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Development and test verification of ultra-high temperature probe
at the afterburner outlet

Qi Haifan
(Chinese Flight Test Establishment,Xi'an 710089, China)

Abstract: A new type of ultra-high temperature probe at the aero-engine afterburner outlet has been independently
developed to address the problem of difficult measurement of high-temperature airflow parameters at the outlet of
aircraft engine afterburner combustion chambers. The ultra-high temperature probe solution is composed of a new type
of ultra-high temperature resistant CMC-SiC silicon carbide ceramic matrix composite material as the main body,with a
tungsten tube as the protective sleeve of embedded platinum rhodium thermocouple. We conducted preliminary
verification tests such as airtightness and ablation tests on the main material of the probe, tensile tests on high-
temperature bonding adhesive,and fatigue vibration tests on the entire probe. Finally,the ultra-high temperature probe
was installed and passed the ground bench test inspection. The experiment results show that the ultra-high temperature
probe can work normally under the full boost state of the engine,and the highest temperature measured at the outlet
measuring point of the boost combustion chamber under full boost state is 1 680°C, which is comparable to the
theoretical calculation value. The successful application of ultra-high temperature probe has improved the level of ultra-
high temperature measurement for aviation engines, providing technical support for the improvement of flight test
methods and design improvements for subsequent aviation engine afterburner combustion chamber flight tests.
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Fig. 1 Reserved dimensions for the installation seat of

the sensing part
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Fig. 2 Structure diagram of measuring device
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Fig. 3 Schematic diagram of high temperature probe
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Fig.4 Schematic diagram of airtightness test
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Fig.5 Schematic diagram of tensile test
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Test procedure of a certain type of engine

L P9 T 8 PR DR AL R T ) BRSO 0 B R R

1840 -
1820
1800
1780
1760
%1740
S 1720
1700
1680
1660 .

[ b b b ﬂ A

O N A C O AN ‘>

BB AT o SIS Rt 5 5>
00 %”a %’b %”a %'b %”a q;a x°°% o ’5 "'>

1.0

55

e
[
=]

m7r sk

10.0

(m%&QMﬁ%#Tmﬁ%ﬁimugﬁ

(a) Afterburner exit total temperature at single full afterburner



Foilr Wl A R E o A R Sk AT R 5 R B B T

5524 W

2000
Vil M |
1 600
&
f1leg
1200
X 05X
= €
& R
800 =
400 oo
18:23:19 18:31:45

Time

(b) “&mH-18%E” EH FmAMmpes SR
(b) Afterburner exit total temp. (full afterburner - idle cycle)

P8 i THT £ 2R 06 0k 4 2R R

Fig. 8 Schematic diagram of ground bench test measurement results
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