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摘 要:异常检测旨在识别数据中的异常,在工业检测等领域中具有显著的应用价值。目前主流异常检测方法采用
的是自编码器等无监督模型,这类模型采用全连接层或卷积层进行编码、解码的数据处理过程,会导致模型面临缺乏
解释性、语义误差等问题。为此,本文提出将半非负矩阵分解模型和神经网络训练方式相结合,设计了一个用于异常
检测的半非负矩阵分解神经网络。由于半非负矩阵分解模型具有“局部叠加构成整体”的特性,该网络能更好的保留
语义信息,且具有可解释性。此外,该网络的特征矩阵作为权值随着网络训练而更新,这能有效解决传统半非负矩阵
分解模型存在的局部最优解问题。在三个数据集上,测试了该网络的异常检测性能,实验结果表明其在应对连续数据
时,比主流自编码器和变分自编码器方法的检测指标高3%,在离散数据上也取得了不弱于主流方法的效果;与基于
传统半非负矩阵分解模型的异常检测方法相比,该网络在所有检测指标上均有提升,升幅最高达12%。该网络是利
用传统矩阵分解模型构建神经网络的有益探索,能有效解决异常检测问题。
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Abstract:Anomaly
 

detection
 

aims
 

to
 

identify
 

abnormal
 

patterns
 

in
 

data,
 

and
 

it
 

has
 

significant
 

application
 

value
 

in
 

various
 

fields
 

such
 

as
 

industrial
 

inspection.
 

The
 

current
 

mainstream
 

anomaly
 

detection
 

methods
 

employ
 

unsupervised
 

models
 

such
 

as
 

auto-encoder.
 

These
 

models
 

use
 

fully
 

connected
 

layers
 

or
 

convolutional
 

layers
 

for
 

the
 

data
 

processing
 

during
 

encoding
 

and
 

decoding,
 

which
 

can
 

lead
 

to
 

problems
 

such
 

as
 

lack
 

of
 

interpretability
 

and
 

semantic
 

errors.
 

This
 

paper
 

proposes
 

a
 

combination
 

method
 

of
 

the
 

semi-nonnegative
 

matrix
 

factorization
 

model
 

and
 

network
 

training
 

to
 

design
 

a
 

semi-nonnegative
 

matrix
 

factorization
 

neural
 

network
 

for
 

anomaly
 

detection.
 

Due
 

to
 

the
 

characteristic
 

of
 

the
 

semi-
nonnegative

 

matrix
 

factorization
 

model
 

that
 

“local
 

superposition
 

constitutes
 

the
 

whole”,
 

this
 

network
 

can
 

better
 

preserve
 

semantic
 

information
 

and
 

is
 

also
 

interpretable.
 

Additionally,
 

the
 

feature
 

matrix
 

of
 

this
 

network
 

is
 

updated
 

as
 

weights
 

during
 

the
 

training
 

of
 

the
 

network,
 

which
 

effectively
 

solves
 

the
 

problem
 

of
 

local
 

optimal
 

solutions
 

existed
 

in
 

the
 

traditional
 

semi-nonnegative
 

matrix
 

factorization
 

model.
 

The
 

anomaly
 

detection
 

performance
 

of
 

this
 

network
 

was
 

tested
 

on
 

three
 

datasets.
 

The
 

experiment
 

results
 

show
 

that
 

it
 

outperforms
 

mainstream
 

auto-encoder
 

and
 

variational
 

auto-
encoder

 

methods
 

by
 

more
 

than
 

3
 

percentage
 

points
 

in
 

continuous
 

data,
 

and
 

achieves
 

comparable
 

results
 

in
 

discrete
 

data.
 

Compared
 

with
 

the
 

detection
 

method
 

based
 

on
 

the
 

traditional
 

semi-nonnegative
 

matrix
 

factorization
 

model,
 

this
 

network
 

has
 

significantly
 

improved
 

in
 

all
 

detection
 

metrics,
 

with
 

the
 

highest
 

improvement
 

reaching
 

12%.
 

This
 

network
 

is
 

a
 

beneficial
 

exploration
 

that
 

utilizes
 

traditional
 

matrix
 

factorization
 

model
 

to
 

construct
 

neural
 

network,
 

and
 

it
 

can
 

effectively
 

solve
 

the
 

anomaly
 

detection
 

problem.
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0 引  言

  很多实际场景存在正负样本不均衡问题,例如判断产

品质量是否合格、设备状态是否正常、计算机系统是否被入

侵等。此问题的一般表现为:能采集到的正常样本比异常

样本数量显著多,异常类别多且异常样本不易大量采集。
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目前异常检测是解决正负样本不均衡问题的常用方法,它
旨在识别数据中的异常[1]。异常检测在入侵检测[2]、产品

质量检测[3]、系统状态监测[4]等领域获得了很强的研究兴

趣,表现出良好的应用前景。
实现异常检测功能的传统机器学习方法主要采用聚

类[5]、单类支持向量机[6]、孤立森林[7]等离群点检测模型,
这些模型通常分为两个步骤:首先从数据中提取低维特征,
然后将低维特征输入检测模型得到异常判别结果。然而,
基于数据降维的低维特征提取过程一般是根据人工经验设

计,有些数据的高维性和动态性使得设计合适特征变得极

为困难且耗时[8]。
近年来,随着深度学习方法在自动学习原始数据的特

征方面具有良好的表现,其在异常检测任务中的应用也越

来越广泛,相关大多数研究集中在基于编码器-解码器框架

的无监督学习模型[9]上。这些模型的结构一般为:先使用

编码器学习数据的低维特征,然后使用解码器重构数据,其
训练及应用过程为:首先使用正常数据训练模型,然后将待

检数据输入模型,并得到数据重构误差,最后根据误差值是

否超过一个阈值做出异常判别。目前相关主流方法有自编

码器(auto-encoder,
 

AE)[10-11]、变分自编码器(variational
 

auto-encoder,
 

VAE)[12-13]等。在 AE模型中,编码器一般

是多个全连接层或者卷积层,用于将原始数据逐渐降维至

低维特征,解码器与编码器相反,将低维特征逐渐升维以重

构原始数据,最终根据重构误差来发现异常。VAE模型引

入概率建模,通过编码器输出低维特征的分布参数(均值和

方差),然后从该分布重构数据,当输入异常样本时,其重构

误差或概率似然会偏离正常范围,从而被标记为异常。AE
模型的损失函数本质上是逐个数据元素的误差,会导致语

义重构问题[14],即数据重构得很好,但语义已丢失。VAE
模型将重构精度、变分正则项作为优化目标,会导致牺牲重

构精度以换取平滑的低维特征空间,也面临语义丢失问题。
此外,AE和VAE作为深度学习模型,也缺乏可解释性。

矩阵分解可对原始数据进行基于部分的表示,是一种

有效的特征提取和数据重构方法。常用矩阵分解模型有非

负矩阵分解(nonnegative
 

matrix
 

factorization,
 

NMF)[15]和
半非负矩阵分解

 

(semi-nonnegative
 

matrix
 

factorization,
 

Semi-NMF)[16]。NMF是将非负的数据分解为特征矩阵和

系数矩阵,并限定两个分解因子也是非负的。Semi-NMF
在具有NMF的优点的同时,还放宽了 NMF的非负性约

束,允许数据矩阵和特征矩阵具有混合符号。近年来,有一

些研究将矩阵分解用于解决异常检测任务,其中大多是将

其用于数据降维,即提取原始数据的特征,然后将低维特征

输入聚类[5]、单类支持向量机[6]等模型进行异常识别。此

外,也有个别研究利用 NMF的重构误差来进行异常判

别[17]。然而传统 NMF模型和Semi-NMF模型的优化目

标函数都是非凸的,会导致矩阵分解因子容易陷入局部最

优解[16],从而影响异常检测效果。

针对上述情况,本文将神经网络训练方式引入Semi-
NMF模型,设计了一个适用于异常检测任务的半非负矩阵

分 解 神 经 网 络 (semi-nonnegative
 

matrix
 

factorization
 

neural
 

network,
 

SNMFNN)。SNMFNN将数据矩阵的重

构误差作为损失函数,将Semi-NMF的特征矩阵作为网络

权值。之所以选择Semi-NMF构建此网络,是因为其允许

数据矩阵和特征矩阵具有混合符号,这对原始数据具有很

好的适用性;此外在网络训练过程中,权值需可正可负,其
特征矩阵也符合这一条件。本文详细介绍了SNMFNN的

结构及应用方法,通过与传统Semi-NMF的数据重构效果

对比,说明了其合理性,并在三个数据集上评估和探讨了它

的异常检测性能。

1 半非负矩阵分解神经网络

1.1 半非负矩阵分解

  本文设计的SNMFNN选用Semi-NMF进行数据降维

以获得低维特征。Semi-NMF的基本原理为[16]:假设数据

X 是n×p 的矩阵,即是n 个样本数据的集合,每一个样本

都有p 维特征;在满足一定约束条件下,将数据矩阵X 分

解为两个因子,即特征矩阵F(F ∈Rk×p )和系数矩阵G
(G ∈Rn×k ),并使得数据矩阵的重构误差最小。Semi-
NMF允许数据矩阵X 和特征矩阵F 的元素有混合符号,
同时限制系数矩阵G 仅由非负元素组成,其近似于以下因

式分解:
 

X ≈GF (1)
优化 Semi-NMF的两个分解因子所采用的目标函

数为:

minΓG,F  = ‖X-GF‖2
F,s.t.G ≥0 (2)

基于乘法规则,按式(3)和式(4)对F 和G 进行迭代优

化。采用的迭代规则为:两个因子交替迭代更新,即在更新

其中一个因子的同时,固定另一个因子。

F = GTG  -1GTX (3)

G =G XFT  pos+GFFT  neg

XFT  neg+GFFT  pos
(4)

式中:符号Apos 表示矩阵A 的负元素被0替换,符号Aneg

表示矩阵A 的正元素被0替换,可用式(5)所示的定义进

行表述。

∀i,j. Apos=
Ai,j +Ai,j

2
, Aneg=

Ai,j -Ai,j

2
(5)

1.2 网络结构、损失函数及异常检测应用

  SNMFNN是将基于Semi-NMF的低维特征提取过程

和数据重构过程进行直接连结,其结构包括输入层、Semi-
NMF层、重构层,如图1所示。

输入层用于接受样本数据矩阵X,接着由Semi-NMF
层在固定特征矩阵F 的情况下对数据矩阵进行半非负矩

阵分解,通过对式(4)进行迭代运算以获得系数矩阵G,

·522·



 第48卷 电 子 测 量 技 术

图1 SNMFNN的结构

Fig.1 Structure
 

of
 

the
 

SNMFNN

Semi-NMF层的运算过程如式(6)所示。

G =f(m)G  (6)
其中,f(G)为式(4),m 为迭代次数。然后在重构层,

根据特征矩阵和系数矩阵按式(7)对数据矩阵进行重构,得

到重构后的数据矩阵
 

X︵ 。
 

X︵ =GF (7)

Semi-NMF的分解残差即是训练SNMFNN的损失函

数,如式(8)所示。

Ω=
1
n∑i,j X-

 

X︵  2
i,j (8)

其中,n是每次训练的样本数,1≤i≤n,1≤j≤p。
在SNMFNN的训练过程中,仅有特征矩阵F 是需要

训练的网络权值,F 中元素的初始值在区间(-1,1)范围,
系数矩阵G 中元素的初始值在区间(0,1)范围。

在异常检测应用中,先用正常数据对SNMFNN进行训

  

练,让SNMFNN记住正常数据的特征,以得到SNMFNN模

型;然后将待检数据输入该模型,得到数据重构误差,误差

值若高于阈值,则待检数据被判为异常,反之则为正常。

1.3 网络合理性分析

  传统Semi-NMF是采用乘法迭代的方式更新分解因

子(记为传统SNMF),而本文是通过网络训练的方式更新

Semi-NMF的分解因子(记为网络SNMF)。将传统SNMF
与本文提出的网络SNMF进行对比,以说明SNMFNN的

合理性。让传统SNMF和网络SNMF分别对相同的图像

进行分解和重构,通过原始图像和重构图像的相似度来对

比二者的分解效果。本文选用 MSE(mean
 

squared
 

error)、

PSNR (peak
 

signal-to-noise
 

ratio)、SSIM (structural
 

similarity
 

index)等图像质量评价的典型指标[18],用来衡量

图像相似度。MSE是两幅图像的均方误差,此值越小,说
明图像越相似;PSNR即峰值信噪比,基于 MSE指标,衡量

信号最大功率与噪声功率的比值,单位是dB,此值越高,说
明图像越相似,一般达到25

 

dB以上即认为图像接近;

SSIM从亮度、对比度、图像结构三方面综合评估图像相似

性,此值越接近1,表示图像越相似。
本文选择动物图像(像素值均为非负数据)和 Mel频

率倒谱图(像素值有正有负,即为半非负数据)进行相似性

评价实验。设置相同的矩阵分解初始值,分别利用传统

SNMF和网络SNMF对动物图像(大小为1
 

024×1
 

024像

素)进行分解和重构,原始图像和重构图像如图2所示,图
像相似性评价参数的计算结果如表1所示。

图2 图像重构效果

Fig.2 Reconstruction
 

effect
 

of
 

the
 

image

表1 图像重构后的相似性参数值

Table
 

1 Values
 

of
 

the
 

image
 

similarity
 

parameters
方法 MSE PSNR SSIM

传统SNMF 4.31×10-4 33.65
 

db 0.829
网络SNMF 5.41×10-4 32.66

 

db 0.816

  用于实验的 Mel频率倒谱图来源于2.1节介绍的

Slider数据集的声学特征,每张图的大小是309×320,从中

随机选择100幅图。按照相同的矩阵分解初始值,将这些

图输入传统SNMF和网络SNMF分别进行分解和重构,
原始图像和重构图像的相似性评价参数 MSE、PSNR、

SSIM的计算结果如图3所示;三个参数的均值及方差如

表2所示,其中符号“±”的前者为均值、后者为标准差。
从相似性评价实验结果可以看出,本文设计的网络
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  表2 100幅倒谱图重构后的相似性参数值

Table
 

2 Similarity
 

parameters
 

of
 

100
 

reconstructed
 

spectrograms
方法 MSE PSNR SSIM

传统SNMF 8.77×10-4±3.70×10-4 30.87±1.54
 

db 0.9993±5.30×10-4

网络SNMF 0.001±2.92×10-4 30.17±1.38
 

db 0.9989±5.40×10-4

图3 Mel频率倒谱图相似性评价参数的计算结果

Fig.3 Similarity
 

parameters
 

of
 

Mel
 

spectrograms

SNMF和传统SNMF在数据分解和重构方面的效果非常

接近,说明网络SNMF和传统SNMF一样,在数据分解和

重构过程中没有引起数据信息失真,进而说明利用网络训

练的方式对 Semi-NMF模型 的 因 子 进 行 更 新,与 传 统

Semi-NMF模型采用乘法迭代更新分解因子的典型方式

趋于一致,进而说明了本文设计的SNMFNN具有合理性。

2 实验结果

2.1 数据集及数据处理

  本文在3个数据集上对SNMFNN的异常检测性能进

行评估,数据集及相应数据特征提取过程简要介绍如下。
KDDCup数据集[19]。此数据集是一个计算机网络入

侵检测的经典数据集,由美国加州大学欧文分校和加州大

学伯克利分校提供,并国际知识发现和数据挖掘竞赛

(KDD
 

Cup)中使用。该数据集来源于对美国空军网络流

量的模拟,包括正常网络流量和多种类型的入侵流量,用
于识别网络入侵行为。每个数据由网络连接的各种特征

组成,如连接的持续时间、服务类型、源和目标地址、传输

层协议等共计121维特征,数据集中的类别标签指示了每

个连接是正常连接还是某种类型的入侵行为(包括拒绝服

务攻击、欺骗攻击、恶意代码攻击等多种攻击类型)。本文

选用KDDCup的子集kddcup.data_10_percent。

Slider数据集[20]。该数据集于2019年发布,目的是为

工业设备异常声音检测研究提供真实工厂环境下的声音

数据。由8个麦克风组成的均匀圆形阵列采集工业导轨

的工作声音,采样率16
 

kHz,采样精度16
 

bit,本文选择数

据集中Slider02的声音进行实验,选用第一个麦克风的录

音。共有1
 

068个正常声音样本、267个异常声音样本,每

个声音样本的时长为10
 

s,异常情况为轨道损坏、皮带松

动、缺少润滑剂等。实验中,训练集选择801个正常样本,
其余正常样本和异常样本用作测试集。按照此数据集提

供方[20]的数据处理方式进行声学特征提取,每个样本的特

征是一个大小为309×320的 Mel频率倒谱图。

Motor数据集。此数据集是本文作者对国内某空调电

机制造企业提供的一批电机样品的运行声音进行采集而

得。电机样品包含46个正常样品、20个故障样品,故障情

况为转子摩擦故障、电磁故障、轴承故障。对每个样品分

别采集了30个声音样本,每个样本的时长为1
 

s,采样率

48
 

kHz,采样精度32
 

bit。对每个样本提取声学特征的过

程为:采用窗长为25
 

ms、步长为10
 

ms的滑动窗将时长为

1秒的声音信号分割为99个数据块;按 Mel刻度将每个数

据块划分为24个频段,计算每个频段的 Mel频率倒谱系

数,选 择 前 12 个 MFCCs(mel-frequency
 

cepstrum
 

coefficients,
 

MFCCs)作为特征;将每个数据块的特征按时

间顺序连接在一起,可得到一个大小为99×12的 MFCCs
特征图,即为一个样本的声学特征。随机选择每个正常样

品的15个样本作为训练集,正常样品的其余样本和异常

样品的全部样本作为测试集,因此训练集有690个样本、测
试集有1

 

290个样本(正常样本690个、异常样本600个)。
2.2 评价指标

  选择精确率(Precision)、召回率(Recall)、F1分数(F1-
Score)作为评价指标,计算公式如式(9)~(11)所示。精确

率衡量被模型预测为异常的样本中真实异常样本的比例,
高精确率可减少因将正常样本误报为异常而导致的冗余

维护成本。召回率表示模型对所有真实异常样本的正确

识别能力,高召回率意味着漏检率低,对预防突发性异常
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至关重要。F1分数是精确率和召回率的调和平均数,能够

反映模型在精确率和召回率之间的平衡程度。此外,为了

更全面地测试检测效果,本文还选用auc和p_auc指标。

Precision=
TP

TP+FP
(9)

Recall=
TP

TP+FN
(10)

F1-Score=2×
Precision×Recall
Precision+Recall

(11)

其中,N 为异常,P 为正常,用大写字母T 和F 分别

表示样本的预测标签与其实际标签相符或相反,TP 表示

被正确预测为异常的样本数,FP 表示被错误预测为异常

的样本数(实际为正常),FN 表示被错误预测为正常(实际

为异常)的样本数。

2.3 对比方法

  本文提出的基于SNMFNN的异常检测方法,是将数

据重构误差值作为异常判别的依据,因此当前流行的同类

异常判别方法 AE、VAE是用于对比的主要基线。此外,

SNMFNN是将传统Semi-NMF模型和神经网络训练方式

相结合,其中Semi-NMF的系数矩阵仍然采用传统乘法迭

代方式进行更新,特征矩阵则随着网络训练而更新,这有

利于解决传统Semi-NMF模型易陷入分解因子是局部最

优解的问题。为了凸显此改进的积极作用,本文还设计了

基于传统Semi-NMF模型的异常检测方法(记为SNMFA
方法),即利用传统Semi-NMF对数据按照式(3)、(4)、(7)
进行分解和重构,然后跟据重构误差进行待检数据的异常

判别。
在实验中,SNMFNN方法及其对比方法 AE、VAE、

SNMFA在各数据集上的网络结构及超参数设置如下。在

KDDCup数据集的实验中,所有方法的输入层均有121个

节点,AE方法和VAE方法的网络结构中的编码过程为:
第一个全连接层40个节点、激活函数为tanh,第二个全连

接层5个节点、线性激活函数,解码过程与编码过程相逆;

SNMFNN方法特征矩阵的维度为8,式(6)中的迭代次数

m 为11。对于Slider数据集和 Motor数据集,所有方法的

输入层相应分别有320个节点、1
 

188个节点,AE方法和

VAE方法的编码器和解码器结构相同,编码器结构具体

为:第一个全连接层150个节点、激活函数为tanh,第二个

全连接层50个节点、激活函数为tanh,第三个全连接层20
个节点、激活函数为tanh,第四个全连接层10个节点、线
性激活函数,解码器与编码器的结构相反;SNMFNN方法

中,特征矩阵的维度分别设为20和30,式(6)中的迭代次

数m 为11。网络训练相关的 minibatch是128、learning
 

rate是 0.001、epoch 是 100。此 外,为 了 更 好 的 对 比

SNMFNN方法和SNMFA方法,二者在所有实验中的矩

阵维度和初始值均相同。

2.4 实验环境与实验结果

  本文方法及其对比方法涉及的特征提取、模型训练及

验证代码均在 TensorFlow2.10和Python3.11框架下进

行编写,在 Windouws
 

11系统上运行,各种方法在三个实

验数据集上的测试结果如表3~5所示。

表3 KDDCUP数据集的实验结果

Table
 

3 Experimental
 

results
 

of
 

the
 

KDDCUP
 

dataset

方法 Precision Recall F1-Score auc p_auc
AE 0.955 0.965 0.960 0.977 0.967
VAE 0.960 0.970 0.965 0.980 0.972
SNMFA 0.931 0.941 0.936 0.962 0.947
SNMFNN 0.961 0.971 0.966 0.981 0.972

表4 Slider数据集的实验结果

Table
 

4 Experimental
 

results
 

of
 

the
 

Slider
 

dataset

方法 Precision Recall F1-Score auc p_auc
AE 0.642 0.668 0.655 0.648 0.619
VAE 0.636 0.662 0.649 0.642 0.613
SNMFA 0.656 0.682 0.669 0.662 0.632
SNMFNN 0.681 0.708 0.694 0.688 0.657

表5 Motor数据集的实验结果

Table
 

5 Experimental
 

results
 

of
 

the
 

Motor
 

dataset

方法 Precision Recall F1-Score auc p_auc
AE 0.821 0.812 0.816 0.829 0.809
VAE 0.820 0.810 0.815 0.827 0.807
SNMFA 0.727 0.718 0.723 0.742 0.728
SNMFNN 0.853 0.843 0.848 0.858 0.849

2.5 实验结果讨论

  从表3~5中的实验结果可以看出,与当前流行的异

常检测方法 AE、VAE相比,SNMFNN方法在 KDDCUP
数据集上的优势不明显,而在Slider数据集和 Motor数据

集上具有明显更优的效果。这是因为:KDDCUP数据集

是网络流量数据,具有离散特性,即使相邻数值也容易存

在突变,而Slider数据集和 Motor数据集中的数据是声音

数据,具有连续性,且从声音数据中提取的 MFCCs图(即
声音特征),其相邻像素值一般也是连续的;Semi-NMF模

型假设数据是特征矩阵和系数矩阵的线性组合,连续数据

容易满足“局部叠加构成整体”的特性,与 AE方法、VAE
方法相比,SNMFNN方法会更好的保留语义特征,从而有

利于SNMFNN方法在声音数据上取得更出色的表现;而
离散数据可能不是很符合此假设,且SNMFNN 中没有

tanh、sigmoid等具有平滑效果的激活函数,这可能也限制

了其用于离散数据时的表现。
在3个数据集上,SNMFNN方法都表现的比SNMFA

方法明显更为出色。这是因为传统Semi-NMF的优化目

标函数(如式(2))是非凸的,导致矩阵分解因子容易陷入
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局部最优解,从而可能影响SNMFA 方法的异常检测效

果,而SNMFNN方法是采用神经网络训练的方式优化矩

阵分解因子,虽然网络训练也面临着陷入局部最优解的问

题,但是相比于矩阵分解,此问题会明显较弱。

3 结  论

  本文将网络训练方式引入经典Semi-NMF模型,将

Semi-NMF的分解因子(特征矩阵)由传统上基于乘法迭

代更新变为随着网络训练而更新,从而设计了一个用于解

决异常检测任务的新网络SNMFNN,给出了网络结构及

其优化目标函数。SNMFNN和Semi-NMF模型对数据的

分解和重构效果基本一致,这体现了SNMFNN的设计合

理性。将SNMFNN在三个数据集上进行了异常检测性能

测试,实验结果表明,在针对连续性数据时,与当前流行的

误差重构法 AE、VAE相比,它能较明显的提升异常检测

效果,这 是 因 为 SNMFNN 能 更 好 的 保 留 语 义 特 征;

SNMFNN能有效缓解Semi-NMF模型面临的分解因子局

部最优解问题,因此其在所有测试结果上都比SNMFA方

法更好。此外,由于Semi-NMF模型具有“局部叠加构成

整体”的可解释性,让SNMFNN具有了深度学习神经网络

所没有的可解释性。异常检测在很多领域具有显著的应

用价值,本文是利用传统矩阵分解模型构建神经网络的有

益尝试,未来将进一步将矩阵分解研究成果拓展至深度学

习领域,提升异常检测效果。

参考文献

[1] 李艳霞,
 

柴毅,
 

胡友强,等.
 

不平衡数据分类方法综

述[J].
 

控制与决策,
 

2019,
 

34(4):
 

673-688.
LI

 

Y
 

X,
 

CHAI
 

Y,
 

HU
 

Y
 

Q,
 

et
 

al.
 

Review
 

of
 

imbalanced
 

data
 

classification
 

methods[J].
 

Control
 

and
 

Decision,
 

2019,
 

34(4):
 

673-688.
[2] WANG

 

S,
 

BALAREZO
 

J
 

F,
 

KANDEEPAN
 

S,
 

et
 

al.
 

Machine
 

learning
 

in
 

network
 

anomaly
 

detection:
 

a
 

survey[J].
 

IEEE
 

Access,
 

2021,
 

9:
 

152379-152396.
[3] 张玥,

 

陈锡伟,
 

陈梦丹,等.
 

基于对比学习生成对抗网

络的无监督工业品表面异常检测[J].电子测量与仪器

学报,
 

2023,
 

37(10):193-201.
ZHANG

 

Y,
 

CHEN
 

X
 

W,
 

CHEN
 

M
 

D,
 

et
 

al.
 

Unsupervised
 

surface
 

anomaly
 

detection
 

of
 

industrial
 

products
 

based
 

on
 

contrastive
 

learning
 

generative
 

adversarial
 

network [J].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2023,
 

37(10):

193-201.
[4] ZHANG

 

Y
 

CH,
 

DONG
 

ZH
 

Y,
 

KONG
 

W
 

C,
 

et
 

al.
 

A
 

composite
 

anomaly
 

detection
 

system
 

for
 

data-driven
 

power
 

plant
 

condition
 

monitoring [J].
 

IEEE
 

Transactions
 

on
 

Industrial
 

Informatics,
 

2019,
 

16(7):
 

4390-4402.

[5] PU
 

G,
 

WANG
 

L
 

J,
 

SHEN
 

J,
 

et
 

al.
 

A
 

hybrid
 

unsupervised
 

clustering-based
 

anomaly
 

detection
 

method[J].
 

Tsinghua
 

Science
 

and
 

Technology,
 

2020,
 

26(2):
 

146-153.
[6] JI

 

Y
 

H,
 

LEE
 

H
 

C.
 

Event-based
 

anomaly
 

detection
 

using
 

a
 

one-class
 

SVM
 

for
 

a
 

hybrid
 

electric
 

vehicle[J].
 

IEEE
 

Transactions
 

on
 

Vehicular
 

Technology,
 

2022,
 

71(6):
 

6032-6043.
[7] 魏新园,

 

周京欢,
 

钱牧云,等.
 

随机森林算法在超声缺

陷识别 中 的 应 用 研 究[J].
 

电 子 测 量 与 仪 器 学 报,
 

2024,
 

38(5):
 

47-55.
WEI

 

X
 

Y,
 

ZHOU
 

J
 

H,
 

QIAN
 

M
 

Y,
 

et
 

al.
 

Research
 

on
 

the
 

application
 

of
 

random
 

forest
 

algorithm
 

in
 

ultrasonic
 

defect
 

recognition[J].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2024,
 

38(5):
 

47-55.
[8] HAN

 

W,
 

XIE
 

SH
 

L,
 

YANG
 

Z
 

Y,
 

et
 

al.
 

Heart
 

sound
 

classification
 

using
 

the
 

SNMFNet
 

classifier[J].
 

Physiological
 

Measurement,
 

2019,
 

40(10):
 

105003.
[9] DARBAN

 

Z
 

Z,
 

WEBB
 

G
 

I,
 

PAN
 

SH
 

R,
 

et
 

al.
 

Deep
 

learning
 

for
 

time
 

series
 

anomaly
 

detection:
 

A
 

survey[J].
 

ACM
 

Computing
 

Surveys,
 

2024,
 

57(1):
 

1-42.
[10] NAWAZ

 

A,
 

KHAN
 

S
 

S,
 

AHMAD
 

A.
 

Ensemble
 

of
 

autoencoders
 

for
 

anomaly
 

detection
 

in
 

biomedical
 

data:
 

A
 

narrative
 

review[J].
 

IEEE
 

Access,
 

2024,
 

12:
 

17273-17289.
[11] 刘韵婷,

 

李绅科,
 

郭辉,等.
 

基于神经批采样的轮胎X
光图 像 异 常 检 测 研 究[J].电 子 测 量 技 术,

 

2023,
 

46(5):
 

157-163.
LIU

 

Y
 

T,
 

LI
 

SH
 

K,
 

GUO
 

H,
 

et
 

al.
 

Research
 

on
 

tire
 

X-ray
 

image
 

anomaly
 

detection
 

based
 

on
 

neural
 

batch
 

sampling[J].
 

Electronic
 

Measurement
 

Technology,
 

2023,
 

46(5):
 

157-163.
[12] XIE

 

T
 

M,
 

XU
 

Q
 

F,
 

JIANG
 

C
 

X,
 

et
 

al.
 

A
 

robust
 

anomaly
 

detection
 

model
 

for
 

pumps
 

based
 

on
 

the
 

spectral
 

residual
 

with
 

self-attention
 

variational
 

autoencoder[J].IEEE
 

Transactions
 

on
 

Industrial
 

Informatics,
 

2024,
 

20(6):
 

9059-9069.
[13] 李桢煜,

 

宋宇晨,
 

彭喜元,等.
 

基于对比序列重构的卫

星遥测数据异常检测方法[J].
 

仪器仪表学报,
 

2024,
 

45(4):
 

17-26.
LI

 

ZH
 

Y,
 

SONG
 

Y
 

CH,
 

PENG
 

X
 

Y,
 

et
 

al.
 

Contrastive
 

time-series
 

reconstruction
 

method
 

for
 

satellite
 

anomaly
 

detection[J].
 

Chinese
 

Journal
 

of
 

Scientific
 

Instrument,
 

2024,
 

45(4):
 

17-26.
[14] CHEN

 

M,
 

SHI
 

X
 

B,
 

ZHANG
 

Y,
 

et
 

al.
 

Deep
 

feature
 

learning
 

for
 

medical
 

image
 

analysis
 

with
 

convolutional
 

autoencoder
 

neural
 

network[J].
 

IEEE
 

Transactions
 

on
 

·922·



 第48卷 电 子 测 量 技 术

Big
 

Data,
 

2017,
 

7(4):
 

750-758.
[15] HE

 

CH
 

B,
 

FEI
 

X,
 

CHENG
 

Q
 

W,
 

et
 

al.
 

A
 

survey
 

of
 

community
 

detection
 

in
 

complex
 

networks
 

using
 

nonnegative
 

matrix
 

factorization [J].
 

IEEE
 

Transactions
 

on
 

Computational
 

Social
 

Systems,
 

2022,
 

9(2):
 

440-457.
[16] SHU

 

ZH
 

Q,
 

SUN
 

Y
 

W,
 

TANG
 

J
 

L,
 

et
 

al.
 

Adaptive
 

graph
 

regularized
 

deep
 

semi-nonnegative
 

matrix
 

factorization
 

for
 

data
 

representation [J].
 

Neural
 

Processing
 

Letters,
 

2022,
 

54:
 

5721-5739.
[17] 张焱,

 

蔡有鑫,
 

王平,等.
 

单时频谱非负矩阵编码与解

调的特征提取[J].
 

仪器仪表学报,
 

2022,
 

43(12):
 

238-247.
ZHANG

 

Y,
 

CAI
 

Y
 

X,
 

WANG
 

P,
 

et
 

al.
 

Feature
 

extraction
 

using
 

nonnegative
 

matrix
 

coding
 

and
 

demodulation
 

of
 

single
 

spectrogram [J].
 

Chinese
 

Journal
 

of
 

Scientific
 

Instrument,
 

2022,
 

43(12):
 

238-247.

[18] SETIADI
 

D
 

R
 

I
 

M.
 

PSNR
 

vs
 

SSIM:
 

Imperceptibility
 

quality
 

assessment
 

for
 

image
 

steganography[J].
 

Multimedia
 

Tools
 

and
 

Applications,
 

2021,80:
 

8423-8444.
[19] SIDDIQUE

 

K,
 

AKHTAR
 

Z,
 

KHAN
 

F
 

A,
 

et
 

al.
 

KDD
 

Cup
 

99
 

data
 

sets:
 

a
 

perspective
 

on
 

the
 

role
 

of
 

data
 

sets
 

in
 

network
 

intrusion
 

detection
 

research[J].
 

Computer,
 

2019,
 

52(2):
 

41-51.
[20] BOZTAS

 

G,
 

TUNCER
 

T,
 

AYDOGMUS
 

O,
 

et
 

al.
 

A
 

DCSLBP
 

based
 

intelligent
 

machine
 

malfunction
 

detection
 

model
 

using
 

sound
 

signals
 

for
 

industrial
 

automation
 

systems[J].
 

Computers
 

and
 

Electrical
 

Engineering,
 

2024,
 

119:
 

109541.
作者简介

韩威,博士,高级工程师,主要研究方向为智能传感与在

线检测。
吴黎明(通信作者),硕士,教授,主要研究方向为机器视

觉检测。

E-mail:
 

ghanwei@yeah.net

·032·


