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Analysis and correction of steady-state errors in shielded total

temperature sensors

Zhou Jiayi
(Chinese Flight Test Establishment,Xi'an 710089, China)

Abstract: To meet the demand for high-precision testing of total temperature in high-temperature, high-speed airflows
within aeroengines, this paper employs fluid-structure interaction numerical simulation methods to systematically
investigate the flow heat transfer and temperature measurement error characteristics of a shielded thermocouple under
seven velocity conditions ranging from 0. 2 to 0. 8 Ma and six temperature conditions from 700°C to 1 200°C. Results
indicate that the shielding cover exhibits significant stagnation effects, reducing flow velocity at the measurement tip by
over 80%. Error analysis reveals that all error terms increase with rising Mach number, with growth rates following
the sequence: radiation error > thermal conduction error => velocity error. At low Mach numbers (Ma<<0.3),
thermal conduction error dominates. However, as Mach number increases, radiation error becomes significantly more
influential and emerges as the primary error source. Elevated temperatures further exacerbate the impact of radiation
error. Overall, thermal conduction and radiation errors collectively account for over 93% of the total error,
constituting the key factors affecting measurement accuracy. After applying an empirical radiation error correction
formula, the steady-state error decreased from 17.97 K to 0. 64 K, and the overall temperature recovery coefficient
improved to above 0. 92, significantly enhancing measurement precision.
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Fig. 1 Shielded thermocouple
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Table 1 Thermophysical properties of the materials used

for the shielded thermocouple

" g/ HIE, SRER/ &8
A MR (kg/m*) (J/kg+ K) (W/m+K) =
BRWCE REEH 8 000 500 16 0.85
P eSS 8500 480 19 0.9
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Table 2 Boundary conditions for the numerical simulation

4/ Ma KR/ Pa B /K fiftJk/Pa
0.2 104 191 980. 94
0.3 107 853 990. 67
0.4 113 135 1 004. 29
0.5 120 193 1021.81 101 325
0.6 129 240 1043. 22
0.7 140 548 1068. 52
0.8 154 454 1097.71
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Table 3 Grid independence verification

4% %5 ) 8 i B
100 978. 32
342 980. 81
602 980. 81

B2 RS

Fig. 2 Computational domain mesh

iR SST i it 5% 4 ek DA 7 v 1 37 O A, R RS s 0 0
A 40 A RE T AY <2, Rk v <5, AT
[ — = O A AT BB T3 R U bR K 0. 8 I BE T B

UTHE— 2 PRIy " SR U A AR L 2 R
3R BET v iR OKAEN 1. 01, JRHCSBE T v~ R
N 3. 44,9 SST i A B B9 TR ZEK .

contour-1 contour-1

Wall Y plus Wall Y plus
1.01 3.44
0.96 3.27
091 3.09
0.86 2.92
0.81 275
0.76 2.58
0.71 241
0.66 2.24
0.61 2.06
0.56 1.89
0.51 1.72
0.46 1.55
041 1.38
0.36 1.20
0.31 1.03
0.26 0.86
021 0.69
0.16 0.52
0.11 0.35
0.06 0.17
0.01 0.00

(a) 1 RBET (b) B L SEBETE

(a) Node wall surface (b) Shield cover wall surface

3 Ma=0. 8 {5 f0RE If A1 57 i B RE TR 1)y
Fig.3 y ' at the nodal wall and shield wall for Ma=0. 8

3 HEERSSH

3.1 BFRERAEMRSHRE

A SR T AR S A B AU 5 2 AT 5 B i =X A A
B e AR R T R T OR T 3 R AN [ i A 4
Jr 3D (CFD) 35 A % 8 B il 58 5 3 4R A 2)
- -5 (conjugate heat transfer, CHT) 158 ;3) %
TE R B0 Ui - [ -3 & (radiation conjugate heat transfer,
RCHT) i 8. 4 5 B8 & R J] 8 # 4 #5 (discrete
ordinates, DO) & #l

1) B 353 B

4 it B i 2 AT AN R s B R L LR
T A S5 I 2 T S A L T A ) S B S L A
AT SR B 5 . A6 B i B I o S 3T B VAT 19 o A AE HE T
PREE WA, SRUTE B 2 P S R v A A o ok Ik e
MHER T .

5 45 A [ B ok 50T #h el (8 0 8 3 i A0 A LR B
B2 NES IR LU L, 5 PR R0 S Y 1y 5 | AR PN 3 1Y
MRS . B R A B SR, BB i N AR S
RO, SR SE R IR MEBE R, T BE RS 0. 5 R A
FEL A A L e B8 9 b SR B ) i 3 T A DA 0. 17 ~
0.67 Ma FF#ZE 0.03~0. 08 Ma, i s B 80 % LA I,

e ———
@ -: = W 7 = 774»17!7‘ -

—_—

[ 4 U7 P R H 2

Fig. 4 Velocity cloud map and its streamline diagram

¢« 2]



T # K

%48 B W F
—11.4
112
41.0
[
H08 =
g
10.6 B¢
{04
402
001 1 1 1 1 1 1 X 0
02 03 0.4 0.5 0.6 0.7 0.8
L% Ma
&5 P R
Fig.5 Internal flow velocity
DM E I

PL0.2 Ma S, fff FiAS [) A A5 480 5 =00t B3 8 R n /&
6.7 Fin. B 6Ca)ly CFD B8 O %5 JE 7 $R B3F , X 41 &6
ANTE A R AR ) AL B CE T LR TR T L A
W0 s 1 BE A 980. 86 Ko ML 6(b) () FTLAFE i IMA
AR N BE R T AN BE ) LR GO N RE R R R L AR
F N A B R IR T ROR AR S 0 25 A 4R A R i
FIRBEREAR, A PR Z MRS R ZE . NE 7T LLER,
AR P AP £ RS I o A T L TR R 1l S S A ) g R
BETRRE 0.95 Ko 5@ 4T A I A Bl #bi o =X, 20 e (83 B2 B
BEAR A, i1 T AL AR 55 B i P RE A A R 22, X RE T AT R
SRTHICHR , R R A T £ i R B T 0. 03 K

Temperature Temperature
981.00
979.90
978.80
971.70
976.60
975.50
974.40
973.30
972.20
971.10
970.00

981.00
979.90
978.80

-977.70
976.60
97550
974.40
97230
97220
97110
97000

w [
; e b) CHTZ A% = B
(a) CPDWAIRIE S (b) CHI
(a) CFD fluid temperature cloud map {by CHT fluid Ireltar;perature alowd

Temperature
98100
979.90
978.80
977.70
97660
97550
97440
97330
97220
97110
970.00

mmmmmm

(c) RCHT it IR ¥ = (d) CFDRF M ERE =
(¢) RCHT fluid temperature (d) CFD shield chamber temperature
cloud map cloud map

97880

o170
97660
97550
o740

97330

=
O]
(e) CHTRR Bl = B (O RCHTRF R ERE = E
(e) CHT shield chamber temperature (f) RCHT shield chamber
cloud map temperature cloud map

6 AR XA R = H

Fig. 6 Temperature cloud maps of different simulation methods

0220

Temperature
981.00
979.90
978.80
977.70
976.60

975.50
974.40
973.30

972.20
971.10
970.00

QY]

(a) CHT

Temperature
981.00
979.90
978.80
977.70

976.60
975.50
974.40

973.30
972.20
971.10
970.00

(b) RCHT
B 7 Bt B R AR B R B ]

Fig. 7 Temperature cloud map of the total temperature

sensor in the shield

6(d) (e (D)4 A A 5 3K T B Wi 25 41 B iR i
Sy s N 6(dD) AT LB 5% F 3 51155 OR 2% 1 5 il 2 5
PFER G SR AE B W A SR Lk X R . B
S UG8 R S A 3 I VR TR AR, B R A
Z AT RN ST R Y B A B TR RE A i b
75 i BEAK B A T 2 B SRR G, R B R IR B AR
MR . B 6Ce) (DT LA H 25 1 T B 25 5 44 1 O 4488
A (CHT)HET LA B 5 565 455 A0 1 3 48 & (RCHTD 358,
57 e B 2 T IR BE A A B L (CFD) B 3 K28 k. Bl
B B 57 T RO MR A o L A f O i B R TR LB
i, P BE R e R 977, 84 KL AMNBEIR I % 5 977. 79 K, 4%
A R HT SRR R R AR AR . X B R TR T R
1 R B IS R O R RRIRE . MARSE. N
R S RE ARG T A A B O 3R — 3 A S A, — 3 ) b
BE S, B EREE 976. 62 KL A L FIE 1. 22 K, BRilk
B ANRE T 5 T AR SN I R B A1 BE (7] IR BT 4R S EOHA L 41 BE
B 977, 24 KL [E LT RE 0. 55 K,

3.2 BRAETREXAABBIRENN

T g A AR L TS ) B o e R 22
AR IS, AR BRI HUR2E E RoR .

E=E,+E +E, (2)
K. E, MEEIRE, E, HRNIRE, E, WiEFRE,

TEEAE AR A, A0 e 3 70 ot ol BB 4 B T R O A R
T2 A G AL A RS B0 AR I R P SRS T, 3t
R EIRER

E,=T,—T, 3

PR e OB T oy | E A R e W R
57 T 5 A TR R R A AL I R IR B AR STHE A T S 3
SR B R T, T E SRR EN .



N4
PAN

FE S X &

BB A

SRERESNM S E %24

E,=T,—T,—E, 4)

IR VS IR SRR A5 ) A A DU g 1) T 4R
T, HERTRER:

E,=T,—T,—E,—E,

D AR Ma T 095228 1% 22 241 0l 5 78 b i 34

R T B R R AR TR 22 0 BB R UITAL 5 v TR
Z 5w L A A TR S IR 22 R/ .

SRR A PR, NIRRT LR R, B A S5O 0. 2
AR 0.8, iR 1.05~17.97 K, AR 2% 0.11% ~
1.64% . 3 Frid 22 22 B0 OK [R) B 28 Y 3 K, o IR 22

(5

0.07~0. 48 K, F#i% % 0. 95~5. 39 K, 5% 2 0. 03~
12.10 K, Hoor, 57 5 52 25 B R s bl , S kiR 22 ok,
FERZER T V58, Dhkh BN, S 58 4 i Lk e BT 3,
BER2ZEHEIN . WAL, I B T A G 0 G . <
TR BN, ST 5 o R R A A T AR S R L RS
PARZER . HLE RS T BUR SR 25 8 RO, AR 48
FOF-PUR 252 A IR AT IR 22 15 ) PR BRI 8 22 1) DK O
B IE b o 8 R T B L A R R B I B D b A B 3
T U 2 N AR X ] R A ) A R R, i R
FEAIG 5 L SRR 22 1R] 1 e 25 3 K.

x4 TO0CTARASHHBTHITEER

Table 4 Calculation results at 700°C under different Mach numbers

D/ Ma P, T, T, T, T T, E, E, E, E r
0.2 104 191 973.15 980. 94 980. 86 979.91 979. 88 0.07 0.95 0.03 1. 05 0. 86
0.3 107 853 973.15 990. 67 990. 53 988. 84 987. 54 0.13 1. 69 1. 30 3.12 0. 82
0.4 113 135 973.15 1004.29 1004.09 1 001.59 998. 66 0. 20 2.50 2.93 5.63 0.82
0.5 120 193 973.15 1021.81 1021.54 1018.25 1013.36 0.27 3.29 4. 89 8. 45 0. 83
0.6 129 240 973.15 1043.22 1042.88 1038.79 1031.70 0. 34 4.09 7.09 11.51 0. 84
0.7 140 548 973.15 1068.52 1068.10 1 063.45 1 053.81 0.42 4. 65 9. 64 14.71 0. 85
0.8 154 454 973.15 1097.71 1097.23 1091.84 1079.74 0. 48 5.39 12.10 17.97 0. 86
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Fig. 8 Proportion of different errors at 700°C

under different Mach numbers
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Table 5 Calculation results at different temperatures under 0. 4 Ma

wE/C P, T, T, T, T . T, E, E, E, E r
700 113135  973.15 1004.29 1004.09 1001.59 998.66  0.20  2.50  2.93  5.63  0.82
800 113135 1073.15 1107.49 1107.26 1104.38 1100.15  0.23  2.88  4.23  7.34  0.79
900 113135 1173.15 1210.69 1210.44 1207.19 1201.28  0.25  3.25  5.91 9.41  0.75
1000 113135 1273.15 1313.89 1313.60 1310.04 1302.08  0.29  3.56  7.96 11.81 0.7l
1100 113135 1373.15 1417.09 1416.77 1412.83 1402.48  0.32  3.94 10.36 14.62  0.67
1200 113135 1473.15 1520.29 1519.94 1515.70 1502.58  0.35  4.24 13.12 17.71  0.62
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Table 6 Parameters related to error correction
M Ah i 3/ SR T, T, M P AT & 1E J& W TR 2%
0.2 Ma  973.15 980. 94 979. 88 975. 83 0.03 104 121 1.47~1. 84 981.35~981. 72 0.04~0.08
0.3 Ma 973.15 990. 67 987. 54 980. 12 0. 04 107 735 2.29~2.86 989. 83~990. 41 0.03~0.08
0.4 Ma 973.15 1 004. 29 998. 66 986. 16 0. 05 112 907 3.45~4.32 1002.11~1 002.98 0.13~0.22
700°C 0.5 Ma  973.15 1021.81 1013.36 994. 09 0. 06 119 854 4.91~6. 14 1018.26~1 019.50 0.23~0.35
0.6 Ma  973.15 1043.22 1031.70 1 003.99 0.07 128 766 6.64~8.31 1 038.34~1 040.03 0.31~0.47
0.7 Ma 973.15 1068.52 1053.81 1016.02 0.07 139 909 8.65~10.83 1 062.46~1 064.64 0.36~0.57
0.8 Ma 973.15 1097.71 1079.74 1 030.44 0.08 153 614 10.92~13.67 1 090.66~1 093.41 0.39~0. 64
700°C 973.15 1 004. 29 998. 66 986. 16 0.05 112 907 3.45~4.32 1002.11~1 002.98 0.13~0.22
800°C 1073.15 1107.49 1100.15 1 086.52 0.05 112 900 4.91~6. 14 1105.06~1 106.29 0.11~0.22
0.4 Ma 900°C 1173.15 1210.69 1201.28 1186.51 0.05 112 894 6.77~8.47 1 208.05~1 209.76 0.08~0.22
1000°C 1273.15 1313.89 1302.08 1286.16 0.05 112 894 9.10~11.39 1 311.18~1 313.47 0.03~0.21
1100°C 1373.15 1417.09 1402.48 1 385.49 0.05 112 884  11.89~14.89 1 414.37~1 417.36 0.02~0.19
1200°C 1473.15 1520.29 1502.58 1484.58 0.05 112 867  15.22~19.05 1 517.63~1 521.63 0.09~0. 16
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