Propagation law of shock wave pressure in bifurcated tubes
DOI:
CSTR:
Author:
Affiliation:

1.State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan Shanxi 030051,China; 2.School of Electrical and Control Engineering, North University of China, Taiyuan Shanxi 030051, China; 3. China Safety Technology Research Academy of Ordnance Industry, Beijing 100053,China;4. NORINCO GROUP Key Laboratory of Combustion and Explosion Safety Technology, Beijing 100053,China

Clc Number:

TJ011;O382;TM932

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To reveal pressure distribution and attenuation law of shock wave in bifurcated tubes, a modular bifurcated tube model was built for shock wave propagation test. The overpressure of shock wave at each measuring point under different membrane breaking pressures and different bifurcation angles was obtained, and the attenuation curve was fitted with Rankine-Hugoniot equation. The pressure velocity correlation algorithm of FLUENT was used to simulate the propagation process of shock wave at the tube bifurcation and observe the distribution of pressure flow field in tubes. The results show that the bifurcation angle has a significant impact on the pressure distribution of the main tubes and branch tubes. The attenuation rate of shock wave in the tubes is related to the membrane breaking pressure. Among the three bifurcation tubes of 30 °, 90 ° and 150 °, the platform pressure of 90 ° branch tube is the lowest. Under the same membrane breaking pressure, the attenuation rate of branch tubes is opposite to main tubes.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: March 27,2024
  • Published:
Article QR Code