Active hand training system based on Arduino and STM32
DOI:
CSTR:
Author:
Affiliation:

1.School of Electronics and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2.Jiangsu Province Atmospheric Environment and Equipment Technology Collaborative Innovation Center, Nanjing University of Information Science & Technology, Nanjing 210044, China

Clc Number:

TP242

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    When patients with hand dysfunction practice rehabilitation movements by themselves at home, the training steps are confusing due to the lack of scientific guidance, and the precision and intensity of the movements are difficult to be guaranteed, thus affecting the rehabilitation effect. In this paper, an active hand training system based on Arduino and STM32 is designed. The system is divided into three major parts: data glove, movement guiding palm and upper computer, The data glove obtains and processes the rotation angle data of the fingers and wrist through sensors, and then transmits the data wirelessly to the movement guidance palm, and the controller STM32 in the movement guidance palm compares the received data with the standard movement database, analyzes the movement standard, and then instructs the patient to make adjustments by voice.STM32 drives six digital servos to drive the movement of the bionic palm according to the movement data, thus imitating the human movement. The system uses the LD3320 to recognize patient commands and perform human-computer interaction. The system downloads the standard movement database to the STM32 external flash memory through the upper computer, which is used to compare the patient's hand movement data. The experimental results show that the system can effectively guide patients to complete the whole set of rehabilitation training movements with accurate data reading, precise and reliable guidance, and strong interactivity. It can help about 6 million stroke patients with hand motor dysfunction in China for rehabilitation training, which has strong application value.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: February 26,2024
  • Published:
Article QR Code