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Object tracking algorithm with jointing high order target aware
and similarity matching

Zhang Nianchao' Zhang Baohua' Li Yongxiang” Gu Yu'
(1. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Chinaj;

2. College of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China)

Abstract: The self-attention mechanism is used to enhance context in the visual object tracking algorithm, but in the
face of complex scenes, the correlation in the self-attention mechanism is prone to mismatch. Therefore, a high-order
target aware and similarity matching object tracking algorithm was proposed. A high-order target aware model was
Constructed for the first-order self-attention map in the self-attention mechanism, the collapsed polarization filtering
method was used to perform orthogonal modeling of space and channel dimensions, and optimize internal correlation.
At the same time, a nonlinear fitting function was combined to avoid information loss caused by collapse, and then a
high-order self-attention map is obtained to capture perceptual features with high-order context information. The
perceptual features of the target were decomposed in different dimensions to refine the matching area, so the
background noise was suppressed and the response map of the current frame was constrained, and improve the
discriminative power of the network. The experimental results on OTB100 and UAV123 benchmarks show that the
proposed algorithm has better tracking performance, and can effectively deal with problems such as similar
interference.

Keywords: computer vision; target tracking; self-attention mechanism; high order target-aware; polarization filtering;

similarity matching
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SiamCAR 0.762 0.781 0.742 0.717 0.677 0.695 0.745 0.787 0.705 0.717 0.628 0.784
Proposed 0.769 0.801 0.762 0.756 0.670 0.681 0.763 0.818 0.729 0.778 0.691 0.824
BN AL N RIS,

.597 0.663 0.756 0.786 0.701 0.747 0.633 0.753

x4 UVAVIZZ SEMRIN RS S

HLA s 1
ERFN el RE teE R wE o Es MEL W4 MM o PR

Afe ARk aEsh MEF O R B R sz R Hibs o R A

ECO™ 0.407 0.465 0.342 0.406 0.373 0.362 0.425 0.476 0.432 0.490 0.292 0.431
DaSiamRPN™  0.500 0.544 0.520 0.509 0.407 0.411 0.537 0.581 0.493 0.517 0.379 0.563
SiamRPN™’ 0.520 0.556 0.502 0.526 0.406 0.419 0.541 0.593 0.483 0.507 0.341 0.587
SiamCAR™ 0.573 0.596 0.549 0.543 0.466 0.466 0.568 0.604 0.517 0.533 0.394 0.627
Proposed 0.577 0.610 0.569 0.582 0.444 0.450 0.583 0.626 0.533 0.577 0.438 0.654

AT SR U I -/ G N

(D AU L BARTE 52 2 0 24 8 P L 00 ofE 0 R IK T SiamRPN™’ | DaSiamRPN™' 1 SiamCAR™’ £ & 1 7&
Xt LB DaSiamRPN , {H [7] J& P 4 1% 2 2R & i s Hovk L & UAV123"7 0t Lk, S22 ANk 5 Fis .,
FeF 40 38 24 M 5 0 A LA AT, AR OB R 1R 1 I I A R

S R 5, oA IR S 0 T A S 78 0 £ s BEEE UAVIZ RETHRGES

v B e B A A T AL D i 0 4% £ A 3 L 4 9 T LA AR 17 UAVIZ23

fg % 6 AL bR A7 R Heng B WWE %
2O TG AR AL B AR T3, A% S8 09 BR B A ) 2R R o (%A (%

R IPLF X b v Fn R 2R B e AR SOy o 4 BB Y Correlation filter ECOR2Y 0. 688 0. 525

B AT b 14 B 8 1 0 30 B 3 L O /N X 8% 1 S DeSiamRPNE?  0.781  0.569

AL 8 e 80 AL L £ 6 DO o7 5 DT 3 3400 ) A Anchorbased . oo 0772 0,581

fELP) 4 6 H i o SiamCAR™" 0.785 0.583
2) % w AT Anchor free Proposed 0. 796 0.607

N B E A SCEE R AR TR A HL U h i PEBE L W) ECO™ |
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AT

v F o

25 NEX W E A UAVI23 bRl T 19 PF A5 45
HH 3R AT AR SO A A T AR R I U R AR bR AR AT
2. 4% TEMER R AR L3RS 1 1% RIEE, AR SCRA A T
HA ST R A AR R REEE A 3, AT Al X EL AT DA
TR 4G KR R A X T ECO, SiamRPN, DaSiamRPN 44
AR SCE A MR R 10, 8%0.2. A% A 1. 5% Ik RE
2.4 THBLSIG

MR B AR S8 A Rt GOT-10k /5 500 4~ 7 81
FHF VAR, FEFE OTB100 A5 fh s2 56

k6 fras, X T 5 By B s B AR T, AT %S 8] 5 (G
T8 A TR I8 SR A E — R R L R O R L IE
FCRATATPE . SR L 28 ik AN [ 32 42 Oy Xk 7 A R e A Y
HEATAL A B R BRI 203 AN BB X 5 12 1) R R P R A
FEURe 5 ), = 2 D TR O e A 2o 908 1Y O 2K A 42 48 4 [R) (Bl
T 4k B {5 B 58 4 R 4R 1E 22 A9 38 8 Calas ) 4 B fi 2%
R AT B, T BE 225 0 88 B0k o Gk 9K e i
(o R 2 B B I 2R L PR R 3l o O 156 19 5 Rk A7 v o B
P AT L (1 B3, 3R B S BA BRI B Y

X6 AEAEAAFRE OTBIO0 HIFE FHWLHRER

HE I R A eIEACZ D)
baseline 0.702 0.471
HTA-S 0.743 0.499
HTA-C 0. 750 0. 495

HTA-S/C 0.705 0. 469

HTA-S//C 0.769 0.514

Ferp HTA-S S A0 25 (1] 4 2 kb . HTA-C AL X i
I8 4 B Ab #H; HTA-S/C Chigh order target aware model in
series mode) fll HTA-S//C (high order target aware model in
parallel mode) 435Il 27 83 16 A1 3 16 7 3K 9 5 B E A J8e AR
B, SRR LUE R 6 F AR IFIE 0 I E bR s Y
T BREEAR A B PR RE B T 4. 3960 1Y BRI LT FAT 6. 7 %0 Y R
PRUERG A . SMN S JTAR BLVC IiE 199 25 AT AR OG

R J A B R R B AE OTB100 3 47 1 il 92
B, 43R 7 PR Ko HTACHIE 5 d iy HTA-S//O) 8 78
JEA AL bR A B E AR R B SMIN 8 7 A B b
A R AR AL DG BiE AR B 45 N T DT I X8, ) A R AL D B
26 %o 48 R AE R OE AR S 1 2 B SRR A T SRR B L A LG
HELR 53 B TE LT R FERG R 5 9. 9 0 8. 200 ERI A
SCHT 4 T R A R

F®7 EEXEAEERE OTB100 L HIEFLSLIE

DR WA WIR A Wig
baseline 0.702 0.471 52
Baseline+ HTA 0.769 0.514 44
Baseline+SMN 0. 746 0. 490 41
Baseline+HTA-+SMN 0. 801 0.553 37
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AR SR Y — 3 2R A T 4% 11 o ) o R O R okl o
1o B AR BRI B 35 5 7 1 A B RNIR 2 0 A5 B B
B 75 I ) T AH ALL DG B 190 465 5 20 1k DG e IX 3, 42 oo B30 0k 1k
fiE. 5 BL XT B H AR R BR BR AT 5. £E OTB1o0 Al
UAV123 B i 56 v 19 92 96 2 BT, 7696 2 S I P Y AT 32 °F
AR SCEE LB 1N 3 P B A R R A ) AR ME B R L [F]
AT DLAR G A 2 g ARARL H b T 90 L4 45 ] R
&% ik
[1] MARVASTI-ZADEH S M, CHENG L. GHANEI Y H,
et al.  Deep tracking: A

learning for visual

comprehensive survey [ J ]. IEEE Transactions on
Intelligent Transportation Systems, 2022, 23 (5).
3943-3968.

(2] BORKER. MR, I, 45, 2 T ot KCF 5k M2 4
TR A B9 22 85 BB B T L0 0. W 7 00 4 5 0 2% 24 4R
2022,36(4):231-240.

(3]  FEEMALZL R, B T > 1Y A 6 28 i 3 1 4G
PR FEL]. [ Ah vl 7 5 H A . 2021,40(10) :108-116.

(4] @|BF. 0. BFRREE LRI A3k, 2019,
45(7): 1244-1260.

(5] LI B, YAN]J, WU W, et al. High-performance visual
tracking with siamese region proposal network[ C].
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018 8971-8980.

[6] LI B, WU W, WANG Q. et al. Siamrpn + +:
Evolution of siamese visual tracking with very deep

IEEE/CVF

Pattern

networks [ C J. Proceedings of the

Conference on Computer Vision and
Recognition, 2019: 4282-4291.

(7] Mg B0 BRI AR 55 BT IRG TR B4 M 4% H in
B TLIE L] AR AR 2241, 2021, 42(1) - 127-136.

[8] PU L. FENG X, HOU Z, et al. SiamDA: Dual attention
Siamese network for real-time visual tracking[J]. Signal
Processing: Image Communication, 2021, 95, DOI.
10. 1016/j. image. 2021. 116293,

(9] ZHANG X, MA J, LIU H, et al. Dual attentional
siamese network for visual tracking [J]. Displays,
2022, 74,DOI: 10.1016/j. displa. 2022. 102205,

[10] WANG X, TANG J, LUO B, et al. Tracking by joint
local and global search: A target-aware attention-based
approach[ J]. IEEE Transactions on Neural Networks
and Learning Systems, 2022, 33(11): 6931-6945.

(110 AFREF . nl 2. RlA 1 SCRFAE 19 2% 1) 22 AR 10 2% [ A B U
SE[)]. I EE R, 2022,45(8) :136-142,

[12] ZHU Z, WANG Q. LI B, et al. Distractor-aware

siamese networks for visual object tracking [ C .



KAM F . RE SN A AR S AR T B d) B ARSR IR Sk

%1

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Proceedings of the European conference on computer
vision(ECCV) ,2018: 101-117.
GUO D Y, WANG J, CUI Y,
fully
regression for visual tracking[ C]J. Proceedings of the
IEEE/CVFE Conference
Pattern Recognition, 2020: 6269-6277.

LIAO B, WANG C, WANG Y, et al. Pg-net: Pixel

to global matching network for visual tracking[ C]J.

SiamCAR:

classification  and

et al.
Siamese convolutional

on Computer Vision and

European Conference on Computer Vision. Springer,
Cham, 2020. 429-444.

FU J, LIU J, TIAN H, et al. Dual attention network
for scene segmentation[ C]. Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern
Recognition, 2019: 3146-3154.

LIU H, LIU F, FAN X, et al. Polarized self-attention:
mapping [ ] ].
Neurocomputing, 2022, 506(28): 158-167.

HUANG L. ZHAO X, HUANG K. Got-10k: A
large high-diversity benchmark for

Towards high-quality pixel-wise

generic object
tracking in the wild[J]. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019, 43 (5):
1562-1577.

RUSSAKOVSKY O, DENG J, SS H, et al. Imagenet
large scale visual recognition challenge[J]. International
Journal of Computer Vision, 2015, 115(3): 211-252.
VALMADRE J, BERTINETTO L, HENRIQUES J,
End-to-end

correlation filter based tracking[ C]. Proceedings of the

et al representation  learning for
IEEE Conference on Computer Vision and Pattern
Recognition, 2017 2805-2813.

BERTINETTO L. VALMADRE J. HENRIQUES | F,

et al. Fully-convolutional siamese networks for object

tracking[ C]. Proceedings of European Conference on
Computer Vision, 2016: 850-865.

ZHANG Z P, PENG H W. Deeper and wider siamese
networks for real-time visual tracking[ CJ. Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019: 4591-4600.

LI P X, CHEN B Y., OUYANG W L, et al
GradNet: Gradient-guided network for visual object
tracking [ C . IEEE/CVF
International Conference on Computer Vision, 2019:
6162-6171.

wuU Y, LIM ],
benchmark [ J J.
Analysis & Machine Intelligence, 2015, 37 (9):
1834-1848.

DANELLJAN M, BHAT G, SHAHBAZ K F, et al. Eco:
Efficient tracking [ C .
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017 . 6638-664.
MUELLER M. SMITH N, GHANEM B. A

benchmark and simulator for uwav tracking [ C J.

[21]

[22]

Proceedings of the

[23] YANG M H.

IEEE Transactions on

Object tracking

Pattern

[24]

convolution  operators  for

[25]

Proceedings of European Conference on Computer
Vision, 2016: 445-461.
EEE N
I T R e e o X Tyl L s R e X T AN =
PR
E-mail: zhangnc_imust@163. com
WEEGEGEE B2, AR, BT R
BB AL 2 | H bR R 5 BB AT TR A
E-mail: zbh_wj2004@imust. cn,
=k P W B EE WSO I R eSS A
R R i e [ NI i Dyl L i e = v 1
B B A R AL B TS B A

+ 109 -



