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Multi-scale balanced regularization method for adversarial patch attacks

Xie Jiale'® Zhao Yuxi' Wang Ruo'

(1. Chinese Aeronautical Establishment,Beijing 100086, China;2. Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China)

Zeng Nianyin®

Abstract: Object detection models are markedly vulnerable to adversarial patches, posing serious safety risks to
applications such as autonomous driving and security surveillance. Although transfer-based black-box attacks have
made progress, they often suffer from poor cross-model transferability and uneven suppression across multi-scale
detection heads. To address these issues, we propose MSBR for adversarial patch attacks. During patch training,
MSBR explicitly regularizes the variance of confidence outputs across different detection scales, thereby enforcing
consistent suppression of targets at multiple scales, mitigating scale-wise imbalance, and substantially improving cross-
model transferability. Experiments on several mainstream detectors show that our method maintains strong attack
success rates while outperforming representative approaches (e. g. T-SEA) in black-box transfer performance.
demonstrating the practical effectiveness of MSBR. This work provides a new perspective for designing adversarial
patch attacks against complex multi-scale detection architectures.
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Fig. 1 Qualitative comparison between T-SEA and MSBR
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Algorithm: MSBR Patch Optimization(per iteration)

Insfw M.BS.,T,t,h,S,MSBR .\
1. <7,

2 for cachi € [1,M ] do

Require:x, ,***

N
for each j = " do

5 BS
4 X <Sxo1ypsi1 s Tjops
5: bbox ™" ycon f ", raw ™" < £, (X)
6: X““<=T (X ,bbox™" ,r)
7: bbox“” scon f ““ yraw”<=f ,(X“)
8: loss<=Auvg (con f ““) +A « MSBR (raw"")
9: <k (z,loss)
10: end for
11: update [rvia S
12:  end for
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Table 1 Overall attack performance on the INRIA
Person dataset

e AdvPatch T-SEA MSBR(ours)

YOLOv2 51.85 31.02 29. 34

YOLOv3 13. 89 5. 76 5.24
YOLOv3-tiny 51.17 35. 38 33.61

YOLOv4 57.16 42.43 31.03
YOLOv4-tiny 58. 43 25.30 25.65

YOLOvS 70. 47 58.02 55.68
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Table 2 Comparison of black-box model transferablllty results
o White Box v Black Box ¥ Black Box
- YOLO v2 YOLO v3  YOLO v3tiny YOLO v4  YOLO vdtiny  YOLO v5 Avg v
Grey 67.75 76.22 80. 69 75.22 76. 89 81. 86 -
Random Noise 70. 67 75. 80 82. 44 75. 10 78. 74 81.79 —
White 68.52 74. 89 80. 20 74.73 76.09 80. 09 -
NPAP 38.03 56. 85 58. 04 67.74 67.43 66. 85 61.45
AdvCloak 33.74 54.77 53.42 67.57 56.12 68. 05 59.42
AdvPatch 5. 66 40. 26 18. 07 48. 49 24. 44 43. 38 36. 46
T-SEA 3.98 13. 81 10. 82 23.07 16. 40 6. 41 16. 26
MSBR(ours) 3.36 12.71 8.54 16.75 18.99 4. 84 10. 87

%3 MSBR 7 YOLOvVS ERIEHIBEETRIELE R

Table 3 Comparison of cross-dataset transferability
results of MSBR on YOLOV5

Bl 4 Method White Box v Black Box ¥
AdvPatch 45. 83 52.54
COCOPerson T-SEA 37.28 38.87
MSBR 34. 41 30. 27
AdvPatch 38.07 34.08
CCTVPerson T-SEA 38.71 19.91
MSBR 32.54 15. 69
3) 2 RO i R 1
ik — R MSBR TEA R RUEE B AR b 09 301 0OR

AR COCO Bl B A=K 43 9/ (o) (m) R (D =25,
I mAP, £ 4 44T T-SEA 5 MSBR £ A A
REETH mAP #8prxt L2550, MNSLE SR LI 8 F
i, MSBR A tb T T-SEA 535 76 A [F) 485 80 A ) RLBE 1) 93
MZER L mAp ¥ B TR, X HEEI T MSBR &
20 22 RUBE ikl ) 5 280k

& 3 45t T T-SEA 5 MSBR 76/h . H ok 3 AR -
XTPL Bk 5 R T ALAR T L, AT DLEE S LW A F ) MSBR
BRI T 22 RO S AS ¥ A ) S 3004 R I AE A% BA
ML,

SR TN 2 R R 22 RBE A % A Akt A B —
ok, B — AT Sy RN 22 R A B 43 N AT A . 8 it
P 4 RERIEAT SR A BEAE B B 4 AT 5, 1] 4 TR O 3k
T YOLOv3 BRI 251 2 R mAP % L4553, £k &
ATLLBH B B 4 MSBR £ . R B bR A8 F B4 5k
mAP 555 B 5 TR B ARIT & B L T-SEA J7 & B P .
FRUHEAE KA T-SEA £ RE ¥ A 45 7 10 & % 7 1

Xt B — 2B HA T MSBR 78 A [A) )X H0 k b i) A
TR, B BB YOLOv4-tiny F .

I3 —7J7 T N 2 5B A EANCHE — P B, An e 5 BT
7 HOR LR VAL A K A AN TR R B mAP S5 K

e 94

BRI EE N A REAE 6 MR B mAP (1573
B . AT LA A9 M & B S B AS R 5 TR [ RBE
A o 5 R, He MSBR R 30 4 s8R S 4 R 3 AN RUE I
BT T-SEA Jrik., Xit—LBUET M%BR&NEJF\'F
TR S b0 ) B A O AR R A — B R
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Table 4 Comparison of attack performance on different

detectors based on the INRIA Person dataset

ez 2% Bucket T-SEA MSBR(ours) A mAP
YOLOv2 s 0. 00 0. 00 0. 00
YOLOv2 m 24.0 23.1 —0.9
YOLOv2 1 56. 4 57.4 +0.1
YOLOv3 S 4.6 3.0 —1.6
YOLOv3 m 20.7 17.3 —3.4
YOLOv3 1 47.0 36.7 —10.3
YOLOv3-tiny S 10. 0 5.0 —5.0
YOLOv3-tiny m 29.1 21.7 —7.4
YOLOv3-tiny 1 61.7 61.1 —0.6
YOLOv4 S 4.0 2.9 —1.1
YOLOv4 m 26.0 23.1 —2.9
YOLOv4 1 60. 0 59.4 —0.6
YOLOv4-tiny S 3.3 1.4 —1.9
YOLOv4-tiny m 31.7 29.5 —2.2
YOLOv4-tiny 1 59.7 57.2 —2.5
YOLOv5 s 4.0 4.3 +0.3
YOLOvS m 35.2 32.9 —2.3
YOLOv5 1 55.95 54.9 —0.6

BEAk 38 & B MSBR X T AN [6] RO (410 i 4t 7 22
P/ S E SR UL R E R e 1 NI E R N S TG
VNS IR i S 7 N VAP e 307 A1 1
YOLOv3-tiny 5 YOLOv4-tiny, /N H 47519 mAP B F
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Fig. 3 Visualization comparison between T-SEA and MSBR

across different scales
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Fig.4 Scale-wise mAP comparison trained on YOLOv3 model
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Fig.5 Scale-wise mAP comparison across different detectors
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