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Parafoil trajectory tracking control under switching system
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Abstract: This paper proposes a theory of parafoil flight trajectory tracking control based on switching systems, which
adopts a control method of switching between linear active disturbance rejection control and proportional integral
derivative controller. The linear active disturbance rejection control has fast response speed and strong anti-interference
ability, and the proportional integral derivative controller relies on error signals to achieve basic control. Switching
control is adopted to track and control the azimuth angle of a given reference trajectory; in the switching system, it is
determined whether to switch to the corresponding controller based on whether the given reference trajectory is a
straight flight, whether the given turning radius of the flight trajectory changes, and so on. The simulation results

show that compared with any single control, the switching system has more advantages and better tracking control
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performance on the flight trajectory.
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Fig. 1 Parafoil coordinate system
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Fig. 2 Control block diagram
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Table 1 Stability time, maximum forward error and

maximum lateral error of the parafoil
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