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Design of multiple synchronous ejection equipment
for aero-engine hail absorption test

Xu Siqi
(Engine Institute, Chinese Flight Test Establishment, Xi'an 710089, China)

Xue Wenpeng Jin Liqiang

Abstract: To meet the airworthiness certification requirements for hail ingestion tests of aircraft engines and address the
scarcity of research on multi-hail simultaneous ejection devices in China, a single-chamber multi-barrel hail ejection
device was designed. The influence of the device's structural parameters on the hail ejection process was analyzed
through simulation, and experimental verification was carried out. The results show that the device enables
simultaneous ejection of multiple hailstones with a speed error << + 1. 5%, position dispersion << =5 mm, and
synchronization time <35 ms, all of which comply with airworthiness regulations such as CCAR33. 78, and the device
also features stable performance and good repeatability. This study provides key equipment support for aircraft engine

hail ingestion tests and validates the effectiveness of the single-chamber multi-barrel design in ensuring synchronization

and accuracy control.
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Fig. 1 Schematic diagram of single hail ejection equipment

BB e o A A o B UK RS I R G B
Ve 2 AN AT 2 s o HGv i T A& R A7 TR
F o AR HG A 8 5 BT A 5 O R TR A i R
T DT Sy DB s £ B 3l Iy el 3 Bis . R i 8l R 22
AT ZEUAG b s I g e A S o o o A % 3l 1 2801 TR
BRI A b TR ) T R O 2E R R B R
ARIEA TR A . AR ARG I ) o e < TR ) ik B 93
VA I 42 1l R R A 1 5 S R AT A A R 2 Y
VERIR BT 48 A 1 I B 1) J5 B8 3l o SR Uk

B HREIL

| | |
| gmeE | |(ww| | wekRR%|  [#pes |

[

501 (25 b ||
R
OEAREAE T A kA I
| | 5 || 4 || B ||| 48 A
Bl 2 BH R A P

Fig. 2 Composition block diagram of single hail ejection equipment
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different air supply pressure

X T AR T SRR T35 20 A7 0 53 0 B2 ) 2 W B 6 9 5
R BN DRED T S B AN T A DR B I () 3

e 30 -

KK 5 Fis,

240 - 120
230+ —o— HE 18
—— R

220+ {16
~ £
210 - 14 R
£ 7
B 200 2 &
b &

190 | {10

180 | 18

170 L 1 L L 1 6

1.0 1.5 2.0 25 3.0
RAEKE/m

P 5 S [ 4l B A I JBE DR 3 2 E

Fig.5 Hail velocity comparison with different ejection tube length
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Fig. 8 Comparison of simulated data with measured data

T 2 B0 1 B 8 UE 6, 2 25 SOk [ 14 T 56 iRE 55
AR BB E M T T8 LE HT 7 00 £ AR T R E
7o PR BARHLE br 2 ML T B3 o, TR A 58 AL
Gabrs o L0 i 0 e R B AR HLIC 3 KR 12 B Bk

PR, SR AN 9 R, vKCeL R o a5 1 o HECA
<E3 mm <5 mm,95% BIEXMEK £4.42— &
5.58 mm(n=14,p<C0. 05) , A] S A I8 37 38 5 o7 ‘B . 4G Ui JE
e T35 AT A T X 0 SR A ' A 25 mm N

PO I 2 R o 6 TR 1

Verification test of hail ejection’s accuracy

Fig. 9

T[] — ML A8 AR ) AR DRBAS ) 0 25 T % e i
S R 10 s IR A R AR W] BEE 0 SR )
LR 1, VIR T B 2 R AR DGR Ak A T e 4R
T O A T g - A B A A B T S AR L SR T
o RS R R R 4 DR A A R B TR AR

300

% 200 1
£ 3
i 150 i
e 6
100 | 7
8
)

r 20
oL« . . . . . .

0 02 04 06 08 10 12

KA
P10 AN [R5 07 o R 4 S5 3 b ko

Fig. 10 Velocity comparison of hail with different ejection pressures
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