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Improved YOLOVS for foreign object detection in catenary systems
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Abstract: Aiming at the problems of low detection accuracy and large model size existing in the current foreign object
detection algorithms for railway catenaries, this study proposes a foreign object detection algorithm for catenaries
(FRDW-YOLOvV8) based on the improved YOLOvS8. Firstly, we propose the integration of a FasterNet module into
the backbone network to construct the C2f-Faster module, which effectively reduces model complexity and enhances
computational efficiency. Secondly, the Receptive-Field Coordinate Attention mechanism (RFCA) is introduced in the
feature extraction stage to increase the model’s attention to the foreign object areas of the catenary and allocate more
attention to them. Then. a dynamic upsampler (Dysample) is adopted in the neck network, which can retain more
detailed information of the foreign objects on the catenary. Finally, the WloU v3 loss function is used to improve the
overall performance of the detection model by dynamically adjusting the weight factors. The experimental results show
that the mAP value of the improved algorithm reaches 95. 1% , which is 2. 8% higher than that of the YOLOvS model,
and the floating-point operations and the number of parameters of the model are only 7.3 G and 2.7 M respectively.
The improved algorithm further improves the detection accuracy of the model and makes the model lightweight. It fully
demonstrates that the detection performance of the improved algorithm is superior to the current mainstream
algorithms and can better complete the task of detecting foreign objects on railway catenaries.

Keywords: foreign objects on the catenary;target detection;attention mechanism; YOLOv8;loss function

0 3| R IE 7 28 A 2 R b I P OR T L ket
Al PO 1 A R 5 B e 2 L ORS00 9 %2 4 L T s
W2 R S 300 0 B AN A2 R R D DR BEPE T A7 DA O . R ol IS0 S 0 O R G B T

il

W5 H 1 .2025-03-24
x B4 H L ob E E SRk B A A R 2 B 4R L IR A (Q2023T002) i il 4 H /R H A X H AR B # 4 (2022D01C693) 3 H % B

+ 153 -



948 & 2 F o

T # K

S A Sl R 2R I s A IS IN AR R Xk
TR o P ) SRR VF i 45 S W 0 AT SIS O R O R R AR
WL,

B 0 B 2 ik D 1 B A A I 9 D R A A
T W9, 7615 50 EAR AR I J7 T . B I 0E 4507 1 S 2
B 5, 85 X8R 1 HOG $RAE . 2R 5 38 3 I 2545 1) SVM AR 38 %
B HOG FRAE AT RS B B2 B, 11 3800 1 19 BE X 3R
SR HOG X Rl B2 01 2% 86 B2 U7 1) 45 K 2 4R AE , B = X [
g4 )5 TR SCH @ BTRE )L RIS B Ik, Wi SVM
DIAb 3 AT J AR 4 M 0 B o e RO A% R BB S 1) 8 A s ]
A RS e LSRR AT B o 0T T 42 i X L S5 4G T 7y 52 B M R 2
PR 1 el Sobel 146 I 15 10 31 %% L 35 45 18
ab A I A o XoF [R5 v A R R R AT R T L B e 6T LR AE
A A B AR B £ DX TR R A9 b X R R B ET R
W, SR Sobel 35X T 12 fk 1 [ 45 75 57 M s BUIRR , 10 4k K
W25 3R 5 Z BE RG], v iE S BUA G AN ELS S h il 4%,
M 5 A AR B 55 T 8 iz 2, M DLIE B % IR AR A sl &2 2% 5
ST G A 6 X 7 L R0 T R R, S SRR
KN AR A 5 530 HE 0 R 8 o8 U A, A DR B R AR, It
Ak s Sobel | 78 K A8 e A1 A8 1k Ab BT 4 20 TF SR R R
18, T R SR, Wa &N HOS F1 HLS i
J7 VL 3 7 A 0 B 1) AR R 4% B0 el AN BE 4y AR 5 AL
SVM #EAT B, X 4 ik 1 19 1 81 5 W e A7 A0, 4R T B
J7 53 FBCR SVM A2 bR B 10 358 436 X0 Az ) &5 2 52 ) A K
TERE N TS, H, B 7 B 5 58 5% 08
TC vk AR 1 555 PR () 1 SCORTR , 5 B I A B A7 AR 1R A
BN, SVM e BE 5 5 e FRAE T M LUIAT 0 3, A6z ) 52 s
P2, BRI R R A% 6 04 G R: T 7 2 Mgt N T3 T RE
TE T FLAL 5t 14 R AG I T 32 X 422 o 0 PRI A5 i 7 L S ) R~
A Ak B AR SR, e = 1 SCER RN R SCEER BE L R AR
255 R AGRG 0 7 1k o) 43 fike IO S5 0 %) R A 3R R U ARG SRR B v L K
TR BE B2 B AR R A% B R DN ik P A 8 5 0 A R A
D ARR A AE T R RCRAR S Bl 5L JO IS T ek R S
WG 0 S B B SR R i 1 37 5

AR IR 24 2T 1Y — F 50 B vk A 4 Al ) S W A
WP R T RERSEED, i SSDY  YOLO™ 4, B 3
B i K-means B k20t SSD W4 i 5 56 1 % &, I 51
A I8 A o T 4% 235 4, DT i e TR0 4 XoF 42 ik ) S )
FRAE (9 2 BURE J7, SR T K-means XF %) 4f 2 2 o0 0%, AT
e BUE A B AE RS 40 A AN 3 4, 0 B9 1 AL 3
Rz T R AR B R S SEE L AN . B 5T S
AR, S A HOE DL 32 . v BE R BORA P R . B A
SN SSD B E M TR E . 51 A MobileNetV3 i F 41k 42
B, it TR AE Al A S e EE A SSD R RRAE 2 . T ik
/N BARERFA IR, SR T SSD K i &2 R R AE P T
MobileNetV3 B ¥ )2 F#1E 43 B % 1AL, W] 68 7 B H A5 5F
TEER M AR DIARE B . Zhao RN T —Fh EF

o 154 -

SCH | DOCRE 30 4 A A RS A R R A AU T TR X
RGN S 8 IRk T K R R 2 R ATI
AR D R PR RE b R R o1 5 % R, B o R R B, AR T A
RIFPGIR T Z AR AR 3G T AL G S50 B S B
A 2 ARRE T R, BUORNE TR A i R 8. S8 A
PRI T AT YOLOVT sk 1 1) 2% 45 9 367 42 fi
Do) S5 ARG o S A TR o A K B N R B
BT 4R T, SR AR R (9 S HCR B AR TR S B TR

JAE BT PR 0 T 2 Ml D S g A U S AR T 4 A BB
H W HE R A2 22 500 58 B X 42 i I i) 1 S 8 47 R
VTR T T 5 G 042 ik P ) VR ) A AL S . ISt
2P P 2R 3 ok P S A R B A7 AE S R R R
YA R DDA R AV 1 T R, TG vk 5 A b S A R T A 7Y 14 AL
ER/ANGEMAGEE . T P S i A, A8 SO — Fh
Tk YOLOVS™ iy 4 filh 1 57 4 K& W 55 ¥ FRDW-
YOLOv8, FRDW-YOLOv8 % 6 £ 1 W 25 C2f e rh
1Y Bottleneck ##i -}y FasterNet™'™ , DT #4 & H C2f-Faster
R, R AR B S0 A 5 o s LUk, 76 RRAE $2 B BE 5
A B 37 B A R 1 B T ML Creceptive-field coordinate
attention, RFECA)™", ¥ HY K 32 BF A6 b3 1 & 1 6 BUBE B
(RFCAConv) , £ = A5 15 5% 4 ok 90 55 4 DX 3l 1) OG0 L Oy
AT BT 20 B 1885 FE 300 W 45 R R 8 A LR 2%
(dynamic upsampler,Dysample) ™™,y /b | R ¢ i 72 v &
BANTT I E R s B i Wise-ToU v3(WIoU v3) ™ $i 2k
PR B AR AR TR, A8 300 FRATE [0 U1 1 D R SR 4 v A AR 1) A
M HEgE .

1 FRDW-YOLOvS [ %% Z2#4

£ YOLOv8 ) £ £ W 4% 1, YOLOv8n # 8 +
YOLOv8s, YOLOv8m, YOLOv8l Bl & YOLOv8x 3k i,
YOLOv8n fF & M5 e I 8 4>, R, YOLOvSn Ry 45 14
AT 7 BRL L AN YR B0R 08 i, T LK S S ik B T R
M, B 2R A T R R Gk R e R
HZE AP EH YOLOvSn VE N SEqERI R,

FRDW-YOLOvS Mg an &l 1 fros . AR %54 |
Hi A2 (Input) , F T M 4% (Backbone) | 35 #B M 4% (Neck) . ¥
W3k (Head) BT ¥4 18 . Hin A JZ 670 57 422 050 705 A6 00 494 2% fih o9
PG FE T H AT WAL B 32 N 45 67 DT R A A A
AT BRI 5 S50 190 46 Xof AS i) R (8RR A T 06 A7 45 5 4 0 sk g
Bl B 5 W A AT 40 SR BT U L B o1 R 28 (R A ) 4

2 YOLOVvS 1 8 5 3 5% B&

2.1 ## C2f-Faster 1R

T YOLOvS H1 1 Bottleneck K #i 22 Ik % 1 Hil 5 |2
B 15 YOLOVS BB S8t Fit ek, AT
T AR Y ST PR TR AR AR T I Al AR AT



I F A TR YOLOVS 8945 ik M S+ 4 4l JE %

a :
/|
: T }
/| 1!
1 i
1 i
1 y i
—>  Concat CBS |
| 1 |
| ess |
i : | !
! RECAConv | —>  Concat
i ! Dysample
1
i C2fFaster |
I 1
I 1
1 ! v
i RECECon i Caf > Detect
! ] C2f
| C2fFaster —
1
! i
| RECAConv | '
i ! CBS
i C2f-Faster —é—-» Concat —
! i
i RECAConv i
! ] Concat
: l ! Dysample
| C2fFaster |
i :
i E C2f > Detect
\_ Backbone /: . Neck /’, Head
B 1 FRDW-YOLOvS £ #1 2% k4 &l
Fig. 1 Structure diagram of the FRDW-YOLOv8 model

¥ YOLOvS T W % s C2f L3 (1 Bottleneck 5 4t hy
FasterNet, )\ 1fij #) & i C2{-Faster i3, FasterNet i it
1138 2 % X (partial convolution, PConv) ™™, 3 /> TU 4% 1
SRR PN AU ) 38 5 O T T 43 B R A R IDUT |, L6 ORUIE
FRIE K RE 7 /4 [R) It 3 AR TR AL Y 2 B DL Kit
ik,

PConv i TAE BN 2Ca) BT 7 AR 50 A F i 4
iE L 118 33 S O ] R o 43 300 2R 7 REALE TR 14 v B 5
k RN KA, cp F7R PConv Y iE iE 4. PConv Y
FLOPs N h X w X k" Xcp®s M cp = ¢/4 B, PConv 1Y
FLOPs fU g hr e Y 1/16., 1 oh, PConv 1Y N 471 7] &
HhXwX2cp+h*Xep'x~hXwX2cp, Hep=c/40},
PConv I N AE V5 ] T AU AR E S TR 1/4.,

K 2(b) B/~ T FasterNet 4514 &, FasterNet i — >
PConv J2, LR FIAS 1X 1 % B2 B 20 0, vl i) Bk 2% 3% 42
AT EEME M ARIE. Btk i 1xX1 HRZ
ZJ5 N R H — 102 A 2 AR R RRAE 2 AR PR IR SE LR
TR HE IR
2.2 S| X\ RFCA FEAHLH

M T YOLOVS =1 9 2% 1 b o 45 BUER AR 45 ey
AR )7 B 1 FRAE 2 H0R: [ 8 1Y A7 AL B BRI S 8 2 1 1)
R Yl AT SR O B L YOLOVS 3£ T W 45 Ak o 45

(a) PConv

(b) FasterNet

¥l 2 FasterNet 5 PConv 454 &

Fig. 2 Structure diagrams of FasterNet and PConv

R 25 BURZ AR AN W) 1) JE% 32 55 o (fF A ) 1) 2 BB ORI 15
B TR SR RS R B A RRAE 22 57, (0 45 4G 0 A AR 1 B U
TR B BLGL B AR T 5 T B2 Ak I S 4 (0 R A B2 . oA
T 0 X AN RO E A RRAE EAT A AR L, 7 A R
TS| AR B A BR T B ) RECA, A4 g 2 BT AR bR 1 2
J14 L RFCAConv B8, FI T8 i 32 T W 45 h 0945 i 45 1
CBS B R bR T BB S I =i ),
RFCAConv [ M4 25 an1E 3 it . B SR E R
PR SRR A 14 B 32 BT s )RR AIE B IR 1) AR OF 45 B 5 oA
FRAE X, TR 05 R RRAE P 58 R B AR S RO K %,
I A R R 37 W 4 (R AIE kA T B AR S B EE 1 0] R, A
7 6 0% 46 3 A A28 MR AEAS BT 300 A . SR e I
G R B AL R 4 A (R A S A5 B — X R A AR IR .
BeiEEREE . 2t 11X MRS B —A b R R
TV 2 i) 24 B H ) R AE P43 10 A ST 0 ke L R R
A IX1 BRERAE MRS X Ba MRS ER T,
BORE A Bk BETE AR AL R ) I P AR B L AR S

Input CxHxW

Group Conv |CK2x H x W

Norm + ReLU [CK2x H x W

Adjust Shape

RFCA

Cx KH x KW

W AvgPool |C x KH x 1

H AvgPool | |

| Concat + Conv |1 < (KW+KH)

|
I Norm + Non Linear l(','/r x1x (KW+KH):

3y Split v

(,'XIXKWl Conv | I Conv I(,‘XKHXl

C x1|<Kkw | Sigmoid ]

|
|
|
|
[ sigmoid | € xKkH x1 !
|
|
|
|

e

Output

3 RFECAConv 15t 45 4 [&

Fig. 3 Structure diagram of the RFCAConv module

+ 155 -



%48 % v F oM & OH K
o T B 5K T A T 5 7 TR I T80 R 7 2 [ % G o FO——
DL R AT . AT K K K XK B -,
B ARSI 15 . .
RFCA T 75 1 850 3 815 B it A 38 7 28 7 e L Tawr o P
B % 1 7 30 T 52 3 A o (75 0 4% 50 7 4 T 48 B o
I 5 A T AR A

9 B3 0 G G v 0 S Xk, A YRR 2R

2.3 R H Dysample Zh75 EF#

FE YOLOVS F IR v , {5 T 85 3 <08 47 {75 A o BRA
b SRME T TR A R LURE R ) 5 AT R A
MR % R B REE 22 5%, — B e T LoREESH0, W L
FEA R 0 R AT 55 th AT 0GR A . T B b iy 42 ik
W 5 R SH B SR — T RE 43 10 IR 38 0k 46 1) A, 2 30
TE b SRR I AR v G A0 B 3 % 45 T 4% A5 TR Ay 0 A
TWe. RTRRIGXARE, A LG A—Fhm R ER A
B Eh 7S bR EESS Dysample, Hil D 7E T R EE M E &
AR bR AT R T A R Y R ARG R R, AT 15
W8 A ITE EoRAEE TP IR EZ AT E B 4R A
)G 3000 A E

Dysample E’Jﬂéﬁ Sita R E 4 s, A% BRI R
BAE SR RS R R X FISRFELE S, H A RRE A

X 2L *:"ﬁfﬁﬁijﬂﬁéiﬁﬁ@ S SR 5 HE BN 25 TR Y SR

o i K 7 SR R AE R BB R AR X, B,

X' = grid_sample(X,S) @)

RORFEA AR INE 5 F1 6 i, LLE S i E T
SRAFETT IR R, 35 45 0 FRAE B X RN ERASYE B A 2 0. 25,
TR R LR ENME R O. 2GR EBG,
KA S AMBH O 5IEERFEMNE G ZHL R,

O = 0. 25linear (X) (2)

S=G+0 (3)

S B (D) H R RS SR A PR BT DL AR b SRR
FEAE X, DO SE OB B A bR RE. Gl X 2 A BR,
Dysample Z&i8 T 5 T N 0820, I SCRAE B £ B il
KA I H AT LUE 1 PyTorch 1 b oE P B oA B0 b 52 BEL
REA ZUEE & 1 R RORG b e

PR S

o 2 | —’l-
T C

K4

ey gad

Kl 4 Dysample 5 # &
Fig.4 Structure diagram of the Dysample

2.4 RUBmEEH
YOLOvS B8 b iy 451 25 s BCR AT T CloU, Kot 2R ME
FRWMF .
(x—x)+ (y—y)°
L(,‘IHU =1— 2 2
W*+H")

H, Ry FRARZEIFIL; W H R HE 5 H S HE fir
* 156 -

R, + +av (4

Fig. 5 Static range factor point sampler

2g
F 2&‘2 % @?sH N

BhATEE HE T

B o w 2102 sw 28
s
6 A P RUR R AR A

Fig. 6 Dynamic range factor point sampler

Bl B4 dre /N SMHEAE B AR B AL s o, Ly, SR FCSIEHE HoCs ) A
PRAE s o JEEIE DN AR AR K B L) — 2t s o« D8 -1
SR o o W EARITH S T7 050008

O 5

1—Ru) +wv

w w
v = — (arctan — — arctan —)" (6)
T h

1,

b, w Fh 43503
R BLHE R SR

H AT G B Ml X 55 40 1) 28 T B8 4 45 b s 0 R LG
K B R AR AU R B oo S A A — T R A,
A TE 2 fi ) S g A o A vp 2R A Y OLOv8 BRI Y 451 2K bR
% CloU, W 71 T4 B 2 R K 5 bb 45 JLART PR 25 4 fin 2 6 IR o
SRR A AEST , DT R ARASE AL ARG RS B . A L, FEAR B 5T
R WIoU v3 812k v 8, a8 i 32 1 3l A 3R 20 08 A 3R A2 L
il 1B R B ToU XA AE HE A7 JR S0P L ORI 1L T

7 T AE /) 56 TS5 5 o, AR, 4390

BRI B0 1 AR A AR . BRI AT .
Lwius = 7 ¢ Lwiua 7
Lwiva = Rwiu * Liv €)]
—x )+ (y—y)°
RWII -
exp( W LHY ) €))

F{EF" RWI.,U S [1,6), /\'{ E%‘ﬁij‘iﬁ E%HH:E/J
Loos r MAERBRER HER N,

rzsj;a (10)
Hrp, o fle ABSEL.Hp=00,r=1, XBEBB
B:L;"” € [0, +o) (11)

ToU

HAf, Lo B Lo BHEEI TS Lo 6 R 450
BT Lo BRSNS A L BHE £ 0 40 b R B A YL 5



I FATa

YOLOvS 9 3% fik W 7 49 %)

5 23 i

ek Ay AN TR S R JBE A E 0 25 03 WE A B2 348 £, AN FRAIR T

Jo ek G AE B0 S A 0 T EL A TR S RE AR B A
BE R ZAEAT WIoU T LS #5132 5 J57 & 114 4 HE M T
A g 00 245 AR £ ARG UK BE

3 HEKY RSHELRE

3.1 BEEYT R

A SCRARAE S B A A R B B R AR BB S A
ik PR 55 1) AR 658 Tk, T4 TR 45 8040 S VR T 51 4 1) 1 45
S R 2 ARG B (C2) . i TR BOE B, B AR
FUNGRJE MR et BT A B4 . TR 4L
P AL A T 2 18 UAE B, AR SO IR AR R 40t 8 L e
B BB U SE BT DL O I 7 AR Oy AT AR R B
FeE BRI 2 890 K, EATEMG MY A RN E 7
B, SRJ5 .10 Labellmg T EL X422 fil I B 45 b Y 2292 )
(floater) F1 % i (nest) W HEAT R IR H IR 8+ 1 1AY LL il
R I Zh g e 4 DA R iR 4k

(b) F#
(b) Translation

(a) R

(a) Original image

(d) iR
(d) Mirroring

(c) hefe
(c) Rotation

(F) B S
(f) Add noise

K7 EGRY sere il

Fig. 7 Augmented image sample diagram

(e) HERE
(e) Adjust brightness

3.2 HiEiEsE
TS SO ) 22 R DL AR TR A i L IR
[ 28 455 0 3t T /N RS S W RO R U BE 7 . 72 FRDW-YOLOvS

1Y Input JZ2 5] A Mosaic 3 5 £ AR X} 8 4% i3k
Mosaic %53 5 3R A& 8 s .

I g e
S

Bl 8 Mosaic FHE 3 i SR K

Fig. 8 Mosaic data augmentation renderings

1 WAL 2,

i BE AL I 4 5K R HE AT DF 12 615 4 45 )5 19 B2
BEART I Z AL . BRJS B0 BBoh B B & 2 425 10
T 0 25 AR ARG I A R B A AR R BN RE .
4b  Mosaic H 58 J5 19 B8 b A 3 2 A R RCE Y H b 3
T i v A RS /N RUST S 0 ) G 0 g

4 IXWERSHN

4.1 EWINSGSBRAERE

B FA ST AR REAS 50, Ho A B4 ol T
AR RN LRI 30 A5 8 4 (14400 R P e R e g A e
TEA SO SR FE 7 R AL L B COCO B4 4 Tl 45 19
YOLOv8n. pt AL SCHAE J BRI R AN T, IO £ 455 U 4)1| 5k
B S NGRS E AR L Ay N3 1/ 2 fis .

x1 ZHIN%SH

Table 1 Experimental training parameters
24 ZHa
i A BB RAE 640X 640
Pl GR] 200
R 16
Pl 2] R 0.01
U 3 9 A KL 0.000 5
2N T 0.937

2 THMERE
Table 2 Experimental environment configuration
WA AR B 37 5%
#4E A% Ubuntu 20. 04  CPU:AMD EPYC 9654 96-Core
LT H WA : Python 3.8  GPU:RTX 4090(24 GB) X1
W2 S HEAL . PyTorch 1.11.0
fn# A8 . CUDA 11. 3

4.2 HFMHIER
A B 5% % T B il X S AR RUIR T DL SR AR
o
TP

= 0

P T Fp X100 % a2
B TP 0

R = op N X 100% (13)

o 157 -



T # K

o548 4 A S|
1

AP:JP<R>dR><1oo% (14

mAP = - SVAP, % 100% (15)

Hodp, TP FoR B IE 8 1Y IE R AR, N R 00
R SRR AN B, FP 3278 O 45 1R 19 IE AR AR

P FRNRE 0, 68 B0 A 1E AR A b 52 B Oy 1 FF AR i
BB . R R A 18R, FoR BT A IEREA o, 1455 280 1
T R IEAREA BT (5 B LB, AP FRMEXIRE . B T
RS B R A E mR, HE S T LUK 3 P FIE M4 R
FEIBLAY P-R M4 5 A bl B Sc i Th AR . A6 AR 3o, 58 5 °F
VIRG BEYE mAP SR ARG &R A A 1 SR BB . mAP h 5
FMEIFY RSN TEHME, BT AP HWIHE T RE
o, SR BRI L (ToUD BI{H , %5 ToU BI{A B/, A
K P #5/N AR R AE R 75 ToU BB 5, DG Yl
IR R BN BRI AE T A . A T BEAE I IR AL 7E BE A
FENLBOR TN ISR G TR TE AR B SE AR T ) ToU [ (H HR(E
0.5,

B T 5 K6 0K B A 56 1 BEAR HR AR AL . R B ST S S
Btk (Params) 7% A58 i (FLOPs) B K i & (FPS) . ¥F
L da B R R AR AR AT B B I N BT BT S s B IR
B AR PR O T BB 5 2R B T S A SRR B rhR] A
SIS EEE , S8R R WA R 5 BL 5 2 (1 1746 25 8] R 77
BRI B8, 3 HLAE I 25 0 HE B A s B A O 2 i
SGEUR AN [, T R s A A 4 B Ak B TR AR T A A AR
F4) i 3 1 T PR A TR (9 A U S
4.3 FEANFIS L LI

JPWAEAS A SE TP A B RECA T 2 J1 HL 1 0 1 ek
TE YOLOvS R i i #7 [7] 457 & 43 513 i JLFPAS 6] 19 3 &
FIRL AT T b S g, A5 R N3 3 B,

R3I FEEBANFINELER

Table 3 Comparison results of different attention mechanisms

VA 2% A 72l P/% R/ % mAP/%
YOLOv8 93.2 90.5 92.3
YOLOv8+SimAM 93. 4 88. 6 91. 6
YOLOv8+CBAM 92. 8 91.8 92. 4
YOLOv8+CA 91.2 92.3 92.7
YOLOv8+RFCA 92.7 92.4 93.8

M 3 AT LA B T3 ALH SimAM!
CBAM™ [CA™ 3k i, RFCA £ & S HLHI ¥ T YOLOvS
AR (g A6 00 A B B T O R, B ) mAP ik E] T
93.8% . SimAM VE & 7 LI 75 1155 4% 5K AR 1E 16 IR R 22
YA INAL T RE S 20 /N B AR B0, R Z BT
AL EITT R 0T B8 TC VA R S b 3E 1 B AR RUBE , 7 45 ik
P RS 45 /0N 11 55 0 G A 55 b vl RE B il 4 B . CBAM ¥
BAVHF BB 2 BEE T R W6 N aeiE R

+ 158 -

TR, TR MR AT &5 P B EE K IE B IR E R .
CA R S HLH R 28 [ARRAE , A g 2 ik B RS
AL R, M2 T RECA & & 1AL A 4% 8 W 4%
BRI G R A7 BT 2 ) R AIE , B2 150 ) 4% B 260 6 55 4 X807
ORVE B, Ry 4 BT 227 3 7 I B 25 S X TR AT $2 B
4 I o e 6 00 A 78 ) 2 B T S A

J TR LEE I RFCA i J5 19 YOLOvS H5 5 X A 7] [X.
WS E L BT, R A Grad-CAM™ #4 g & #t 47 v WAk 4
Broxr e g5 R el 9 fron, M 9 Ca) AT LLFE i, ZE 48
Y OLOvS B0 0 42 fk ) 53 490 B, 5 o DX 3 e 75 1) 0 %
TR =4 T T3 B 9(b) AT LA H, YOLOVS B
BURIN RFCA J5 , 1 5% DX 000 5 75 B b R I ) 6% A 80 42
1R TRl OO S DX B DG 1 B, RS I RFCA &
FIHLENH YOLOvS #5838 B A T8 4 04 A6 T 280 R F 4 T 41

b
He /T o

(a) YOLOVS (b) YOLOv8+RFCA
Bl 9 YOLOv8 stk g #4 41 B Xt e

Fig. 9 Comparison of heatmaps of YOLOvVS8 before and

after improvement
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Table 4 Comparison results of different loss functions

%
155 R AL P R mAP
CloU 92.9 92.1 93.5
DIoU 92.7 90. 4 92.7
SloU 93.7 91.5 93.8
WIoU vl 93.2 92.2 94.3
WioU v2 95.1 89. 4 93. 4
WIloU v3 93.5 92.8 95.1
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Table 5 Comparison results of ablation experiment
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Fig. 10  mAP variation curve
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Table 6 Comparison results of different detection models

il mAP/ % Params/M FPS
Faster-RCNN 78.6 136. 7 28.9
YOLOvS5s 90. 8 7.0 83.5
YOLOv7-tiny 90. 1 6.2 90. 8
YOLOv8n 92.3 3.0 97.6
RT-DETR 91.8 20.0 68.3
YOLOv10n 91.5 2.7 87.1
YOLOvlln 92.6 2.6 108. 4
YOLOv12n 93.2 2.6 103. 8
FRDW-YOLOvS8 95.1 2.7 99.3
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