Fall detection algorithm based on spatial-temporal adaptive graph convolution network
DOI:
CSTR:
Author:
Affiliation:

School of Information Engineering, Guangdong University of Technology,Guangzhou 510006, China

Clc Number:

TP394.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To solve the problem that existing graph convolution network (GCN) need to pre-define human skeleton topology and the model is large, a fall detection algorithm based on spatiotemporal adaptive graph convolutional network (ST-AGCN) is proposed. The network consists of three parts: firstly, HRNet, a human pose estimation algorithm, is used to extract human skeleton points from video and preprocess them into four-dimensional tensor. Secondly, the normalized embedded Gaussian function is introduced to obtain the human body topology by learning (without manual pre-definition), and the human body correlation features are obtained by spatial adaptive graph convolution. Thirdly, multi-scale convolution is used to extract temporal motion features to improve the model′s ability to obtain dynamic information. Simulations are carried out on public and self-built dataset, and the accuracy rates are 95.45% and 99.55%, respectively. The results show that the proposed algorithm is better than the current GCN methods, and the number of parameters is only a quarter of the latter, or even less. Another advantage of our algorithm is that it can be applied to different datasets.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: February 26,2024
  • Published:
Article QR Code