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Design and implementation of a high-precision laser echo delay system
based on FPGA

Sun Chen
(School of Opto-Electronic Engineering, Changchun University of Science and Technology,Changchun 130022, China)

Wang Lingyun

Abstract: To address the challenge of achieving both wide-range coverage and high-precision delay in conventional laser
echo simulators, we designed a fully digital, high-precision delay signal control system with coarse-fine tuning
capability s implemented on an FPGA. The system employs a dynamic phase adjustment strategy that integrates a clock
counter with a mixed-mode clock manager (MMCM). Coarse delay adjustment is performed using a 250 MHz system
clock counter, while fine delay compensation is realized through MMCM-based phase interpolation with 17. 857 ps
resolution steps. Experimental results demonstrate that, within a simulation range of 300 m to 30 000 m, the delay
accuracy is better than 6 ps, corresponding to a distance resolution of 0.01 m. In actual measurements, the delay

accuracy exceeds 1.2 ns, equivalent to a distance resolution of 0.18 m. This system achieves precise delay control

across a wide range, offering a robust and reliable solution for performance evaluation of pulse laser rangefinders.
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Fig. 1 System structure diagram of the laser echo simulator

FRETARIEIANT (3% 8 T HUl ) 4 ROk 2 R 5
o 84 0 B S B A SR ok it AT O AU IR L o A UK
TR 25000 12 A A B IR RO R s A . [ A
T G HL AR SR O LR S . B 2 WK
BT RS G il k(55 BB AR e, F 4R
il #AR IS B AR BE B B I S HOT L E 4 FPGAL Rl &
BT I T4 R G L R B AR, 2R R R
FE {5 5 2 WO6 & BT, BRIk b o6 E & B O
FIRAY FOHF R GBI 5 LW B B BE S, % E SR
I S 0 P S AT 0L B S [ sk AR . R e T ) o Il
WA W S B 5 T3 S B0 AT X L o DA T S 30 e R
S I B S R ) R

RG0S FPGA 52 I AE i 45 il , FL R[] 43 B 58 P 5 18
FOLE B0 PG B . 7 3 T P AR A e, 38 [ 3R AT DL B8 A I
WO Il S5 R IR T 0 H AR RS L ans (D s,

L :%CT (1

Af: € = 3X 10" m/s APOCTEZS P AL R E . T4
il 25 AR 4 TR EE B AL, Jl 2 2 (1) 45 ) 54 3R I [H]
AT IR 53 fiff SRy Fe WO R g 137 1R[] AT S Bof A6 e Ak Pt
W) AT, B S S A Hemig 2 (] AT L 3l 25X (2)

2AL
AT = c AT, +AT, + AT, (2)

Horp BE B AR B b BRI [A) AT, A AR SCRY 0 Ak 2
B, AL HE— 25 43 i LR B 0 T, S5AERERS i T,
m= () PR,

AT, = Tewe + Trin (3)

ARICHEET FPGA R R4 -5 200 5 MMCM #5114

+ 178 o

B4 I ) 45 ol 465 440 o SR 2R 4 9 I ) o G R A o
2 FPGA BHEERR%ZIEIT

ATE IS F G0 SR BT S I 2 PR R ORLKS
PG A IE I T 5. RGBT I B I A
o AT 3 A 1 103 B S N 2 K R HG o3 i D R SE
PG SR BT o 19 S o 30 65k RS 9 S A AR R 9 0 114 A £ 38 7%
T I3 I iy 200 7 A IR O BT . R 9 S I A B A T
T 2 R S BT K A % ek e S0 SR, O 9 S A
AT MMCM Az 5% 22 AR I, 38 5o 3l 25 98 FH 5050 19 AR 47
AT AR 5 LR AR S I AR 20 AL AP B o e 8 I ] 4 A6
BRI R IR A R AR G B i OV L RS B Y A

fF5.

LT E R AR

I
g E

) HIRAERT Bk
;E MMCM | i#| MMCM il
zﬂl‘ I EprAC N

2 FPGA BRI ITHEE
Fig. 2 Overall design block diagram of the FPGA
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Timing characteristic diagram of the coarse delay module
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Fig. 4 Structural diagram of the counter design
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Schematic diagram of the MMCM
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Fig. 6 Timing diagram of single-cycle dynamic phase adjustment
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Fig. 9 Simulation results of the coarse delay module
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Fig. 10 Simulation results of the fine delay module
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Table 1 Simulation data table of the delay system
B0 PIGFE I 17 HLSE i HiRE
/m /ns /ns /ps
300 2 000. 000 000 2 000.000 000 0
350 2 333.333 333 2 333.339 000 5. 667
400 2 666.666 667 2 666.661 000  —5.667
500 3 333.333 333 3 333.339 000 5. 667
700 4 666.666 667 4 666.661 000  —5.667
1 000 6 666.666 667 6 666.661 000  —5.667
1500 10 000. 000 000 10 000. 000 000 0
2 000 13 333.333 333 13 333.339 000 5. 667
3 000 20 000. 000 000 20 000. 000 000 0
5 000 33 333.333 333 33 333.339 000 5. 667
7 500 50 000. 000 000 50 000. 000 000 0
10 000 66 666. 666 667 66 666.661 000 —5.667
15000 100 000.000 000 100 000. 000 000 0
20 000 133 333.333 333 133 333.339 000  5.667
25000 166 666.666 667 166 666.661 000 —5.667

30 000 200 000.000 000 200 000.000 000 0

F 1R 0 ps.5.667 ps 5 —5.667 ps = 4145 ELiR
ZE ZIGIR T B AR B iy SR IR . BRI &
R P B S B A O B R B2 U, 2R G A L A i O R R A ) A
SR A A DR R BT B O 2B Bk 5 A R AR AR
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