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Anomaly detection based on semi-nonnegative matrix factorization

neural network

Han Wei'”  Wu Liming”
(1. School of Electrical Engineering, Guangzhou Railway Polytechnic, Guangzhou 511300, China;
2. School of Electromechanical Engineering, Guangdong University of Technology,Guangzhou 510006, China)

Abstract: Anomaly detection aims to identify abnormal patterns in data, and it has significant application value in
various fields such as industrial inspection. The current mainstream anomaly detection methods employ unsupervised
models such as auto-encoder. These models use fully connected layers or convolutional layers for the data processing
during encoding and decoding, which can lead to problems such as lack of interpretability and semantic errors. This
paper proposes a combination method of the semi-nonnegative matrix factorization model and network training to design
a semi-nonnegative matrix factorization neural network for anomaly detection. Due to the characteristic of the semi-
nonnegative matrix factorization model that “local superposition constitutes the whole”, this network can better
preserve semantic information and is also interpretable. Additionally, the feature matrix of this network is updated as
weights during the training of the network, which effectively solves the problem of local optimal solutions existed in the
traditional semi-nonnegative matrix factorization model. The anomaly detection performance of this network was tested
on three datasets. The experiment results show that it outperforms mainstream auto-encoder and variational auto-
encoder methods by more than 3 percentage points in continuous data. and achieves comparable results in discrete data.
Compared with the detection method based on the traditional semi-nonnegative matrix factorization model, this network
has significantly improved in all detection metrics, with the highest improvement reaching 12%. This network is a
beneficial exploration that utilizes traditional matrix factorization model to construct neural network, and it can
effectively solve the anomaly detection problem.

Keywords: anomaly detection;unsupervised learning; semi-nonnegative matrix factorization;neural network
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Fig. 2 Reconstruction effect of the image
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Table 1  Values of the image similarity parameters
IRES MSE PSNR SSIM
545 SNMF - 4.31X10°" 33.65 db 0. 829
M4 SNMF - 5.41x10 32.66 db 0.816
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Table 2 Similarity parameters of 100 reconstructed spectrograms
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Fig. 3 Similarity parameters of Mel spectrograms
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Table 3 Experimental results of the KDDCUP dataset

DiRiS Precision Recall F1-Score auc p_auc
AE 0. 955 0. 965 0.960  0.977 0.967
VAE 0. 960 0.970 0. 965 0.980 0.972
SNMFA 0.931 0.941 0.936 0.962 0.947
SNMEFNN  0.961 0.971 0. 966 0.981 0.972
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Table 4 Experimental results of the Slider dataset

Pk Precision Recall F1-Score auc p_auc
AE 0.642 0.668 0. 655 0.648 0.619
VAE 0. 636 0.662 0. 649 0.642 0.613
SNMFA 0.656 0. 682 0. 669 0.662 0.632
SNMFNN 0. 681 0.708 0.694  0.688 0.657

R5 Motor IIEEWTHER

Table 5 Experimental results of the Motor dataset

PiRrs Precision  Recall F1-Score auc p_auc
AE 0.821 0.812 0. 816 0.829 0.809
VAE 0. 820 0. 810 0. 815 0.827 0.807
SNMFA 0.727 0.718 0.723 0.742 0.728
SNMFNN 0. 853 0. 843 0.848  0.858 0.849
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