GLnet: Precipitation nowcasting network combining global and local information
DOI:
CSTR:
Author:
Affiliation:

Nanjing University of Information Science and Technology,Electronics and Information Engineering College,Nanjing 210044,China

Clc Number:

P409;TP391.41;TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Quantitative precipitation prediction based on radar echo extrapolation has broad prospects.It’s important to get accurate nowcasting.To this end,we propose GLnet,an efficient neural networksbased on Unet and SwinTransformer architecture equipped with two different attention modules CBAM and Nonlocal. The model has an asymmetric twoway feature extractor. In this way,the GLnet model extracts local and global features of radar echo images through convolution and windows selfattention mechanisms respectively.We create two datasets, NL20 and NL50, in Netherlands Precipitation Dataset by filtering the original precipitation dataset and choosing only the images with at least 20% and 50% of pixels containing any amount of rain respectively. We evaluate our approaches in NL20 and NL50. The experimental results show that compared with the classical model Unet,the mean square error is reduced by 144% and 106% respectively.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 03,2024
  • Published:
Article QR Code