Fault diagnosis of rolling bearings based on EEMD energy entropy and GJO-KELM
DOI:
Author:
Affiliation:

School of Electromechanical Engineering,Dalian Minzu University,Dalian 116650,China

Clc Number:

TH133.3

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Rolling bearings play an important role in rotating machinery. If a fault occurs, it can cause equipment shutdown, and in severe cases, endanger the safety of on-site personnel. Therefore, it is necessary to diagnose the fault. In response to the difficulty in extracting fault features of rolling bearings and the low accuracy of traditional classification methods, this paper proposes a fault diagnosis method based on Set Empirical Mode Decomposition (EEMD) energy entropy and Golden Jackal Optimization Algorithm (GJO) optimized Kernel Extreme Learning Machine (KELM), achieving the goal of extracting fault features of rolling bearings and correctly classifying them. Through experimental data validation, this method can extract the fault information features hidden in the original signal of rolling bearings, with a diagnostic accuracy of up to 98.47%.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: June 07,2024
  • Published: