Implementation of improved CORDIC algorithm and application in edge detection
DOI:
Author:
Affiliation:

1.School of NanoTech and NanoBionics, University of Science and Technology of China,Hefei 230026, China; 2.Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Science,Suzhou 215123, China

Clc Number:

TP911.73

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The hardware units of fixedpoint and floatingpoint calculation are designed and implemented after studying and improving the traditional CORDIC algorithm to calculate the elementary functions in image processing. Two micro rotation angles of CORDIC algorithm iteration are proposed to expand the definition domain of function calculation, and angle coding is used to reduce the number of iterations of trigonometric function calculation. Arc tangent and square root can be calculated in rotation mode, sine and cosine can be calculated in vector mode. The units of Fixed point and floating point are designed in pipeline structure, and the functions can be selected by mode configuration. The floatingpoint unit bases on the format of IEEE754 single precision floatingpoint number. The data path contains order matching, iteration and normalization, and can be calculated once in 24 cycles. The verification of SystemVerilog platform is realized and the worst accuracy of fixedpoint calculation is 10-3, and floating point is 10-7. The maximum working frequency of 32 bit fixedpoint calculation can reach 2439 MHz, which takes less resources than the traditional CORDIC algorithm when verificate on the FPGA. The improved fixedpoint CORDIC algorithm is applied to image edge detection based on Sobel, with clearer edges and faster imaging speed. FPGA platform for image data acquisition, processing and display system is built to complete the verification of the algorithm.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 04,2024
  • Published: