道核

kzc,获得与感知特征之间的通道相似性,并保证有效信息

的完整性。用Sl
s(i,j)逐像素与通道核kzc 计算相似性度

量Sc,公式如下:

Sm
c(i,j)=ψ(Sl

s(i,j),km
zc),m =1,2,…,c (5)

其中,km
zc 表示感知特征第m 个通道核;ψ(,)表示张

量乘法;Ss(i,j)为通道相似信息,表示与第m 个通道核

的相似度。
对于式(4)、(5)中搜索区域的每个像素特征,计算其

与感知特征的相似度,使复杂背景下的目标具有很好的判

别性,且尽可能多的利用有效目标前景区域来帮助训练,
对目标的边界信息足够友好。通过特征分解和相似匹配

过程,得到更理想的响应特征。整个计算过程用式(6)
表示:

fpg = ∑
c

m=1
∑
ns

l=1
fX(i,j)􀱋kl

zs 􀱋km
zc  *fZ (6)

式中:*表示卷积运算,fz 表示模板感知特征,fpg 表示经

过特征分解和匹配之后的输出特征。

1.4 训练损失

  本文分类分支预测类别信息,回归分支计算对应位置

边界框。首先,对于经过感知与匹配的输出特征 F ∈
ℝC×H×W,其特征图上的每个点A(i,j)均可映射回搜索区

域。由于分类和回归任务不同,将特征F 经过两种不同卷

积得到分类特征图Fcls ∈ ℝ2×H×W 和回归特征图Freg ∈
ℝ4×H×W,分类特征图包含前景和背景的类别信息,而回归

特征图计算映射点到搜索区域边界框的边距信息 (l、r、t、

b)。 公式如下:

l=x0-xa,t=y0-ya

r=xb -x0,b=yb -y0 (7)

式中:(xa,ya),(xb,yb)分别表示真实目标边界框的左

上、右下角点坐标,(x0,y0)表示搜索区域上的预测位置。
此外,对于样本的判定,有以下定义:

S(i,j)=
1,l,r,t,b>0
0, 其他 (8)

可以看到,当l、r、t、b均大于零时,预测点落入边界框

内,此时判定为正样本,否则为负样本。因此,对于回归损

失如下:

Lossreg =
1

S(i,j)
∑S(i,j)LIOU(Freg(l,r,t,b)) (9)

对于分类分支采用交叉熵损失作为分类损失。考虑

预测点到目标中心的距离会影响边界框预测质量,因此使

用了中心损失来抑制过大的位移。中心度特征图Fcen ∈
ℝ1×H×W 同样使用一组卷积得到,相应的中心得分可以

表示为:

C(i,j)=S(i,j)×
min(l,r)×min(t,b)
max(l,r)×max(t,b)

(10)

由公式可以看出,当预测位置落入背景时,中心度得

分为零。因此,中心损失如下:
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Lcen = -1
S(i,j)
∑S(i,j)=1

C(i,j)×logFcen+(1-C(i,j))×

log(1-Fcen) (11)
最后,整体损失为:

Ltotal =λ1×Lcls+λ2×Lreg +λ3×Lcen (12)
其中,Lcls 为交叉熵损失,且超参数λ1、λ2、λ3 分别为

1、3、1。最后,本文算法在训练阶段的3种损失函数以及总

损失函数曲线如图6所示。

图6 训练损失函数曲线图

2 实验结果与分析

2.1 实验平台与参数设定

  本实验的硬件配置采用E5-1650
 

V4处理器,内存32G;

GPU 为11G 显 存 GTX
 

1080Ti;系 统 为 Ubuntu18.04,

PyTorch1.2.0框 架,python
 

3.6.9 版 本。本 文 在 GOT-
10K[17]和ILSVRC2015-VID[18]数据集上离线训练,训练批大

小为16,使用随机梯度下降SGD。对前5个epoch使用预热

训练,初始化学习速率为2×10-4,最终学习率升为1×
10-3;从第6个epoch开始,初始学习率为1×10-3,最终学

习率下降为1×10-4,动量设置0.9;总迭代20个周期。

2.2 OTB100基准评估算法性能

  文中算法与几种主流跟踪算法CFNet[19]、SiamFC[20]、

SiamDWfc[21]、SiamRPN[5]、DaSiamRPN[12]、GradNet[22]等
在OTB100[23]跟踪基准上进行实验对比并评估其性能。

1)定量分析

(1)跟踪成功率和准确率是目标跟踪中两种评估指

标,代表覆盖率和中心位置误差。图7展示各算法的成功

率和准确率。由图可知,本文算法准确率取得87.0%的次

优 成 绩;而 跟 踪 成 功 率 取 得 66.0% 的 最 优 成 绩,比

DaSiamRPN算法高出0.2%。较基准算法在准确率上高

出3.6%,而成功率高出基准算法1.8%,跟踪更加稳定。

图7 OTB100数据集跟踪曲线图

·501·



 第47卷 电 子 测 量 技 术

  (2)本文利用 OTB中11种属性用于评估算法性能,
如表1、2所示。本文算法成功率、准确率在多种属性上取

得最高得分和次优得分。尤其针对背景干扰、遮挡、快速

运动等任务取得优异性能。

表1 OTB100视频属性准确率得分

算法

视频属性

背景

杂波
形变

快速

移动
遮挡

超出

视野

尺度

变化

光照

变化

平面

内旋转

运动

模糊

低分

辨率

平面

外旋转

GradNet[22] 0.822 0.795 0.838 0.838 0.789 0.841 0.844 0.860 0.855 0.999 0.872
SiamFC[20] 0.692 0.691 0.744 0.723 0.673 0.736 0.736 0.743 0.707 0.900 0.673
DaSiamRPN[12] 0.856 0.878 0.818 0.811 0.717 0.852 0.869 0.886 0.819 0.937 0.863
CFNet[19] 0.756 0.714 0.705 0.699 0.601 0.731 0.707 0.786 0.680 0.888 0.759
SiamDWfc[21] 0.762 0.763 0.808 0.798 0.781 0.819 0.794 0.824 0.841 0.901 0.829
SiamRPN[5] 0.799 0.825 0.789 0.780 0.726 0.838 0.859 0.854 0.816 0.978 0.851
SiamCAR[13] 0.768 0.829 0.823 0.788 0.786 0.842 0.828 0.846 0.876 0.829 0.819
Proposed 0.842 0.855 0.873 0.822 0.793 0.862 0.878 0.889 0.881 0.842 0.877

  注:黑体为最优,下划线为次优。

表2 OTB100视频属性成功率得分

算法

视频属性

背景

杂波
形变

快速

移动
遮挡

超出

视野

尺度

变化

光照

变化

平面

内旋转

运动

模糊

低分

辨率

平面

外旋转

GradNet[22] 0.611 0.571 0.624 0.615 0.583 0.614 0.643 0.627 0.645 0.669 0.628
SiamFC[20] 0.527 0.512 0.571 0.549 0.509 0.556 0.575 0.559 0.554 0.618 0.561
DaSiamRPN[12] 0.642 0.645 0.621 0.611 0.537 0.637 0.655 0.652 0.625 0.636 0.634
CFNet[19] 0.561 0.526 0.554 0.527 0.454 0.546 0.541 0.567 0.540 0.614 0.533
SiamDWfc[21] 0.574 0.560 0.630 0.601 0.590 0.613 0.622 0.606 0.654 0.596 0.612
SiamRPN[5] 0.591 0.617 0.599 0.585 0.542 0.615 0.649 0.628 0.622 0.639 0.625
SiamCAR[13] 0.578 0.612 0.638 0.593 0.586 0.641 0.647 0.635 0.681 0.603 0.607
Proposed 0.632 0.627 0.671 0.616 0.595 0.660 0.681 0.668 0.685 0.596 0.641

  注:黑体为最优,下划线为次优。

  综上所述,本文算法满足实时性要求,在多种属性上

的成功率和准确率取得最优和次优得分,说明在 OTB100
评估基准上,本文算法凭借感知模型和良好的匹配策略,
更好的应对快速运动、遮挡等场景。

2)定性分析

如图8所示,本文选取4个代表性跟踪序列来展示跟

踪效果,并做如下分析:
(1)背 景 杂 波 及 相 似 干 扰 挑 战。如 图8(a)所 示,

Basketball序列在前期、中期和后期多次出现相似球员干

扰情况;由此可知,高阶目标感知模型能优化目标的深层

语义信息和空间位置信息,增强判别能力;同时优化匹配

策略,准确区分目标和其他背景信息,从而保持良好跟踪。
(2)目标遮挡挑战。如图8(b)所示,从Jogging序列第

71帧开始,目标在正常运动时出现遮挡情况。当完全遮挡

时,本文算法能利用高阶感知捕获全局上下文信息,对目

标特征有较强判别力,并对目标变化拥有较好鲁棒性,进

而成功预测目标位置并估计目标大小。
(3)光照变化挑战。如图8(c)所示,Singer2序列中展

示各算法在光照环境变化下的状态,在视频序列的前期、
中期和后期,大部分算法因背景灯光影响开始出现跟踪漂

移现象,仅有本文算法和SiamRPN、DaSiamRPN算法可以

稳定捕获目标信息。当光照突变影响目标时,本文算法能

够利用高阶感知模型和匹配网络准确捕获目标像素的变

化,进而区分目标与干扰因素,抑制背景光照变化影响。
(4)快速运动挑战。如图8(d)所示,纵观Ironman序

列,本文算法跟踪状态更稳定。当发生较快运动时,本文

算法能够从快速变化的区域中提取目标有效信息,因而在

复杂场景中更好地适应目标快速运动。

2.3 面向无人机的跟踪性能评估

  1)定性分析

针对不同属性的视频序列,用表3、4展示5种对比算

法在12种属性上的结果。
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图8 跟踪效果可视化

表3 UAV123视频属性准确率得分

算法

视频属性

光照

变化

尺度

变化

快速

运动

超出

视野

背景

杂波

低分

辨率

宽高

比率

相机

运动

部分

遮挡

相似

目标

完全

遮挡

视点

变化

ECO[22] 0.628 0.673 0.537 0.564 0.626 0.657 0.632 0.676 0.638 0.704 0.542 0.631
DaSiamRPN[12] 0.710 0.754 0.737 0.693 0.597 0.663 0.756 0.786 0.701 0.747 0.633 0.753
SiamRPN[5] 0.707 0.744 0.690 0.708 0.590 0.637 0.738 0.787 0.673 0.705 0.559 0.768
SiamCAR[13] 0.762 0.781 0.742 0.717 0.677 0.695 0.745 0.787 0.705 0.717 0.628 0.784
Proposed 0.769 0.801 0.762 0.756 0.670 0.681 0.763 0.818 0.729 0.778 0.691 0.824

  注:黑体为最优,下划线为次优。

表4 UAV123视频属性成功率得分

算法

视频属性

光照

变化

尺度

变化

快速

运动

超出

视野

背景

杂波

低分

辨率

宽高

比率

相机

运动

部分

遮挡

相似

目标

完全

遮挡

视点

变化

ECO[22] 0.407 0.465 0.342 0.406 0.373 0.362 0.425 0.476 0.432 0.490 0.292 0.431
DaSiamRPN[12] 0.500 0.544 0.520 0.509 0.407 0.411 0.537 0.581 0.493 0.517 0.379 0.563
SiamRPN[5] 0.520 0.556 0.502 0.526 0.406 0.419 0.541 0.593 0.483 0.507 0.341 0.587
SiamCAR[13] 0.573 0.596 0.549 0.543 0.466 0.466 0.568 0.604 0.517 0.533 0.394 0.627
Proposed 0.577 0.610 0.569 0.582 0.444 0.450 0.583 0.626 0.533 0.577 0.438 0.654

  注:黑体为最优,下划线为次优。

(1)本文算法虽然在完全遮挡属性上的准确率略低于

对比算法DaSiamRPN,但同属性的成功率最高;其次,针
对部分遮挡属性的无人机视频,本文算法保持良好的跟踪

成功率和准确率。未做模板更新的情况下,本文算法凭借

高阶目标感知模型和相似匹配网络的优势,依然可以很好

的对无人机目标进行跟踪。
(2)面对相似目标干扰,本文算法的跟踪成功率和准

确率均优于对比算法和基线算法。本文算法对提取到的

特征进行优化,增强模型的判别能力,并利用小区域的匹

配机制准确找到无人机目标的响应位置,从而达到抑制相

似物干扰的目的。

2)定量分析

为验证本文算法在无人机领域中的性能,同ECO[24]、

SiamRPN[5]、DaSiamRPN[12] 和 SiamCAR[13] 等 算 法 在

UAV123[25]做对比试验。实验结果如表5所示。

表5 各算法在UAV123标准下的评估得分

策略 跟踪器

UAV123

准确率

(%↑)
成功率

(%↑)

Correlation
 

filter ECO[24] 0.688 0.525

Anchor
 

based
DaSiamRPN[12] 0.781 0.569
SiamRPN[5] 0.772 0.581

Anchor
 

free
SiamCAR[11] 0.785 0.583
Proposed 0.796 0.607
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  表5为各对比算法在 UAV123标准下的评估结果。
由表可知,本文算法相较于基线,在成功率指标上提升了

2.4%,在准确率指标上提高1.1%;同时,本文算法相对于

其他算法均有不同程度的优势。相对于其他对比算法,以
成功率指标为例:相对于ECO、SiamRPN、DaSiamRPN算

法,本文算法分别提高10.8%、2.4%和1.5%的性能。

2.4 消融实验

  为证明本文算法有效性,用 GOT-10k的500个序列

用于训练模型,并在OTB100上做消融实验。
如表6所示,对于高阶目标感知模型,仅空间或仅通

道的高阶感知方式都能在一定程度上提升跟踪性能,证明

其可行性。然而,当通过不同连接方式对两种感知子模型

进行组合时发现,串联方式并不能对算法的跟踪性能产生

积极影响,主要原因是极化过滤的方式在挖掘空间(或通

道)维度信息时,完全压缩正交的通道(或空间)维度而丢

失通道相关信息,导致在之后的串联法中无法捕获通道

(空间)维度的联系,因而只能通过并联的方式进行高阶目

标感知模型的设计,达到高算法性能的目的。

表6 不同组合方式在OTB100数据集上的实验结果

组合方式 准确率(%↑) 成功率(%↑)
baseline 0.702 0.471
HTA-S 0.743 0.499
HTA-C 0.750 0.495
HTA-S/C 0.705 0.469
HTA-S//C 0.769 0.514

  其中 HTA-S为仅对空间维度做处理,HTA-C仅对通

道维度处理;HTA-S/C
 

(high
 

order
 

target
 

aware
 

model
 

in
 

series
 

mode)和HTA-S//C
 

(high
 

order
 

target
 

aware
 

model
 

in
 

parallel
 

mode)分别表示串联和并联方式的高阶目标感知模

型。最终可以通过表6看出,在并联法的高阶目标感知模型

下,跟踪模型的性能提升4.3%的跟踪成功率和6.7%的跟

踪准确率。SMN为使用相似匹配网络进行互相关。
最后,对算法的不同模块在 OTB100上进行消融实

验,如表7所示,其中 HTA(即表5中的 HTA-S//C)指在

原有基础上融入高阶目标感知模型;SMN指在原有基础

上使用相似匹配模型缩小了匹配区域。利用相似匹配网

络对搜索特征和优化后的高阶感知特征计算相似性,相比

基线分别在成功率和准确率上提高9.9%和8.2%,证明本

文所提方法的有效性。

表7 算法不同模块在OTB100上的消融实验

方法 准确率(%↑)成功率(%↑)帧率

baseline 0.702 0.471 52
Baseline+HTA 0.769 0.514 44
Baseline+SMN 0.746 0.490 41

Baseline+HTA+SMN 0.801 0.553 37

3 结  论

  本文提出一种基于孪生网络的端到端跟踪算法,通过

高阶目标感知模型提高位置信息和深层语义信息的感知

能力,并利用相似匹配网络精细化匹配区域,提高算法性

能,实 现 对 单 目 标 的 跟 踪 任 务。通 过 在 OTB100 和

UAV123跟踪基准的实验表明,在满足实时性的前提下,
本文算法提高了对通用单目标跟踪的成功率和准确率,同
时可以很好的缓解相似目标干扰、遮挡等问题。
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