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Review of the research of heat flux measurement techniques
for hypersonic aircraft

Zhang Yuqin Jiang Hongna Zhang Xiaofei
(Chinese Flight Test Establishment,Xi'an 710089, China)

Abstract: Heat flux density, as a key parameter for evaluating the thermal environment in hypersonic flight tests, plays
an extremely important role in assessing the performance of aircraft and ensuring flight safety. Focus on overview of
the main heat flux measurement methods currently used in aerospace hypersonic tests, including contact sensors such
as thin-film and coaxial thermocouples, as well as optical methods such as infrared and phosphorescence. Elaborates on
the basic principles, technical features, and application practices of each method in domestic and international
significant hypersonic tests. Summarizes the applicability, advantages, and limitations of different heat flux
measurement techniques in complex scenarios and conditions of flight tests, point out the key engineering and technical
challenges that still need to be addressed. Additionally, it analyzes the challenges faced by heat flux measurement
technologies in medium and long-duration hypersonic flights and proposes suggestions for future research directions,
providing a certain reference for subsequent heat flux density measurements in flight tests.
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Fig. 1 Schematic diagram of thin-film heat flow sensor

Bl 1

[5]

2) [ Bl A A SR A

[ At A v A 3 2 ol A0 IR AP AR BRI A 2L R, P9 b
PR 2 ) e B 4 5 2 AT L RS G (AN 2 ) Ll
Tk Ak SRR RS ECFT ) (0 G 3 TG 5 e AT A AT . 2 %
Ui v A A e A BORM £ R i 1 SR AR i . AR 1R AR
A e A ) R B R A A A AR 5K C6) HE AT R RO
B oh TR DN i R I T ) 7 L A G B £
i JEE M 87 I 18] 45 A - 2 T ) ol AR BT R i 2R R R
J3E 5 90 £ Wi 7 o ] %5 U7 A S TR TR S g g 7 bR ] AR
FEL A 5 I 2544 14 A A A e D T 2 2 ) A O % EE S (1)
MR E R R,

AR
HEIR

(7] ol 24 1 65 ) 7S T A

POL:Y
& 2

Fig. 2 Schematic diagram of coaxial thermocouple structure
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Fig. 3 Schematic diagram of built-in heat flow sensor
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Fig. 4 Schematic diagram of the principle of infrared radiation heat flux testing
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Fig. 5 Laser-induced phosphorescence thermal flow testing sschematic diagram
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