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摘 要:目标检测模型在对抗补丁攻击下表现出显著脆弱性,严重威胁其在自动驾驶与安防等场景中的应用安全。
现有基于迁移的黑盒攻击方法虽取得一定进展,但普遍存在跨模型迁移性不足以及在多尺度检测头间抑制不均衡的

问题。针对这一挑战,本文提出一种基于多尺度均衡正则的对抗补丁攻击方法(MSBR)。该方法在补丁训练过程中

显式约束不同尺度检测头置信度输出的方差,从而实现对各尺度目标的一致性抑制,有效缓解了尺度抑制不均的现

象,显著提升了对抗补丁的跨模型迁移能力。在多个主流目标检测器上的实验结果表明,所提方法在保持攻击成功率

的同时,黑盒迁移性能优于现有代表性方法(如T-SEA),验证了 MSBR在提升补丁攻击实用性方面的有效性。本文

的研究为面向复杂检测结构的对抗补丁攻击提供了新的思路。
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Abstract:
 

Object
 

detection
 

models
 

are
 

markedly
 

vulnerable
 

to
 

adversarial
 

patches,
 

posing
 

serious
 

safety
 

risks
 

to
 

applications
 

such
 

as
 

autonomous
 

driving
 

and
 

security
 

surveillance.
 

Although
 

transfer-based
 

black-box
 

attacks
 

have
 

made
 

progress,
 

they
 

often
 

suffer
 

from
 

poor
 

cross-model
 

transferability
 

and
 

uneven
 

suppression
 

across
 

multi-scale
 

detection
 

heads.
 

To
 

address
 

these
 

issues,
 

we
 

propose
 

MSBR
 

for
 

adversarial
 

patch
 

attacks.
 

During
 

patch
 

training,
 

MSBR
 

explicitly
 

regularizes
 

the
 

variance
 

of
 

confidence
 

outputs
 

across
 

different
 

detection
 

scales,
 

thereby
 

enforcing
 

consistent
 

suppression
 

of
 

targets
 

at
 

multiple
 

scales,
 

mitigating
 

scale-wise
 

imbalance,
 

and
 

substantially
 

improving
 

cross-
model

 

transferability.
 

Experiments
 

on
 

several
 

mainstream
 

detectors
 

show
 

that
 

our
 

method
 

maintains
 

strong
 

attack
 

success
 

rates
 

while
 

outperforming
 

representative
 

approaches
 

(e.g.T-SEA)
 

in
 

black-box
 

transfer
 

performance,
 

demonstrating
 

the
 

practical
 

effectiveness
 

of
 

MSBR.
 

This
 

work
 

provides
 

a
 

new
 

perspective
 

for
 

designing
 

adversarial
 

patch
 

attacks
 

against
 

complex
 

multi-scale
 

detection
 

architectures.
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0 引  言

  近年来,深度学习所代表的人工智能技术在计算机视

觉[1]领域中取得广泛应用,然而大量的实践证据表明深度

神经网络在面对对抗攻击时表现出显著脆弱性[2-5]。特别

是可在物理域实施的对抗攻击,由于能够在真实场景中部

署并绕过传统防护机制,已成为威胁检测系统安全性的关

键隐患[6]。其中,以对抗补丁为典型代表,只需在图像或物

体表面叠加一块特制的扰动区域,可在不显著改变人类感

知的前提下误导模型产生错误预测,从而引发安全风险。
对抗补丁因其低成本、可打印性及一定的环境鲁棒性,已成

为近年物理对抗攻击领域研究的重点方向。
为揭示深度神经网络的脆弱性,研究者们提出了多种

基于对抗补丁的攻击方法[7]。Sharif等[8]通过佩戴带扰动

的眼镜成功欺骗面部识别系统,开启了物理域对抗研究。

Brown等[9]提出Adversarial
 

Patch并引入期望变换优化策

略,验证了生成通用鲁棒补丁的可行性。此后,Liu等[10]所

提出的DPatch将对抗补丁攻击推广至检测任务,通过同时

优化 分 类 与 回 归 分 支,有 效 削 弱 了 Faster
 

R-CNN 与

YOLO等主流检测器的检测能力。而Zhao等[11]则通过将

生成的对抗补丁覆盖于标志牌上,从而实现对自动驾驶系

统智能检测的躲避。Thys等[12]提出了一种面向类内差异
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显著的人体目标的对抗补丁生成方法,旨在学习一块通用、
可打印的贴片,使佩戴者在主流人员检测器前被系统性漏

检。同样针对人类目标,Xu等[13]提出了对抗性T恤,用于

躲避人员探测器。攻击者可通过穿戴带有补丁的衣物显著

降低检测率,但在姿态变化与遮挡条件下效果会受限。

Wang等[14]在自动结账的场景下提出了基于偏见的对抗补

丁攻击,成功实现了对于淘宝、京东等电子商务平台的攻

击,其生成的对抗补丁可以导致平台对商品识别错误。然

而无论是基于场景抑或是基于目标所提出的对抗补丁攻击

方法,其总是存在黑盒迁移性差这一核心难点。基于此,

Huang等[15]所提出的基于迁移自集成策略的攻击方法

(transfer-based
 

self-ensemble
 

attack,T-SEA)可以在单模

型条件下,通过增加随机、抖动等训练策略缓解补丁对模型

和数据的过拟合,提升补丁对不同检测器的攻击效率,从而

在多个异构检测器之间实现更好的迁移性能。
然而,现有方法仍存在两方面不足:一是多数方法仅关

注整体检测结果的损失下降,缺乏对不同检测头的细粒度

约束;二是由于现代检测器的多尺度预测特性,使得现有补

丁往往在部分尺度上抑制显著、其他尺度抑制不足,导致攻

击不均衡,削弱了在多尺度目标检测任务中的效果与迁移

稳定性。
针对上述不足,本文提出了一种多尺度均衡正则化方

法(multi-scale
 

balance
 

regularizer,MSBR)。该方法在补丁

优化过程中显式最小化各尺度预测头置信度的方差,从而

鼓励不同尺度在期望变换与随机增强条件下表现出一致性

的下降趋势。通过这种方式,MSBR有效缓解了现有方法

的多尺度抑制不均衡问题,使补丁能够在小、中、大目标检

测任务中均发挥稳定的攻击效果。同时,该方法无需额外

引入教师模型或多模型集成,训练开销低,且能显著增强黑

盒迁移攻击的稳定性。在与T-SEA算法的对比实验结果

表明,MSBR在多个主流检测器上均取得优于现有方法的

攻击表现,特别是在跨模型迁移以及多尺度性能上表现突

出,可以有效提高黑盒迁移性。

1 基本理论

1.1 FPN多尺度预测

  目标检测[16]作为计算机视觉中的核心任务,需要同时

预测图像中物体的类别标签与空间位置。为了在复杂场景

下兼顾不同尺寸目标的检测效果,现代检测器(如 YOLO
系列、SSD、Faster

 

R-CNN 等)普遍采用特征金字塔网络

(feature
 

pyramid
 

network,FPN)结构[17]。FPN的核心思

想是将不同层次的特征图进行自顶向下融合,并在多个分

辨率尺度上并行预测,从而同时捕捉小目标的细粒度信息

与大目标的语义信息。
设尺度集合为S ={3,4,5},分别对应FPN的3个检

测头P3、P4与P5。P3通常具有最高分辨率,负责检测小

目标;P4在分辨率与感受野之间取得平衡,主要用于中等

目标检测;而P5具有最低分辨率和最强语义信息,主要负

责大目标检测。对于每个尺度l∈S,检测器在空间位置i
处输出三类信息:类别概率pl,i、对象置信度ol,i 以及边界

框参数bl,i,FPN的设计有效缓解了单尺度检测器在目标

尺寸分布不均衡时的性能瓶颈,成为现代检测框架的标准

组件。
然而,这种多尺度预测机制在对抗攻击场景下也带来

了新的挑战:不同尺度检测头对扰动的敏感性差异往往导

致攻击效果的不均衡。例如,小目标预测头(P3)通常受到

补丁扰动的压制最为显著,而中、大目标预测头(P4、P5)则
往往仍能维持较高的检测置信度,形成了明显的尺度不均

衡现象。这种问题削弱了补丁在整体攻击中的全面性,也
限制了其跨模型迁移的稳定性,因此成为本文方法改进的

着力点。

1.2 对抗补丁

  对抗补丁的核心思想是在输入图像中嵌入一个经过优

化的局部扰动图片,使得目标检测器的输出结果被显著误

导。简而言之,图片在添加完对抗补丁之后,检测器便无法

成功识别对应的物体。其基本原理是通过在随机变换分布

下最小化攻击损失的期望并迭代更新像素,最终得到能在

多种成像条件下稳定干扰检测器的通用贴片,即对抗补丁。
具体而言,设输入图像为x∈[0,1]H×W×3,补丁为p ∈ [0,

1]H×W×3,贴附算子记为S(x,p,θ),其中θ表示旋转、缩放、
透视变换、亮度扰动等随机参数。攻击的目标是通过优化

补丁p,在不同图像和随机变换条件下,使检测器D(·)的

预测结果被尽可能破坏。
在通用形式下,对抗补丁的优化问题可以表示为:

minpEEx~X, θ~Θ [Φ(D(S(x,p,θ)))]+λtvLtv(p)
(1)

其中,X 表示训练图像分布,Θ 表示期望变换的扰动

分布,Φ(·)为攻击目标函数,例如压制对象置信度或提升

错误类别的置信度,Ltv(p)是全变差(total
 

variation,TV)
正则项,用于抑制高频噪声、增强补丁在打印和拍摄下的物

理鲁棒性,λtv 为正则化系数。通过迭代优化上述目标函

数,得到的补丁p可以贴附在任意图像上并保持攻击效果。
与像素级的数字域对抗样本不同,对抗补丁具有通用性(同
一补丁适用于不同输入)、可物理实现性(能够打印并部署

到真实物体表面)、以及跨环境鲁棒性(在不同视角、光照和

背景下依然有效),因此成为近年来研究的重点。

1.3 T-SEA对抗攻击方法

  在对抗补丁研究中,T-SEA被提出以解决黑盒攻击中

的迁移性难题。该方法的核心思想是,在单一检测模型上

引入输入层、模型层与补丁层的多重随机化机制,使得训练

过程中形成类似多模型集成的效果。其优化目标仅依赖对

象置信压制与全变差约束,具体loss损失设计如下:

L =Lobj +λtvLtv (2)
其中,Lobj 用于降低所有候选框的平均置信度,确保补
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丁检测器输出层产生直接抑制;Ltv 则约束补丁纹理的平

滑性,提高打印与拍摄条件下的物理鲁棒性。与依赖多模

型训练的传统方法相比,T-SEA在计算成本上极为简洁,
却能在多种检测器上实现较高的攻击效果。这一自集成思

想的提出,使得无需教师网络或多模型组合,也能得到具备

较强黑盒迁移性的对抗补丁,展示了重要的方法学价值。
尽管如此,T-SEA 的损失函数设计仍然存在明显不

足。现代目标检测器广泛采用特征金字塔网络(FPN),在
P3、P4、P5等不同分辨率的特征图上并行预测小、中、大目

标。每个尺度的检测头承担着不同的感受野和特征建模任

务,因此对补丁扰动的敏感性存在差异。如果优化目标未

能区分这些尺度而统一压制,往往会导致攻击效果的不均

衡。实验证明,在 T-SEA 生成的补丁下,小目标预测头

(P3)的置信度下降幅度最大,几乎完全丧失检测能力;而
中、大目标预测头(P4、P5)则仍然保持着相对较高的置信

度。这种不均衡现象一方面削弱了补丁的全面性,使得不

同尺度目标的抑制强度差异显著,整体攻击力不足;另一方

面也限制了其黑盒迁移的稳定性。由于不同检测器在目标

大小敏感度上的差异较大,如果补丁在训练过程中未能均

衡抑制各尺度检测头,那么在跨模型应用时,攻击效果极易

发生检测框残留现象甚至检测失败。

2 基于多尺度均衡正则的目标检测对抗补丁攻击

方法

2.1 研究背景

  与经典AdvPatch相比,T-SEA虽显著提升了攻击成

功率,但在检测结果中仍常出现残留高置信度框,如图
 

1中

所示。从对抗优化的角度看,其根源在于T-SEA的损失主

要采取对目标置信度的无差别压制,缺乏对多尺度特性的

显式约束;在多尺度检测头与不同目标尺寸并存的设定下,
这种只压分数、不顾尺度的优化会导致抑制不均衡,对部分

尺度的目标抑制较弱,因而保留下位置偏移或不完整的高

分框。从检测器架构角度看,主流检测器通过多尺度头提

升对不同大小目标的感知,不同尺度分支对扰动的敏感性、
梯度强度 与 非 极 大 值 抑 制(non

 

maximum
 

suppression,

NMS)交互各不相同,导致补丁对各尺度的作用强度本就

不一致。由此可见,单纯依赖无差别的置信度压制并不能

在多尺度结构中实现均衡抑制。基于对这一现象的发现,
本文提出一种多尺度均衡正则化方法以弥补T-SEA的不

足。该正则化的基本思想是对各尺度预测头的平均置信度

进行统计,并最小化其方差,从而保证不同尺度在训练过程

中呈现一致下降趋势。

2.2 数学原理

  多尺度均衡正则这一设计在理论上与统计学习中自适

应方差调节(adaptive
 

variance
 

weighting,AVW)思想相契

合,即通过控制输出尺度之间的差异来保证整体结构的稳

定性。值得注意的是,AVW[18]首次在目标检测中应用这

一思路,其核心是动态调整不同尺度损失的权重,以减少多

尺度训练中的不均衡,从而显著提升检测算法在COCO和

VOC基准上的性能。

图1 T-SEA与 MSBR的可视化对比

Fig.1 Qualitative
 

comparison
 

between
 

T-SEA
 

and
 

MSBR

因此,在原有攻击主项基础上,引入多尺度均衡正则化

函数,在保证整体置信度下降的同时,显式惩罚各尺度抑制

强度的方差,尽可能平衡抑制所有尺度,从而实现对多尺度

目标的一致性压制并提升跨模型迁移性。
具体而言,设第l个尺度的平均对象置信为μl:

μl =
1
Nl
∑
Nl

i=1
ol,i,l∈S (3)

其中,S 为尺度集合,ol,i 为第l个尺度上第i个候选

框的对象置信,Nl 为该尺度候选框数。整体均值为μ
- :

μ
-
=

1
|S|∑l∈S

μl (4)

多尺度均衡正则函数定义为:

RMSBR =
1
|S|∑l∈S

(μl-μ
-)2 (5)

由式(5)对μl 求导,须同时考虑μ
- 对μl 的依赖,利用

∑
l∈S

(μl-μ
-)=0可简化得到:

∂RMSBR

∂μl
=

2
|S|

(μl-μ
-) (6)

当μl>μ
- (该尺度抑制不足)时,梯度为正,推动该尺

度的得分继续下降;当μl <μ
- (该尺度已充分抑制)时,梯

度为负,从而抑制对该尺度的过度下压。进一步由式(4)
可得:

∂RMSBR

∂ol,i
=

2
|S|Nl

(μl-μ
-) (7)

说明惩罚会自适应地分配到抑制偏弱的尺度及其候选
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框上,而非对所有尺度一视同仁。这一性质与仅对置信度

做无差别压制截然不同,后者的梯度在各尺度间大致均匀,
容易导致某 些 尺 度 被 反 复 下 压 而 另 一 些 尺 度 残 留,而
MSBR通过“均值—方差”耦合,将更多下降空间自动分配

给抑制不足的尺度,实现跨尺度的一致性压制。在多尺度

检测器中,各尺度分支的感受野、锚密度与 NMS交互不

同,天然对扰动具有异质敏感性,MSBR的梯度分配机制正

是对这种异质性的显式补偿。当各尺度抑制已趋一致(μl

≈μ)时,RMSBR →0,从而不干扰攻击主项继续拉低整体置

信度,保证了优化的稳定性与目标指向性。总的来说,当某

一尺度下降不足时,其与均值的差异将被放大,导致额外的

惩罚;而当各尺度均衡下降时,该项接近零,不会对优化产

生干扰。最终的损失函数定义为:

L =Lobj +λtvLtv +λMSBRLMSBR (8)
在这一损失函数框架中,Lobj 仍是攻击的核心,保证对

检测器整体置信度的压制;Ltv 继续承担约束补丁平滑性的

任务,以保证物理部署的稳定性;LMSBR则显式建模了多尺度

预测头之间的平衡关系,使得攻击能够覆盖小、中、大目标3
个层次,从而在全面性和鲁棒性上显著优于原始T-SEA。

2.3 基于 MSBR的对抗补丁生成方法

  基于 MSBR的对抗补丁生成方法具体流程如图
 

2
所示。

图2 基于 MSBR的对抗补丁训练流程图

Fig.2 Training
 

pipeline
 

of
 

adversarial
 

patch
 

with
 

MSBR

在对抗补丁训练过程中,首先对训练图像进行期望变

换,包括旋转、缩放、抖动等操作。然后将原始图片和数据

增强后的图片同时输入白盒检测器生成检测结果,得到的

检测框将会与初始化的补丁通过贴附函数合并在一起,从
而生成可学习的带有对抗补丁的图像。之后会将得到的带

有对抗补丁的图像再次输入白盒检测器得到对抗攻击结

果,然后利用该结果进行loss计算。在这里,相比于 T-
SEA,除了将常规预测结果用于主损失计算外,还进一步直

接访问检测头的原始输出(pre-NMS的objectness与尺度

信息),用以构建多尺度均衡正则(MSBR)。MSBR将预测

框按照尺度划分为小、中、大三类,并计算各尺度的平均置

信度,随后最小化其方差以鼓励多尺度预测头在训练过程

中保持一致的抑制趋势。最终,总损失由主损失项、总变差

约束和多尺度均衡正则共同组成,对补丁参数反向传播并

经优化器更新,迭代得到最终的对抗补丁。具体实现流程

由伪代码方式给出,伪代码如下:

Algorithm:MSBR
 

Patch
 

Optimization(per
 

iteration)

Require:x1,…,xN,fw,M,BS,T,τ,ћ,S,MSBR,λ
1: 

 

τ⇐τ0

2: 
 

for
 

each
 

i∈ [1,M]do

3:  for
  

each
 

j=
N
BSdo

4:   X⇐x(j-1)·BS+1,…,
 

xj·BS

5:   bboxclean,confclean,rawclean⇐fw(X)

6:   Xadv⇐T(X,bboxclean,τ)

7:   
 

bboxadv,conf adv,rawadv⇐fw(Xadv)

8:   
 

loss⇐Avg(conf adv)+λ·MSBR(rawadv)

9:   
 

τ⇐ћ(τ,loss)

10:  
 

end
 

for
11:  

 

update
 

lrvia
 

S
12: 

 

end
 

for

其中,x1,…,xN 为训练图像,fw 为白盒检测器,M
为最大训练轮次,BS 是批次大小,T 是补丁装订器,τ为

补丁,ћ为基础攻击方法,S 为学习率调度器,MSBR 为多

尺度正则化函数,λ多尺度正则化权重。
由于 MSBR的构建完全依赖于检测器已有的中间输

出,该正则项无需引入额外的网络结构或复杂运算,从而几

乎不增加训练的计算开销与时间成本。在此基础上,所提

出的正则化机制不仅能够保持主损失的优化目标不变,还
能够显著提升补丁在不同尺度预测头上的抑制均衡性与跨

模型迁移能力。

3 实验结果与分析

3.1 实验数据及设置

  1)数据集

为了与T-SEA保持一致,实验采用与其相同的数据集

设置。具体而言,采用INRIA
 

Person数据集进行训练和测

试,该数据集包含80个类别,共614张图像用于训练patch
图像以及288张图像用于测试评估实验结果。

为了验证对抗补丁的泛化与可迁移能力,选取与 T-
SEA算法实验中相同的两个补充数据集COCO

 

Person数

据集和CCTV
 

Person数据集进行泛化和可迁移性测试验

证。前者为从COCO验证集中抽取的1
 

684张不同场景的
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人物图像(例如,运动场、交通路线、海洋和森林),而后者则

是在CCTV视频中抽取的包含559张监控摄像头拍摄的

人员图像。

2)检测器

为验证对抗补丁的跨模型迁移性,实验选取6种常见

YOLO 系 列 模 型 检 测 器 作 为 待 攻 击 对 象:YOLOv2、

YOLOv3、YOLOv3-tiny、YOLOv4、YOLOv4-tiny 和

YOLOv5。训练阶段仅在YOLOv3上进行(白盒设置),其
他模型均作为黑盒测试目标,以评估跨模型迁移性。输入

分辨率固定为416×416,置信度阈值和IoU阈值分别设为

0.5与0.45。

3)训练设置

实验以T-SEA作为基线,在其训练流程中引入本文提

出的多尺度均衡正则(MSBR)。补丁大小设为输入图像分

辨率的15%,初始化方式为灰度噪声,训练时采用期望变

换,包括旋转、缩放、抖动、中值池化和Cutout等操作,以增

强物理鲁棒性。优化器采用SGD,学习率0.03,最大迭代

1
 

000轮,步长为1,使用 ALRS作为学习率调度器。损失

函数以T-SEA的Lobj 损失为主,并额外引入LMSBR ,权重

λMSBR =0.1。

3.2 评价指标

  实验的主要评价指标为mAP@0.5。除整体mAP外,
实验进一步按照COCO官方评测标准对目标面积进行分

桶,并分别报告小、中、大目标上的检测精度,即 mAPs、

mAPm和 mAPl。具体地,COCO将目标面积以像素为单

位进行划分:面积小于322的为小目标,介于322与962之间

的为 中 目 标,大 于962 的 为 大 目 标。mAPs、mAPm 和

mAPl分别表示在这3类目标上单独计算的平均精度。与

整体mAP相比,这3个指标能够更精细地刻画对抗补丁在

不同尺度目标上的抑制效果。例如,小目标往往对应远处

行人或交通标志,中目标常见于街景车辆,大目标则包括近

景行人或大型物体。由于现代检测器基于FPN在多尺度

特征图上预测,不同尺度的检测头对补丁攻击的敏感性存

在差异,因此单一的整体 mAP难以反映攻击的不均衡性,
而mAPs/mAPm/mAPl能够揭示攻击在小、中、大目标上

的差异,从而更有助于评估 MSBR在缓解多尺度不均衡问

题上的优势。

3.3 实验结果

  为全面验证所提 MSBR算法的有效性与优势,本文针

对性地设计了多组实验,并从3个维度对结果进行分析与

评估:

1)整体攻击性能:评估算法在实际攻击任务中的效果

与稳定性;

2)泛化与迁移能力:考察其在不同检测模型及数据集

上的普适性与黑盒迁移表现;

3)多尺度攻击特性:验证算法在多尺度检测头上的均

衡抑制能力及其与理论设计的一致性。

1)整体攻击性能

表1给出了在INRIA
 

Person数据集上6种YOLO系

列检测器的整体 mAP@0.5对比结果。可以看到,基线

方法AdvPatch在所有检测器上均存在明显残留检测,而
T-SEA在相同设置下显著降低了 mAP,例如在 YOLOv3
上由13.89降至5.76,在 YOLOv4-tiny上由58.43降至

25.30,充分验证了其在跨模型攻击中的有效性。在此基

础上,加入本文提出的多尺度均衡正则后,整体 mAP进

一 步 下 降,如 在 YOLOv3 上 进 一 步 降 至 5.24,在

YOLOv3-tiny由35.38降至33.61,YOLOv4由42.43降

至31.03。这表明 MSBR能够在保持T-SEA迁移性优势

的同时,有效提升攻击强度,并在多种检测器上表现出更

好的鲁棒性。

表1 基于INRIA
 

Person数据集的整体攻击性能对比

Table
 

1 Overall
 

attack
 

performance
 

on
 

the
 

INRIA
 

Person
 

dataset
检测器 AdvPatch T-SEA MSBR(ours)

YOLOv2 51.85 31.02 29.34
YOLOv3 13.89 5.76 5.24

YOLOv3-tiny 51.17 35.38 33.61
YOLOv4 57.16 42.43 31.03

YOLOv4-tiny 58.43 25.30 25.65
YOLOv5 70.47 58.02 55.68

2)泛化与可迁移能力

对于算法的泛化和可迁移能力,着重关注两点:一是模

型泛化能力,通过在不同模型上进行测试并与现有的多种

对抗补丁算法进行对比实验;二是数据集可迁移性,通过采

用不同的数据集进行测试验证,检验算法在不同数据集下

的攻击表现。实验结果分别如表2和表3所示。
在 模 型 泛 化 能 力 实 验 中,如 表 2 所 示,采 用

YOLOv2作为白盒模型进行训练,并在5种其他模型上

进行实际攻击测试,将实验结果分别与灰色、随机、白色

3种基 本 对 照 补 丁 以 及 NPAP、AdvPatch、AdvCloak和

T-SEA
 

4种现有对抗补丁生成算法进行对比分析。从

结果上不难看出,MSBR在5种黑盒模型上的攻击效果

要明显优于上述4种现有常用的 对 抗 补 丁 生 成 方 法。
此外,与基本对照组的实验结果对比也能证明 MSBR的

有效性并非随机实验的偶发性结果,可见 MSBR具备较

强的模型泛化能力。
在数据集可迁移性实验中,如表3所示,采用YOLOv5

作为白盒模型进行训练,训练数据集依旧采用与T-SEA相

同的 INRIA
 

Person 数 据 集,分 别 在 COCOPerson 和

CCTVPerson两个测试数据集上进行可迁移性验证。实验

结果表明,MSBR相比于基线算法 AdvPatch以及现有的

先进算法T-SEA在数据集可迁移性上存在明显优势。
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表2 黑盒模型可迁移性对比分析结果

Table
 

2 Comparison
 

of
 

black-box
 

model
 

transferability
 

results

模型
White

 

Box↓ Black
 

Box↓
YOLO

 

v2 YOLO
 

v3 YOLO
 

v3tiny YOLO
 

v4 YOLO
 

v4tiny YOLO
 

v5
Black

 

Box
 

Avg↓
Grey 67.75 76.22 80.69 75.22 76.89 81.86 -

Random
 

Noise 70.67 75.80 82.44 75.10 78.74 81.79 -
White 68.52 74.89 80.20 74.73 76.09 80.09 -
NPAP 38.03 56.85 58.04 67.74 67.43 66.85 61.45
AdvCloak 33.74 54.77 53.42 67.57 56.12 68.05 59.42
AdvPatch 5.66 40.26 18.07 48.49 24.44 43.38 36.46
T-SEA 3.98 13.81 10.82 23.07 16.40 6.41 16.26

MSBR(ours) 3.36 12.71 8.54 16.75 18.99 4.84 10.87

表3 MSBR在YOLOv5上的跨数据集迁移性结果对比

Table
 

3 Comparison
 

of
 

cross-dataset
 

transferability
 

results
 

of
 

MSBR
 

on
 

YOLOv5
数据集 Method White

 

Box↓ Black
 

Box↓

COCOPerson
AdvPatch 45.83 52.54
T-SEA 37.28 38.87
MSBR 34.41 30.27

CCTVPerson
AdvPatch 38.07 34.08
T-SEA 38.71 19.91
MSBR 32.54 15.69

3)多尺度攻击特性

为进一步探讨 MSBR在不同尺度目标上的抑制效果,
依据COCO协议将目标划分为小(s)、中(m)、大(l)三类,
并分别计算 mAP。表4给出了T-SEA与 MSBR在不同

尺度下的 mAP指标对比结果。从实验结果可以明显看

出,MSBR相比于T-SEA算法在不同模型不同尺度的预

测结果上,mAp值均有明显下降,这直接体现了 MSBR算

法的多尺度抑制的有效性。
图3给出了T-SEA与 MSBR在小、中、大3个尺度上

对抗攻击结果的可视化对比,可以更为直观的看出 MSBR
有效的减少了多尺度抑制不均衡问题导致的检测框残留

现象。
为了更加显著的展示多尺度抑制的有效性和理论一

致性,从单一模型角度和多模型角度分别进行分析。通过

对表4中数据进行后处理得到图4和图5,图4所示为基

于YOLOv3模型训练的多尺度 mAP对比结果,从折线图

可以明显看出 MSBR 在中、大目标上相较于基线算法

mAP指标明显下降,整体折线图比T-SEA方法更加平整,
表明其在弥补 T-SEA 多尺度攻击不均衡方面发挥了作

用,这也进一步说明了 MSBR在不同尺度预测头上的压制

力更均衡。类似现象也出现在YOLOv4-tiny上。
另一方面,从多模型角度做进一步验证。如图5所

示,其为综合评估各检测器在不同尺度上的 mAP结果,图

中显示的数值为各尺度在6个检测器上的 mAP的平均

值。可以直观的从图中看出两种不同算法对于不同尺度

的攻击效果,其中 MSBR的抑制效果更好,在3个尺度上

均优于T-SEA方法。这进一步验证了 MSBR在不同尺度

预测头上的压制力更均衡并非某一单一模型的偶发性

结果。

表4 基于INRIA
 

Person数据集不同检测器攻击效果对比

Table
 

4 Comparison
 

of
 

attack
 

performance
 

on
 

different
 

detectors
 

based
 

on
 

the
 

INRIA
 

Person
 

dataset

检测器 Bucket T-SEA MSBR(ours)ΔmAP
YOLOv2 s 0.00 0.00 0.00
YOLOv2 m 24.0 23.1 -0.9
YOLOv2 l 56.4 57.4 +0.1
YOLOv3 s 4.6 3.0 -1.6
YOLOv3 m 20.7 17.3 -3.4
YOLOv3 l 47.0 36.7 -10.3

YOLOv3-tiny s 10.0 5.0 -5.0
YOLOv3-tiny m 29.1 21.7 -7.4
YOLOv3-tiny l 61.7 61.1 -0.6
YOLOv4 s 4.0 2.9 -1.1
YOLOv4 m 26.0 23.1 -2.9
YOLOv4 l 60.0 59.4 -0.6

YOLOv4-tiny s 3.3 1.4 -1.9
YOLOv4-tiny m 31.7 29.5 -2.2
YOLOv4-tiny l 59.7 57.2 -2.5
YOLOv5 s 4.0 4.3 +0.3
YOLOv5 m 35.2 32.9 -2.3
YOLOv5 l 55.5 54.9 -0.6

此外,还发现 MSBR对于不同尺度的抑制性也有差

别,其主要针对中目标和大目标的抑制效果更强,而对于

小目 标 抑 制 效 果 并 不 明 显。在 部 分 检 测 器 上,如

YOLOv3-tiny与YOLOv4-tiny,小目标的 mAP有明显下
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图3 T-SEA与 MSBR的在不同尺度上的可视化对比

Fig.3 Visualization
 

comparison
 

between
 

T-SEA
 

and
 

MSBR
 

across
 

different
 

scales

图4 基于YOLOv3模型训练的多尺度 mAP对比

Fig.4 Scale-wise
 

mAP
 

comparison
 

trained
 

on
 

YOLOv3
 

model

图5 不同尺度在多检测器上的 mAP对比

Fig.5 Scale-wise
 

mAP
 

comparison
 

across
 

different
 

detectors

降,然而在 YOLOv5上,小目标的 mAP却略有上升(+
0.003),这一变化幅度极小,基本可以认为小目标抑制保

持不变,但也体现出 MSBR并未削弱对小目标的攻击效

果,只是保持不低于基线算法的攻击能力。这说明 MSBR
的主要贡献并不在进一步压制小目标,而在于均衡3种尺

度之间的下降幅度,这也符合 MSBR的均衡正则理论。由

于小目标攻击效果本就接近于消失攻击,而对于中、大目

标的置信度仍有较多的攻击空间,因此对于置信度更高的

中、大目标抑制效果会更明显。可见 MSBR通过在训练中

最小化不同尺度检测头置信度的方差,实现了更均衡的压

制,显著提升了中、大目标上的攻击强度,并增强了跨模型

的一致性和鲁棒性。

4 结  论

  本文提出了一种基于多尺度均衡正则的对抗补丁生

成方法,该方法在T-SEA框架下引入跨尺度置信度约束,
使不同尺度检测头在训练过程中保持均衡下降,从而提升

了攻击的全面性与稳定性。多尺度均衡的策略能够有效

缓解FPN检测器在不同预测头之间抑制不均衡的问题,
尤其是在中、大目标上显著增强了补丁的攻击效果。该方

法无需引入额外教师模型或多模型集成,具备较高的训练

效率与可扩展性,为通用物理攻击与多场景安全评估提供

了新的思路。未来工作可进一步探索 MSBR与动态特征

选择、跨模态迁移及物理实现的结合,以提升其在复杂环

境下的可用性与稳定性。同时,当前研究主要针对YOLO
系列检测器进行验证,后续可在Transformer架构及实时

检测场景中进一步评估其通用性与实际应用潜力。

参考文献

[1] BAR
 

A,
 

WANG
 

X,
 

KANTOROV
 

V,
 

et
 

al.DETReg:
 

Unsupervised
 

pretraining
 

with
 

region
 

priors
 

for
 

object
 

detection[C].
 

IEEE/CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,
 

2022:14605-14615.
[2] SZEGEDY

 

C,
 

ZAREMBA
 

W,
 

SUTSKEVER
 

I,
 

et
 

al.
 

Intriguing
 

properties
 

of
 

neural
 

networks[J].
 

ArXiv
 

preprint
 

arXiv:1312.6199,
 

2013.
[3] WEI

 

X
 

X,
 

LIANG
 

S
 

Y,
 

CHEN
 

N,
 

et
 

al.Transferable
 

adversarial
 

attacks
 

for
 

image
 

and
 

video
 

object
 

detection[C].
 

Twenty-Eighth
 

International
 

Joint
 

Conference
 

on
 

Artificial
 

Intelligence,
 

2019:954-960.
[4] MADRY

 

A,
 

MAKELOV
 

A,
 

SCHMIDT
 

L,
 

et
 

al.
 

Towards
 

deep
 

learning
 

models
 

resistant
 

to
 

adversarial
 

attacks[J].
 

ArXiv
 

preprint
 

arXiv:1706.06083,
 

2017.
[5] CARLINI

 

N,
 

WAGNER
 

D.
 

Towards
 

evaluating
 

the
 

robustness
 

of
 

neural
 

networks[C].
 

2017
 

IEEE
 

Symposium
 

on
 

Security
 

and
 

Privacy.
 

IEEE,
 

2017:
 

39-57.
[6] 汪欣欣,陈晶,何琨,等.面向目标检测的对抗攻击与防

御综述[J].通信学报,2023,44(11):260-277.

·59·



 第48卷 电 子 测 量 技 术

WANG
 

X
 

X,
 

CHEN
 

J,
 

HE
 

K,
 

et
 

al.
 

An
 

overview
 

of
 

adversarial
 

attack
 

and
 

defense
 

for
 

target
 

detection[J].
Journal

 

of
 

Communications,
 

2023,44(11):
 

260-277.
[7] 武阳,刘靖.面向图像分析领域的黑盒对抗攻击技术综

述[J].计算机学报,2024,47(5):1138-1178.
WU

 

Y,
 

LIU
 

J.
 

An
 

overview
 

of
 

black-box
 

adversarial
 

attack
 

techniques
 

for
 

image
 

analysis [J].
 

Acta
 

Computer
 

Sinica,
 

2024,47(5):
 

1138-1178.
[8] SHARIF

 

M,
 

BHAGAVATULA
 

S,
 

BAUER
 

L,
 

et
 

al.
 

Accessorize
 

to
 

a
 

crime:
 

Real
 

and
 

stealthy
 

attacks
 

on
 

state-of-the-art
 

face
 

recognition[C].
 

2016
 

Acm
 

Sigsac
 

Conference
 

on
 

Computer
 

and
 

Communications
 

Security,
 

2016:
 

1528-1540.
[9] BROWN

 

T
 

B,
 

MANÉ
 

D,
 

ROY
 

A,
 

et
 

al.
 

Adversarial
 

patch[J].
 

ArXiv
 

preprint
 

arXiv:1712.09665,
 

2017.
[10] LIU

 

X,
 

YANG
 

H,
 

LIU
 

Z,
 

et
 

al.
 

Dpatch:
 

An
 

adversarial
 

patch
 

attack
 

on
 

object
 

detectors[J].
 

ArXiv
 

preprint
 

arXiv:1806.02299,
 

2018.
[11] ZHAO

 

Y,
 

ZHU
 

H,
 

LIANG
 

R,
 

et
 

al.Seeing
 

isn't
 

believing:
 

Towards
 

more
 

robust
 

adversarial
 

attack
 

against
 

real
 

world
 

object
 

detector[C].
 

2019
 

ACM
 

SIGSAC
 

Conference
 

on
 

Computer
 

and
 

Communications
 

Security,
 

2019:
 

1989-2004.
[12] THYS

 

S,
 

RANST
 

W
 

V,
 

GOEDEME
 

T.
 

Fooling
 

automated
 

surveillance
 

cameras:
 

adversarial
 

patches
 

to
 

attack
 

person
 

detection[C].
 

IEEE/CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition
 

Workshops,
 

2019.
[13] XU

 

K
 

D,
 

ZHANG
 

G
 

Y,
 

LIU
 

S
 

J,
 

et
 

al.Adversarial
 

T-
shirt!

 

Evading
 

person
 

detectors
 

in
 

a
 

physical
 

world[C].
 

16th
 

European
 

Conference
 

on
 

Computer
 

Vision,
 

2020:

665-681.
[14] WANG

 

J
 

K,
 

LIU
 

AI
 

SH,
 

BAI
 

X,
 

et
 

al.Universal
 

adversarial
 

patch
 

attack
 

for
 

automatic
 

checkout
 

using
 

perceptual
 

and
 

attentional
 

bias[J].
 

IEEE
 

Transactions
 

on
 

Image
 

Processing,
 

2021,
 

31:598-611.
[15] HUANG

 

H,
 

CHEN
 

Z
 

Y,
 

CHEN
 

H
 

R,
 

et
 

al.T-SEA:

Transfer-based
 

self-ensemble
 

attack
 

on
 

object
 

detection[C].
 

IEEE/CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,
 

2023:
 

20514-20523.
[16] JOSEPH

 

K
 

J,
 

KHAN
 

S,
 

KHAN
 

F
 

S,
 

et
 

al.Towards
 

open
 

world
 

object
 

detection [C].
 

IEEE/CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,
 

2021:5826-5836.
[17] 李海龙,黄孙港,饶兴昌.跨尺度特征融合的自适应水

下目标检测算法[J].电子测量技术,2025,47(13):

129-138.
LI

 

H
 

L,
 

HUANG
 

S
 

G,
 

RAO
 

X
 

CH.
 

Adaptive
 

underwater
 

target
 

detection
 

algorithm
 

based
 

on
 

cross-
scale

 

feature
 

fusion[J].
 

Electronic
 

Measurement
 

Technology,
 

2025,47(13):
 

129-138.
[18] LUO

 

Y
 

H,
 

CAO
 

X,
 

ZHANG
 

J
 

T,
 

et
 

al.
 

Dynamic
 

multi-scale
 

loss
 

optimization
 

for
 

object
 

detection[J].
 

Multimedia
 

Tools
 

and
 

Applications,
 

2023,
 

82(2):

2349-2367.
作者简介

谢家乐,硕士研究生,主要研究方向为计算机视觉、对抗

攻击。

E-mail:xiejiale@stu.xmu.edu.cn
赵宇熙,硕士研究生,工程师,主要研究方向神经网络鲁

棒性、对抗攻击。

E-mail:zhaoyx@cae.avic
曾念寅,博士,教授,博士生导师,

 

主要研究方向空天信

息智能。

E-mail:zny@xmu.edu.cn
王若(通信作者),博士,高级工程师,硕士生导师,主要研

究方向人工智能算法测试、群体智能、反智能。

E-mail:wang@cae.avic

·69·


