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摘 要:针对当前的铁路接触网异物检测算法存在检测精度不高和模型过大的问题,本研究提出一种基于改进

YOLOv8的接触网异物检测算法(FRDW-YOLOv8)。首先,在主干网络中引入FasterNet模块,从而构建出 C2f-
Faster模块,降低模型复杂度,提升模型的计算效率;其次,在特征提取阶段引入感受野坐标注意力机制(RFCA),提高

模型对于接触网异物区域的关注度,为其分配更多注意力;然后,在颈部网络中采用动态上采样器(Dysample),可以保

留接触网异物更多的细节信息;最后,采用 WIoU
 

v3损失函数,通过动态调整权重因子,提高检测模型的整体性能。
实验结果表明,改进后的算法mAP值达到95.1%,较YOLOv8模型提升了2.8%,模型的计算量和参数量仅为7.3

 

G
和2.7

 

M。改进后的算法进一步提高了模型的检测精度,且使模型具有轻量化的特性,充分说明改进后的算法检测性

能优于目前主流的算法,能够更好地完成铁路接触网异物检测任务。
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Abstract:Aiming
 

at
 

the
 

problems
 

of
 

low
 

detection
 

accuracy
 

and
 

large
 

model
 

size
 

existing
 

in
 

the
 

current
 

foreign
 

object
 

detection
 

algorithms
 

for
 

railway
 

catenaries,
 

this
 

study
 

proposes
 

a
 

foreign
 

object
 

detection
 

algorithm
 

for
 

catenaries
 

(FRDW-YOLOv8)
 

based
 

on
 

the
 

improved
 

YOLOv8.
 

Firstly,
 

we
 

propose
 

the
 

integration
 

of
 

a
 

FasterNet
 

module
 

into
 

the
 

backbone
 

network
 

to
 

construct
 

the
 

C2f-Faster
 

module,
 

which
 

effectively
 

reduces
 

model
 

complexity
 

and
 

enhances
 

computational
 

efficiency.
 

Secondly,
 

the
 

Receptive-Field
 

Coordinate
 

Attention
 

mechanism
 

(RFCA)
 

is
 

introduced
 

in
 

the
 

feature
 

extraction
 

stage
 

to
 

increase
 

the
 

model's
 

attention
 

to
 

the
 

foreign
 

object
 

areas
 

of
 

the
 

catenary
 

and
 

allocate
 

more
 

attention
 

to
 

them.
 

Then,
 

a
 

dynamic
 

upsampler
 

(Dysample)
 

is
 

adopted
 

in
 

the
 

neck
 

network,
 

which
 

can
 

retain
 

more
 

detailed
 

information
 

of
 

the
 

foreign
 

objects
 

on
 

the
 

catenary.
 

Finally,
 

the
 

WIoU
 

v3
 

loss
 

function
 

is
 

used
 

to
 

improve
 

the
 

overall
 

performance
 

of
 

the
 

detection
 

model
 

by
 

dynamically
 

adjusting
 

the
 

weight
 

factors.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

mAP
 

value
 

of
 

the
 

improved
 

algorithm
 

reaches
 

95.1%,
 

which
 

is
 

2.8%
 

higher
 

than
 

that
 

of
 

the
 

YOLOv8
 

model,
 

and
 

the
 

floating-point
 

operations
 

and
 

the
 

number
 

of
 

parameters
 

of
 

the
 

model
 

are
 

only
 

7.3
 

G
 

and
 

2.7
 

M
 

respectively.
 

The
 

improved
 

algorithm
 

further
 

improves
 

the
 

detection
 

accuracy
 

of
 

the
 

model
 

and
 

makes
 

the
 

model
 

lightweight.
 

It
 

fully
 

demonstrates
 

that
 

the
 

detection
 

performance
 

of
 

the
 

improved
 

algorithm
 

is
 

superior
 

to
 

the
 

current
 

mainstream
 

algorithms
 

and
 

can
 

better
 

complete
 

the
 

task
 

of
 

detecting
 

foreign
 

objects
 

on
 

railway
 

catenaries.
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0 引  言

  随着铁路交通运输业的不断发展,铁路作为关键性重

大基础设施,在经济社会发展中的作用越来越重要。铁路

接触网作为特殊的输电线路,其状态与列车的安全、可靠运

行密切相关。如果接触网上的异物无法及时被清除,可能
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会造成接触网线路短路、绝缘子污闪等现象[1]。因此,对铁

路接触网鸟巢、漂浮物等异物进行实时准确的检测是很有

必要的。
目前,针对铁路接触网的目标检测方法,国内外学者进

行了广泛研究。在传统图像检测方面,段旺旺等[2]首先提

取鸟巢区域的 HOG特征,然后通过训练好的SVM根据关

键区域的 HOG特征进行精确提取,自动识别出鸟巢区域,
然而 HOG仅能捕捉边缘、梯度方向等底层特征,缺乏对图

像全局上下文的建模能力,检测精度较低。同时SVM 难

以处理复杂非线性边界,需依赖核函数映射到高维空间,计
算成本高且效果有限,对于接触网鸟巢检测的实时性较差。
祝振敏等[3]首先使用Sobel算子检测图像的边缘,接着通

过霍夫变换对图像中的硬横梁进行检测,最后对图像二值

化处理,根据白色区域面积的占比,对横梁上的鸟巢进行检

测,然而Sobel算子对于接触网图像背景噪声敏感,边缘检

测结果易受到光照等影响,可能导致边缘不连续或伪边缘,
而且二值化阈值需手动设定,难以适应光照变化或复杂背

景的干扰,仅通过白色区域占比规则过于简单,鸟巢形状、
大小的变化易导致鸟巢的误检或漏检,检测精度较低。此

外,Sobel、霍夫变换和二值化处理需分步计算,检测速度

慢,无法满足实时性检测。Wu等[4]利用 HOS和 HLS直

方图表示检测到的树枝条纹的方向和长度分布,并利用

SVM进行建模,对接触网上的鸟巢异物进行检测,然而直

方图分箱数和SVM 核函数的选择对检测结果影响较大,
需要反复的人工调参,而且,直方图仅反映局部枝条属性,
无法建模鸟巢与环境的语义关联,导致检测模型存在误检。
此外,SVM推理需高维特征计算,难以并行加速,检测实时

性较差。因此,利用传统的图像检测方法依赖人工设计特

征,而且传统的图像检测方法对接触网图像噪声、异物尺寸

变化、形变敏感,缺乏语义理解和上下文建模能力,利用传

统图像检测方法对接触网异物的误检率和漏检率较高,检
测精度较低。虽然利用传统检测方法的模型参数量相对较

少,但是存在计算效率低等缺点,无法适用于对于接触网异

物检测实时性要求较高的场景。
近年来,基于深度学习的一系列算法在接触网异物检

测中得到了大量的关注[5],比如SSD[6]、YOLO[7]等。吕嘉

宜[8]通过K-means算法改进SSD网络的先验框设置,并引

入视觉显著性修改网络结构,从而强化网络对接触网异物

特征的提取能力,然而 K-means对初始聚类中心敏感,可
能导致生成的锚框尺寸分布不均衡,而且引入视觉显著性

检测可能降低推理速度,影响实时性。此外,异物与背景相

似时,显著性模块难以捕捉,可能导致误检和漏检。顾桂梅

等[9]对SSD算法进行改进,引入 MobileNetV3用于特征提

取,设计了特征融合模块重构SSD的特征层,用于接触网

上的小目标缺陷识别,然而SSD依赖多尺度特征图预测,

MobileNetV3的深层特征分辨率过低,可能导致小目标特

征丢失,影响模型的检测精度。Zhao等[10]提出了一种上下

文引导的从粗到细的检测模型,该模型充分利用了上下文

信息来检测鸟巢,并采用流水线技术和多线程并行计算技

术,以最大限度地利用计算资源,提高检测速度,然而该模

型中级联了多个检测器,增加了模型的参数量,易导致模型

过拟合,泛化能力下降,且不便于模型的移动端部署。郭翔

羽等[11]提出了一种基于YOLOv7改进的网络模型对接触

网异物进行检测,改进后的模型在检测精度和速度上均有

所提升,然而该模型的参数量较大,不利于模型的实际工程

部署。
尽管目前的研究在接触网异物检测领域取得了令人瞩

目的进展,但是多数研究只针对接触网上的鸟巢进行检测

和识别,而无法检测接触网上的漂浮物等其他异物。此外,
当前的铁路接触网异物检测模型存在参数量和计算量较大

或者检测精度较低的问题,无法较好地平衡检测模型的权

重大小与检测精度。为了解决这些难题,本文提出一种基

于改 进 YOLOv8[12]的 接 触 网 异 物 检 测 算 法 FRDW-
YOLOv8。FRDW-YOLOv8算法将主干网络C2f模块中

的Bottleneck替换为FasterNet[13],从而构建出C2f-Faster
模块,降低模型参数量和计算量;其次,在特征提取阶段引

入 感 受 野 坐 标 注 意 力 机 制 (receptive-field
 

coordinate
 

attention,RFCA)[14],构建出感受野坐标注意力卷积模块

(RFCAConv),提高模型对于接触网异物区域的关注度,为
其分配更多注意力;然后,在颈部网络中采用动态上采样器

(dynamic
 

upsampler,Dysample)[15],减少上采样过程中图

像细节的丢失;最后,使用 Wise-IoU
 

v3(WIoU
 

v3)[16]损失

函数优化模型,改善边界框回归的训练效果,提高模型的检

测性能。

1 FRDW-YOLOv8网络架构

  在 YOLOv8 的 众 多 版 本 中,YOLOv8n 相 较 于

YOLOv8s、YOLOv8m、YOLOv8l以 及 YOLOv8x来 说,

YOLOv8n所需的计算资源更少。其次,YOLOv8n的结构

相对简单,不仅训练效率更高,而且为后续改进提供了良好

的起点。因此,综合考虑计算资源、训练效率、后续扩展等

因素,本研究选用YOLOv8n作为基准模型。

FRDW-YOLOv8网络架构如图1所示。整体结构由

输入层(Input)、主干网络(Backbone)、颈部网络(Neck)、检
测头(Head)所构成。输入层负责接收待检测的接触网异

物图像,并对其进行预处理;主干网络负责对图像的特征进

行提取;颈部网络对不同尺寸的特征图进行融合;检测头将

融合后的特征进行分类和回归,输出最终的检测结果。

2 YOLOv8模型改进策略

2.1 构建C2f-Faster模块

  由于YOLOv8中的Bottleneck依赖多次卷积和跨层

连接,使得YOLOv8模型的参数量和计算量较大。为了便

于网络模型的实际工程部署,使得模型更加轻量化,本研究
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图1 FRDW-YOLOv8模型结构图

Fig.1 Structure
 

diagram
 

of
 

the
 

FRDW-YOLOv8
 

model

将 YOLOv8主干网络中 C2f模块的 Bottleneck替换为

FasterNet,从而构建出 C2f-Faster模块。FasterNet通过

设计部分卷积(partial
 

convolution,PConv)[17],减少冗余计

算和内存访问,通过优化通道分配和卷积操作顺序,在保证

特征表达能力的同时,显著降低了模型的参数量以及计

算量。

PConv的工作原理如图2(a)所示,假设输入和输出特

征图的通道数相同,h和w 分别表示特征图的高度和宽度,

k表示内核大小,cp 表示 PConv的通道数。PConv的

FLOPs为h×w ×k2×cp2,当cp =c/4时,PConv的

FLOPs仅为标准卷积的1/16。此外,PConv的内存访问量

为h×w×2cp+k2×cp2≈h×w×2cp,当cp=c/4时,

PConv的内存访问量仅为标准卷积的1/4。
图2(b)展示了FasterNet结构图,FasterNet由一个

PConv层,以及两个1×1卷积层所组成,其中的残差连接

用于重复使用输入特征。除此之外,在中间的1×1卷积层

之后应用归一化层和激活层,以保持特征多样性并实现更

低的延迟。

2.2 引入RFCA注意力机制

  由于YOLOv8主干网络的标准卷积操作每个滑块内

相同位置的特征参数是固定的,存在卷积核参数共享的问

题。当接触网背景较为复杂时,YOLOv8主干网络标准卷

图2 FasterNet与PConv结构图

Fig.2 Structure
 

diagrams
 

of
 

FasterNet
 

and
 

PConv

积的卷积核在不同的感受野中使用相同的参数提取特征信

息,无法考虑到不同位置的特征差异,使得检测模型出现漏

检和误检的现象,降低了对于接触网异物的检测精度。为

了更加准确的对不同位置的特征进行有效提取,在本研究

中引入感受野坐标注意力RFCA,构建出感受野坐标注意

力卷积RFCAConv模块,用于替换主干网络中的标准卷积

CBS模块,彻底消除了卷积核参数共享的问题。

RFCAConv的网络结构如图3所示。首先采用组卷积

快速提取输入的感受野空间特征,原始的特征被映射为新

特征X,调整后的特征图的宽和高均变为原来的K 倍,通
过构建感受野空间特征,避免了卷积核参数共享的问题,从
而能够捕获每个空间特征信息并减少计算冗余。然后利用

全局平均池化压缩空间信息,得到一对聚合特征图。接着

将它们连接起来,经过1×1的卷积,得到一个中间特征图。
再沿空间维度将中间特征图分成两个独立的张量,利用两

个1×1卷积操作,得到与X 具有相同通道数的注意力图。
这样,位置信息就能在生成的注意力图中得到保留,然后通

图3 RFCAConv模块结构图

Fig.3 Structure
 

diagram
 

of
 

the
 

RFCAConv
 

module

·551·



 第48卷 电 子 测 量 技 术

  过乘法操作将这两个注意力图应用到感受野空间特征中,
以强调感兴趣的表征。最终通过步长为K 的K×K 卷积

操作来提取特征信息。

RFCA注意力模块将位置信息嵌入通道注意力中,同
时考虑了通道与空间位置信息,使得网络模型在特征提取

阶段更加关注图像中的异物区域,并为其分配更多注意力。

2.3 采用Dysample动态上采样

  在YOLOv8检测模型中,使用最近邻插值法作为默认

上采样方法,该方法对所有图像以相同的方式进行上采样,
而不考虑图像的特征差异,一旦确定了上采样参数,就难以

在不同的图像或任务中进行灵活调整。由于图像中的接触

网异物尺寸和形态不一,可能会出现像素失真等问题,导致

在上采样过程中图像细节的丢失,使得网络模型检测精度

下降。为了解决这个问题,本文引入一种高度轻量级且有

效的动态上采样器Dysample,其核心在于从点采样角度重

新构建上采样过程,通过考虑图像的局部结构和特征,使得

网络模型在上采样过程中保留更多的细节信息,提高模型

的检测精度。

Dysample的网络结构图如图4所示。将上采样过程

看作点采样,假设给定特征图X 和采样集S,输入特征图

X 经双线性插值成为连续特征图,然后生成内容感知的采

样点对该连续特征图重新采样为X',即:

X'=grid_sample(X,S) (1)
点采样生成器如图5和6所示。以图5中的静态因子

采样方法为例,若给定特征图X 和静态范围因子为0.25,
特征图首先经过线性层生成偏移量O,经像素洗牌重塑后,
采样集S 为偏移量O 与原始采样网格G 之和,即:

O =0.25linear(X) (2)

S =G+O (3)
最后,通过式

 

(1)中的网格采样函数,可以生成上采样

特征 图 X',从 而 实 现 动 态 上 采 样。通 过 这 些 步 骤,

Dysample绕过了基于内核的模式,从点采样的角度制定上

采样,并且可以通过PyTorch的标准内置函数轻松实现,
能有效提高上采样的精度和性能。

图4 Dysample结构图

Fig.4 Structure
 

diagram
 

of
 

the
 

Dysample

2.4 优化损失函数

  YOLOv8模型中的损失函数采用了CIoU,其损失值

表示如下:

LCIoU =1-RIoU +
(x-xt)2+(y-yt)2

(W2+H2) +αv (4)

其中,RIoU 表示交并比;W 和H 表示锚框与真实框所

图5 静态范围因子点采样生成器

Fig.5 Static
 

range
 

factor
 

point
 

sampler

图6 动态范围因子点采样生成器

Fig.6 Dynamic
 

range
 

factor
 

point
 

sampler

围成的最小外接框的坐标值;xt 和yt 为真实框中心点的坐

标值;v 是修正因子,用来描述长宽比的一致性;α为平衡

参数。α和v的具体计算方式分别为:

α=
v

(1-RIoU)+v
(5)

v=
4
π2
(arctan

wt

ht
-arctan

w
h
)2 (6)

其中,w 和h分别表示预测框的宽和高;wt 和ht 分别

为真实框的宽和高。
目前有关接触网异物的公开数据集较为稀少,本实验

采用自建数据集,在训练数据中难免存在一些低质量样本。
若在接触网异物检测过程中,采用YOLOv8默认的损失函

数CIoU,则边界框距离和长宽比等几何因素会加重对低质

量样本的惩罚,从而降低模型的检测精度。因此,在本研究

中采用 WIoU
 

v3损失函数,通过提出动态非单调的聚焦机

制,使用“离群度”替代IoU对锚框进行质量评估,并提供了

明智的梯度增益分配策略。损失值计算公式如下:

LWIoUv3 =r·LWIoUv1 (7)

LWIoUv1 =RWIoU·LIoU (8)

RWIoU =exp(
(x-xt)2+(y-yt)2

(W2+H2)*
) (9)

其中,RWIoU ∈ [1,e),其将显著放大普通质量锚框的

LIoU;r为非单调聚焦系数,其表示为:

r= β
δαβ-δ

(10)

其中,δ和α为超参数,当β=δ时,r=1。 这里的β
为离群度,表示为:

β=
L*

IoU

LIoU

∈ [0,+∞) (11)

其中,LIoU 为LIoU 的滑动平均值;L*
IoU 为梯度增益值。

由于LIoU 是动态的,锚框的质量划分标准也是动态的。通
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过为不同离群度的锚框动态分配梯度增益,不仅降低了高

质量锚框的竞争力,而且减少了低质量锚框产生的有害梯

度[18],最终使得 WIoU可以聚焦于普通质量的锚框,从而

提高网络模型的检测精度。

3 数据集扩充与数据增强

3.1 数据集扩充

  本文数据集为自建数据集,从某铁路局获取到含有接

触网异物的图像658张,原始图像数据来源于列车的便携

式接触网安全巡检装置(C2)。由于原始数据较少,直接用

于训练后的网络模型可能出现过拟合现象。为了构建的数

据集包含更多的语义信息,本文对原始图像经过平移、旋
转、镜像、改变亮度以及添加噪声等方法进行图像扩充,扩
充后的数据集共计2

 

890张。部分图像的扩充结果如图7
所示。然后,使用LabelImg工具对接触网图像中的漂浮物

(floater)和鸟巢(nest)异物进行标注,并按照8∶1∶1的比例

划分训练集、验证集以及测试集。

图7 图像扩充样例图

Fig.7 Augmented
 

image
 

sample
 

diagram

3.2 数据增强

  为了增强数据的多样性以及网络模型的鲁棒性,提高

网络模型对于小尺寸异物的检测能力,在FRDW-YOLOv8

的Input层中引入 Mosaic增强技术对图像进行预处理。

Mosaic数据增强效果如图8所示。

图8 Mosaic数据增强效果图

Fig.8 Mosaic
 

data
 

augmentation
 

renderings

通过随机选取4张图像进行拼接,使得组合后的图像

样本更加多样化。拼接后的新图像中具有更加复杂丰富的

背景,使网络模型检测过程中具有更好的抗干扰能力。此
外,Mosaic增强后的图像中拥有更多不同尺寸的目标,通
过提高模型对小尺寸异物的检测能力。

4 实验结果与分析

4.1 实验训练参数及环境配置

  由于本文所用数据样本较少,且为自建数据集,因此为了

使得模型训练时拥有更好的初始化性能和更快的收敛速度,
在本文中采用官方提供的、基于COCO数据集预训练的

YOLOv8n.pt权重文件作为模型初始权重。网络模型训练过

程中,实验的训练参数以及环境配置分别如表1和2所示。

表1 实验训练参数

Table
 

1 Experimental
 

training
 

parameters
参数 参数值

输入图像尺寸 640×640
训练周期 200
批量大小 16

初始学习率 0.01
权重衰减系数 0.000

 

5
动量因子 0.937

表2 实验环境配置

Table
 

2 Experimental
 

environment
 

configuration
软件环境 硬件环境

操作系统:Ubuntu
 

20.04 CPU:AMD
 

EPYC
 

9654
 

96-Core
编程语言版本:Python

 

3.8 GPU:RTX
 

4090(24
 

GB)×1
深度学习框架:PyTorch

 

1.11.0
加速环境:CUDA

 

11.3

4.2 评价指标

  本研究对于接触网异物图像识别采用了以下评价

指标:

P =
TP

TP+FP×100%
(12)

R =
TP

TP+FN ×100%
(13)
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AP =∫
1

0
P(R)dR×100% (14)

mAP =
1
n∑

k=n

k=1
APk×100% (15)

其中,TP 表示预测正确的正样本个数,FN 表示预测

错误的负样本个数,FP 表示预测错误的正样本个数。

P 称为精确率,表示预测为正样本中实际为正样本所

占的比例。R 称为召回率,表示所有正样本中,被模型正确

预测为正样本所占的比例。AP 称为平均精度,它反映了

模型的精确率和召回率,其值等于以精确率P 和召回率R
围成的P-R 曲线与坐标轴围成的面积。在本文中,通过平

均精度均值mAP 来衡量检测模型的总体性能,mAP 为鸟

巢和漂浮物的平均精度的平均值。由于AP 值的计算过程

中,需要考虑交并比(IoU)阈值,若IoU阈值较小,则检测

精确率P 较小,模型存在误检;若IoU阈值较大,则检测的

召回率R 较小,模型存在漏检。为了能够反映模型在宽松

定位要求下的综合性能,在本研究中模型的IoU阈值取值

为0.5。
除了与检测精度相关的评价指标外,本研究还包括参

数量(Params)、浮点运算量(FLOPs)以及帧率(FPS)。浮

点运算量表示模型在进行推理或训练时所需的浮点运算次

数,该指标反映了模型的复杂度,而参数量表示模型中可学

习的参数数量,参数量大的模型需要更多的存储空间来存

储模型参数,并且在训练和推理过程中需要消耗更多的计

算资源和时间。帧率表示模型每秒处理的图像帧数,模型

的帧率越高,意味着模型的检测速度越快。

4.3 注意力机制对比实验

  为验证本研究中加入的RFCA注意力机制的优越性,
在YOLOv8模型中的相同位置分别添加几种不同的注意

力机制进行对比实验,其结果如表3所示。

表3 不同注意力机制对比结果

Table
 

3 Comparison
 

results
 

of
 

different
 

attention
 

mechanisms
网络模型 P/% R/% mAP/%
YOLOv8 93.2 90.5 92.3

YOLOv8+SimAM 93.4 88.6 91.6
YOLOv8+CBAM 92.8 91.8 92.4
YOLOv8+CA 91.2 92.3 92.7
YOLOv8+RFCA 92.7 92.4 93.8

  从表3中可以看出,相较于注意力机制SimAM[19]、

CBAM[20]、CA[21]来说,RFCA 注意力机制对于 YOLOv8
模型的检测精度提升更加明显,模型的 mAP值达到了

93.8%。SimAM注意力机制在计算整张特征图的像素差

平均值时加权可能会忽略小目标的重要性,其感受野基于

整个特征图计算,可能无法很好地适应小目标尺度,在接触

网尺寸较小的异物检测任务中可能限制性能。CBAM 注

意力机制利用卷积计算空间注意力,然而卷积只能捕捉局

部关系,无法捕捉视觉任务中至关重要的长距离依赖关系。

CA注意力机制只关注空间特征,不能完全解决卷积核参

数共享的问题。相比之下,RFCA注意力机制能够使网络

模型关注感受野空间特征,提高网络模型对于异物区域的

关注度,为其分配更多注意力,抑制复杂背景对于特征提取

的干扰,对于检测模型的性能提升更加明显。
为了对比添加RFCA前后的YOLOv8模型对不同区

域的关注程度,采用 Grad-CAM[22]热力图进行可视化分

析,对比结果如图9所示。从图9(a)可以看出,在使用

YOLOv8模型检测接触网异物时,背景区域的噪声明显对

于异物检测产生了干扰;从图9(b)可以看出,YOLOv8模

型添加RFCA后,背景区域的噪声明显降低,网络模型提

高了对于接触网异物区域的关注度,表明添加RFCA注意

力机制的 YOLOv8模型具有更好的检测效果和抗干扰

能力。

图9 YOLOv8改进前后热力图对比

Fig.9 Comparison
 

of
 

heatmaps
 

of
 

YOLOv8
 

before
 

and
 

after
 

improvement

4.4 损失函数对比实验

  为了探究不同损失函数对检测算法性能的影响,在改

进YOLOv8的模型中分别采用CIoU、DIoU、SIoU以及不

同版本的 WIOU 损失函数进行对比实验,其结果如表4
所示。

表4 不同损失函数对比结果

Table
 

4 Comparison
 

results
 

of
 

different
 

loss
 

functions
%

损失函数 P R mAP
CIoU 92.9 92.1 93.5
DIoU 92.7 90.4 92.7
SIoU 93.7 91.5 93.8
WIoU

 

v1 93.2 92.2 94.3
WIoU

 

v2 95.1 89.4 93.4
WIoU

 

v3 93.5 92.8 95.1

  由表4的实验结果可知,当FRDW-YOLOv8模型采用

WIoU
 

v3损失函数时,网络模型的 mAP最高。当选用

CIoU损失函数时,假设预测框与真实框的长宽比相同,
式(4)中的α和v恒为0,LCIoU 无法被稳定表达。此外,距
离和长宽比等几何因素会加重对低质量样本的惩罚,从而
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降低模型的泛化能力。当选用DIoU损失函数时,由于仅

考虑了重叠面积和中心点距离,而没有考虑到预测框与真

实框的长宽比。当选用SIoU损失函数时,需要计算多个

损失函数并进行加权平均,计算过程相对复杂,可解释性较

差。WIoU
 

v3相较于 WIoU
 

v1、WIoU
 

v2以及其他的损失

函数来说,由于 WIoU
 

v3损失函数中采用了动态非单调聚

焦机制,为不同离群度的锚框动态分配梯度增益,可以更好

地提高模型的整体性能。

4.5 消融实验

  为了探究不同损失函数为验证各个改进模块对接触网

异物检测FRDW-YOLOv8模型的影响,本研究在自建数

据集上进行消融实验,其结果如表5所示。

表5 消融实验对比结果

Table
 

5 Comparison
 

results
 

of
 

ablation
 

experiment
模型 C2f-Faster RFCA Dysample WIoU

 

v3 mAP/% Params/M FLOPs/G FPS
YOLOv8 92.3 3.0 8.1 97.6
YOLOv8-A √ 90.7 2.6 7.0 115.5
YOLOv8-B √ √ 92.8 2.7 7.3 106.4
YOLOv8-C √ √ √ 93.5 2.7 7.3 101.2

FRDW-YOLOv8 √ √ √ √ 95.1 2.7 7.3 99.3

  注:“√”表示添加该模块。

  由表5可知,YOLOv8-A模型相较于 YOLOv8模型

来说,通过构建C2f-Faster模块替代原模型中的C2f模块,
使得模型的参数量和浮点运算量分别减少了13.3%以及

13.6%,而 mAP 只 下 降 了1.6%,且 FPS明 显 高 于 原

YOLOv8模型,说明此改进在不明显丢失检测精度的同时

极大程度地减少了网络模型的参数量以及计算量,并提升

了网络模型的推理速度。在 YOLOv8-A模型的基础上,

YOLOv8-B模型中引入了RFCA注意力机制,mAP值达

到了92.8%,相比于YOLOv8-A模型提高了2.1%,表明

在主干网络中添加RFCA注意力机制后,网络模型更加关

注接 触 网 上 的 异 物 区 域。YOLOv8-C 模 型 相 较 于

YOLOv8-B模型,采用了Dysample进行上采样,检测结果

的mAP提高了0.7%,证明Dysample能够在上采样过程

中保 留 更 多 的 细 节 信 息,提 高 模 型 的 检 测 精 度。对

YOLOv8-C模型的损失函数进行改进,将 CIoU 替换为

WIoU
 

v3,最终得到本研究改进后的FRDW-YOLOv8模

型,该 模 型 相 较 于 YOLOv8-C 模 型 的 mAP 值 提 高 了

1.6%,说明 WIoU
 

v3通过合理分配增益,有效提高了边框

回归精度。最终,FRDW-YOLOv8模型的 mAP达到了

95.1%,mAP相较于YOLOv8模型提升了2.8%,参数量

和计算量较YOLOv8模型分别减少10.0%和9.9%,而且

FPS提高了1.7%。综合结果表明,本文的改进策略不仅

使得网络模型更加轻量化,而且网络模型的检测精度和检

测速度也得到一定程度的提升,能够更好地对接触网异物

进行检测。

YOLOv8模型与FRDW-YOLOv8模型训练过程中的

mAP变化曲线如图10所示,从图像中可以看出,FRDW-
YOLOv8的mAP变化曲线整体更加平滑,而且其 mAP
变化曲线趋于稳定后,mAP值也更大。

4.6 不同检测模型的性能对比

  为了进一步验证FRDW-YOLOv8模型的优越性,本

图10 mAP变化曲线

Fig.10 mAP
 

variation
 

curve

研 究 选 取 Faster-RCNN[23]、YOLOv5s、YOLOv7-tiny、

YOLOv8n、RT-DETR[24]、YOLOv10n[25]、YOLOv11n[26]

以及 YOLOv12n[27]与本文提出的FRDW-YOLOv8检测

模型进行对比实验,实验结果如表6所示。

表6 不同检测模型对比结果

Table
 

6 Comparison
 

results
 

of
 

different
 

detection
 

models
模型 mAP/% Params/M FPS

Faster-RCNN 78.6 136.7 28.9
YOLOv5s 90.8 7.0 83.5
YOLOv7-tiny 90.1 6.2 90.8
YOLOv8n 92.3 3.0 97.6
RT-DETR 91.8 20.0 68.3
YOLOv10n 91.5 2.7 87.1
YOLOv11n 92.6 2.6 108.4
YOLOv12n 93.2 2.6 103.8

FRDW-YOLOv8 95.1 2.7 99.3
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  从 表 6 可 以 看 出,FRDW-YOLOv8 模 型 相 较 于

Faster-RCNN、YOLOv5s、YOLOv7-tiny、YOLOv8n以及

RT-DETR模型来说,FRDW-YOLOv8模型的参数量相对

较少,检 测 精 度 更 高,而 且 检 测 速 度 也 更 快。FRDW-
YOLOv8与 YOLOv10n网络模型的参数量相差不大,但
是该模 型 的 检 测 精 度 和 检 测 速 度 都 优 于 YOLOv10。

FRDW-YOLOv8与 YOLOv11n和 YOLOv12n网络模型

相 比,虽 然 该 模 型 的 检 测 速 度 稍 不 及 YOLOv11n 和

YOLOv12n网络模型,但是FRDW-YOLOv8模型的检测

精 度 明 显 更 高,且 模 型 的 参 数 量 与 YOLOv11n 以 及

YOLOv12n模型比较接近,说明FRDW-YOLOv8模型能

够较 好 地 进 行 边 缘 化 部 署。综 上 结 果 表 明,FRDW-
YOLOv8模型能够更好地兼顾检测精度与模型的权重大

小,更加适合于接触网异物的检测。

4.7 实验结果可视化

  为了更加直观地展示FRDW-YOLOv8模型的检测效

果,将YOLOv8模型与FRDW-YOLOv8模型对接触网异

物的检测结果进行对比,结果如图11所示。

图11 不同模型检测结果对比

Fig.11 Comparison
 

of
 

detection
 

results
 

from
 

different
 

models

在图11(a)中,YOLOv8模型将接触网支柱顶端误检

为了接触网异物;当图像中异物尺寸较小时,YOLOv8网

络模型存在漏检现象。而FRDW-YOLOv8模型检测结果

如图11(b)所示,FRDW-YOLOv8模型能够有效降低误检

率和漏检率,对接触网上的异物进行准确识别。此外,从
图11(a)和(b)中可以看出,当接触网异物特征较为明显

时,YOLOv8模型和FRDW-YOLOv8模型均能对接触网

异物进行有效检测,但FRDW-YOLOv8模型的检测置信

度明显更高。

5 结  论

  本文提出了一种基于FRDW-YOLOv8的接触网异物

检测算法。创新点包含以下4个方面:在原YOLOv8模型

的主干 部 分,本 文 引 入 了 FasterNet,通 过 构 建 的 C2f-
Faster模块替换C2f,明显降低了网络模型的复杂度,并提

升了网络模型的推理速度;其次,在特征提取阶段引入

RFCA注意力模块,提高模型对于接触网异物区域的关注

度,为其分配更多注意力,增强了主干网络的特征提取能

力;然后,利用Dysample进行上采样,可以保留接触网异

物更多的细节信息,提高了网络模型对于较小尺寸异物的

检测能力;最后,采用 WIoU
 

v3损失函数优化模型,通过为

锚框动态分配梯度增益,提高检测模型的整体性能。实验

结果表明,FRDW-YOLOv8模型在自建数据集上对接触

网异物检测的mAP值达到95.1%,相较于原YOLOv8模

型提升了2.8%。此外,参数量和计算量较YOLOv8模型

分别减少10.0%和9.9%,且FPS提升了1.7%。因此,

YOLO-FRDW模型不仅拥有较好的检测速度和更高的检

测精度,而且该模型具有轻量化特性,有利于网络模型的

实际部署。在未来的科研工作中,将进一步扩充原始数据

集,收集更多类别的接触网异物用于网络模型的训练,旨
在增强模型的鲁棒性,持续优化模型的检测能力。
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