
  电 子 测 量 技 术

ELECTRONIC MEASUREMENT TECHNOLOGY
第48卷 第23期

2025年12月 

DOI:10.19651/j.cnki.emt.2518944

超声水表长期工作可靠性问题的解决方案综述

金传恩
(北京汇川力行科技有限公司

 

北京
 

100097)

摘 要:本文针对当前超声水表普遍存在的长期工作稳定性与可靠性问题,首次从测量原理角度分析造成该问题的

可能原因,并从测量原理、可测性设计及测试设备三方面提出新的技术方案。具体包括:首次提出基于回波衰减检测

的声波飞渡时间测量原理,从测量原理层面彻底规避了现有基于第一回波检测的超声波渡越时间测量原理中,因水表

硬件性能衰减和各类噪声导致第一回波检测错误而带来的长期工作稳定性与可靠性问题,并验证了基于回波衰减检

测的测量原理的可行性;提出可测性增强的超声波流体流量测量仪表的设计方法和仪表装置;提出适用于超声波流体

流量仪表的测试系统和装置,解决超声水表当前型评测试和出厂检测中“测不出、测不全、测不准”的问题。本文旨在

为当前超能水表存在的长期工作稳定性与可靠性问题提供系统性技术解决方案,为以高精度为优势的超声水表进入

大规模商用奠定基础。本文的问题探析、测量原理和方法、仪表可测性设计及仪表测试设备的创新技术方案同样适用

于超声燃气表和超声油表等超声波流体流量计量仪表。
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Abstract:Aimed
 

at
 

the
 

long-term
 

stability
 

and
 

reliability
 

problem
 

for
 

ultrasonic
 

water
 

meters,
 

this
 

paper
 

first
 

analyzes
 

the
 

possible
 

reasons
 

caused
 

the
 

problem
 

from
 

measurement
 

principle,
 

and
 

proposes
 

new
 

technology
 

programs
 

from
 

measurement
 

principle,
 

measurability
 

design,
 

and
 

measurement
 

equipment.
 

Firstly,
 

it
 

proposes
 

a
 

measurement
 

principle
 

of
 

ultrasonic
 

flight
 

time
 

based
 

on
 

echo
 

attenuation
 

detection.
 

It
 

avoids
 

the
 

first
 

echo
 

detection
 

error
 

caused
 

by
 

hardware
 

attenuation
 

or
 

noise,
 

which
 

exists
 

in
 

the
 

measurement
 

principle
 

of
 

ultrasonic
 

flight
 

time
 

based
 

on
 

first
 

echo
 

detection.
 

It
 

also
 

proves
 

the
 

feasibility
 

of
 

the
 

echo
 

attenuation
 

detection-based
 

measurement
 

principle.
 

Secondly,
 

it
 

proposes
 

the
 

design
 

method
 

and
 

equipment
 

of
 

ultrasonic
 

liquid
 

flow
 

instrument
 

with
 

improved
 

measurability.
 

Thirdly,
 

it
 

proposes
 

a
 

test
 

system
 

suitable
 

for
 

ultrasonic
 

liquid
 

flow
 

instrument,
 

to
 

resolve
 

the
 

problems
 

in
 

current
 

ultrasonic
 

water
 

meter
 

measurement.
 

By
 

providing
 

systematic
 

technology
 

programs
 

for
 

the
 

long-term
 

stability
 

and
 

reliability
 

problem,
 

this
 

paper
 

lays
 

a
 

good
 

foundation
 

for
 

the
 

commercial
 

application
 

of
 

ultrasonic
 

water
 

meters.
 

The
 

present
 

analysis,
 

principle
 

and
 

method
 

can
 

also
 

be
 

applied
 

to
 

other
 

ultrasonic
 

liquid
 

flow
 

meters
 

such
 

as
 

ultrasonic
 

gas
 

meters
 

and
 

ultrasonic
 

oil
 

meters.
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0 引  言

  智能水表在智慧城市、水资源管理、工业生产精密过程

控制及高效节能等领域应用广泛。随着物联网、大数据及

云计算技术的融合,基于超声波测量技术的超声水表凭借

其全电子化、高精度、无磁化、低成本等优势,有望逐步替代

现有以机械转子计量技术为基础的智能水表1.0产品[1-4]。
然而,目前超声水表存在的长期工作稳定性与可靠性问题,
是制约其大规模商用的主要原因[5-6]。《我国水表行业“十
四五”发展规划纲要》中明确定义了超声水表是智能水表2.0
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的代表产品,同时指出智能水表2.0产品的长期工作稳定

性与可靠性亟需提高。2024年10月31日,在全国水表行

业第十届技术交流会上,计量协会水表工作委员会高级顾

问姚灵教授分享了《超声水表若干重要问题的分析与讨论》
的主题报告,报告指出:如要替代智能水表1.0产品,超声

水表应发挥“比较优势”、克服存在的“主要问题”,并明确指

出“提高超声水表长期工作稳定性与工作可靠性”是超声波

水表成为主流产品的关键点。
近年来,针对超声水表的研究大都集中在如何实现精

确的流量计量方面,所涉及到的方法包括阈值法[7-11]、互相

关法[12-17]、回波信号拟合法[18-20]以及其他方法[21-23],或者通

过分析影响计量精度的因素来实现精确测量[24-28]。然而,
针对超声水表长期工作稳定性与可靠性问题的研究不多且

研究效果不理想,其原因主要有两个方面:一是目前对该问

题成因的研究以及提出的改进措施大都是基于孤立的影响

因素,而超声波水表在长期工作过程中,影响其稳定性与可

靠性的因素往往是多方面的;二是对该问题的研究是建立

在当前超声波渡越时间测量原理正确的基础之上。利用超

声波对流体流量进行计量的基础是超声波飞渡时间(或渡

越时间)测量技术[29-34],目前超声水表采用的主流技术是德

国阿凯姆-测量电器有限责任公司(ACAM
 

messelectronic
 

GMBH,ACAM)主 导 的 时 间 数 字 转 换 (time-to-digital
 

converter,TDC)技术和其提出的基于第一回波检测的超声

波渡 越 时 间 测 量 原 理 (以 下 简 称 “第 一 回 波 测 量 原

理”)[35-38]。现有3.6
 

V电池供电的小口径户用超声水表

中,超声波的第一回波幅度通常只有60
 

mV左右,考虑到

系统噪声和检测比较器的精度问题,第一回波实际可检测

的电压窗口范围仅约35
 

mV左右。但随着超声水表长期

工作运行,水表电池电压和换能器振幅等硬件性能发生衰

减,或不同工作环境中的各类噪声,都有引发第一回波检测

出错的可能,使得基于第一回波测量原理的超声波飞渡时

间测量出错,从而导致超声水表的计量精度出现下降或出

现计量出错,进而可使得基于第一回波测量原理的超声水

表出现长期工作稳定性与可靠性问题[39-43]。
因此,本研究提出了新的测量原理,以期从测量原理入

手,彻底解决当前超声水表存在长期工作稳定性与可靠性

问题。此外,本文还从超声流量仪表的可测性和超声流量

仪表的测试设备两方面进行技术创新和改进,以期全面解

决超声水表当前测试中的“测不出、测不全、测不准”问题,
从而确保超声水表长期工作的稳定性与可靠性。

1 基于回波衰减检测的渡越时间测量原理

1.1 基于回波衰减检测的测量原理介绍

  如图1所示,文献[44]提出了基于回波特征衰减检测

的声波飞渡时间测量原理(以下简称“声波飞渡时间测量原

理”)。
如图2所示,文献[44]给出了基于该原理的一种硬件

图1 基于回波衰减检测的声波飞渡时间测量原理示意图

Fig.1 Diagram
 

of
 

the
 

ultrasonic
 

flight
 

time
 

measurement
 

principle
 

based
 

on
 

echo
 

attenuation
 

detection

实现架构。具体工作过程如下:接收换能器接收到声波群

并产生响应电压波群,随着声波群的持续激励,响应电压波

群的波峰幅值逐渐增大,直至接收换能器达到与初始脉冲

群的共振状态,响应电压波的波峰幅值也达到最大值,此
时,一旦脉冲发生器停止产生初始脉冲群,发射换能器便立

刻停止产生和发射声波群,接收换能器因不再受到声波的

激励而开始衰减,接收换能器的响应电压波必然开始衰减,
即响应电压波的波峰幅值或其他特征值开始衰减。当波峰

特征检测单元检测到响应电压波的波峰开始衰减时,便向

控制模块和飞渡时间测量模块发送衰减标志信号,飞渡时

间测量模块立即停止测量计数采样以得到超声波飞渡的参

考跨度时间计数值,同时上位机或控制模块基于参考跨度

时间计数值和飞渡时间测量模块的计数分别率确定出声波

飞渡时间。

图2 基于回波衰减检测的超声波飞渡时间测量装置

Fig.2 The
 

measurement
 

equipment
 

of
 

ultrasonic
 

flight
 

time
 

based
 

on
 

echo
 

attenuation
 

detection

由于响应电压波在初始脉冲群发射结束之后必然会衰

减,且衰减的第一波可以被正确检测,因此飞渡时间测量模

块可以准确确定声波飞渡的停止时间,而飞渡时间测量模

块确定的起始时间是确定且准确的,因此该方法可以准确

地确定出声波飞渡时间。
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如图1所示,式(1)和(2)给出了声波飞渡时间测量原

理的一种典型计算方法:

VA =VB-VC (1)

VC = (N -1)·T (2)
其中,声波飞渡时间VA 是从某个初始脉冲激励发射

换能器所发射的声波飞渡至接收换能器所用的时间,本文

以第N 个初始脉冲来举例说明;第 N 个初始脉冲所对应

的响应回波(简称“第 N 个初始脉冲的响应回波”)的参考

跨度时间VB 是第N 个初始脉冲的对应回波的过零脉冲

(即图1中的“第K 个过零脉冲”)前沿或后沿相对于首个

初始脉冲前沿或后沿的跨度时间,本文以前沿来举例说明;

VC 为N-1个初始脉冲周期的跨度时间;T 为初始脉冲群

的脉冲周期。

1.2 基于回波衰减检测的测量原理的实验验证

  表1为利用杭州瑞盟TDC芯片 MS1030的演示板,依
照德国ACAM第一回波测量原理所测得的超声波飞渡时

间测量数据和计算值[45-47]。表1实验条件:DN15超声水

表管段;VCC=3.6
 

V;水流状态:静止;激励脉冲:7个;

Wave_offs=40
 

mV;offset=0
 

mV。其中offset代表回波

比较器比较基准值;Wave_offs代表第一波检测时相对于

offset的比较偏置值,且仅在第一波检测时有效。

表1 基于第一波测量模式的参考跨度时间测量实验数据

Table
 

1 The
 

measurement
 

data
 

of
 

reference
 

spanning
 

time
 

based
 

on
 

first
 

wave
 

detection
 

mode
项目 数值

超声波示波器回波序号 5 6 7 8
回波测量采样序号 2 3 4 5

过零前沿参考跨度时间/μs58.540
 

59.531
 

60.521
 

61.510
 

超声波飞渡时间计算值/μs54.540
 

54.531
 

54.521
 

57.510
 

  通过该实验可知:对于DN15超声水表,当供电电压

VCC为3.6
 

V,第一回波检测的非零比较基准电压设置为

40
 

mV时,第七个超声波回波的过零前沿参考跨度时间为

60.521
 

μs,依据式(1)和(2)可计算得到此时超声波飞渡时

间为54.521
 

μs,以此作为后续同样实验条件下(DN15超

声水表管段相同,水流状态相同)的超声波飞渡时间的标

准值。
本研究提出的基于回波特征衰减检测的声波飞渡时间

测量原理中,回波特征可以是回波波峰的幅值、回波的非零

比较脉冲宽度跨度时间(简称“非零脉冲跨度时间”)等。接

下来以非零脉冲跨度时间的衰减检测为例,以验证基于回

波特征衰减检测原理的有效性、稳定性和可靠性。
如图3(a)和(b)所示,首先产生并发射初始脉冲群,初

始脉冲群的脉冲数量为7个,初始脉冲周期为1
 

MHz。发

射换能器接收到初始脉冲群后产生7个幅值接近3
 

V的激

励电压波群和一组幅值很低的余振电压波群。其中,由于

余振幅值很低,余振电压波群所激励的超声波在水中快速

衰减而无法到达接收换能器,接收换能器由于超声波群的

声压激励而产生响应电压波群,响应电压波群中的有效响

应电压波的数量为7个,其后是一组接收换能器衰减余振

波群。如图3(c)所示,第一回波至第七回波的波峰幅值逐

步增大,相应回波的非零比较脉冲跨度时间也逐步增大的;
其后由于发射换能器停止发射,接收换能器进入衰减余振

状态,因此图3(c)中第8个回波的波峰幅值开始衰减,第8
个回波的非零比较脉冲跨度时间也开始衰减。

图3 基于回波非零脉冲跨度时间衰减检测的实验波形

Fig.3 The
 

measured
 

plots
 

of
 

attenuation
 

detection
 

based
 

on
 

non-zero
 

pulse
 

spanning
 

time
 

in
 

echo

表2和3是利用 MS1030演示板,基于非零检测模式

所进行的回波非零脉冲跨度时间衰减检测的两组实验数

据。表2实验条件:DN15超声水表管段;水流状态:静止;

VCC=3.6
 

V;offset
 

=80
 

mV;激励脉冲:7个。表3实验

条件:DN15超声水表管段;水流状态:静止;VCC=2.7
 

V;

offset
 

=80
 

mV;激励脉冲:7个。两组实验的offset均设置

为80
 

mV,此时 Wave_offs无效;MS1030演示板的供电电

压在第1组实验中被设置为3.6
 

V,在第2组实验中被设置

为2.7
 

V:由于比较基准电压抬升至80
 

mV,高于示波器第

一回波峰值,示波器第一回波被略过,此时 MS1030可检测
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采样到6个振荡回波和两个衰减回波,从而可确定,第6采

样回波对应于示波器的第7回波,依照文献[48]给出的方

法,可根据测量得到的非零后沿参考跨度时间和非零前沿

参考跨度时间,结合初始脉冲周期,可计算出过零前沿参考

跨度时间,进而可推算得到两组实验的超声波飞渡时间值

分别约为54.521
 

μs和54.508
 

μs,与前述标准值54.521
 

μs
基本相等。

表2 基于回波衰减检测的测量原理的实验数据-1
Table

 

2 The
 

results
 

of
 

measurement
 

principle
 

based
 

on
 

echo
 

characteristic
 

attenuation
 

detection-1

项目 数值或状态值

超声波示波器回波序号 6 7 8 9
回波测量采样序号 5 6 7 8

接收换能器响应波状态 震荡 震荡 衰减 衰减

非零后沿参考跨度时间/μs59.972
 

60.960
 

61.940
 

62.914
 

非零前沿参考跨度时间/μs59.595
 

60.582
 

61.577
 

62.570
 

脉冲中位参考跨度时间/μs59.784
 

60.771
 

61.759
 

62.742
 

过零前沿参考跨度时间/μs59.534
 

60.521
 

61.509
 

62.492
 

非零脉冲脉宽跨度时间/ns
 

377
  

378
  

363
  

344
 

非零脉冲脉宽时间差值/ns
 

13
  

1
 

-15 -19
 

超声波飞渡时间计算值/μs54.534
 

54.521
 

- -

表3 基于回波特征衰减检测的测量原理的实验数据-2
Table

 

3 The
 

results
 

of
 

measurement
 

principle
 

based
 

on
 

echo
 

characteristic
 

attenuation
 

detection-2

项目 数值或状态值

超声波示波器回波序号 6 7 8 9
回波测量采样序号 5 6 7 8

接收换能器响应波状态 震荡 震荡 衰减 衰减

非零后沿参考跨度时间/μs59.960
 

60.948
 

61.927
 

62.900
 

非零前沿参考跨度时间/μs59.580
 

60.567
 

61.560
 

62.553
 

脉冲中位参考跨度时间/μs59.770
 

60.758
 

61.744
 

62.727
 

过零前沿参考跨度时间/μs59.520
 

60.508
 

61.494
 

62.477
 

非零脉冲脉宽跨度时间/ns
 

380
  

381 367
 

347
 

非零脉冲脉宽时间差值/ns 13
 

1
 

-14
 

-20
 

超声波飞渡时间计算值/μs54.520
 

54.508
 

- -

  对比两组实验数据表明:在供电电压从3.6
 

V衰减至

2.7
 

V时,回波特征衰减检测的测量原理依旧能够实现准

确检测,而不受供电电压衰减的影响。
如表4所示为基于回波非零脉冲跨度时间衰减检测的

第3组实验数据。表4实验条件:DN15超声水表管段;水
流状态:静止;VCC=3.6

 

V;offset
 

=120
 

mV;激励脉冲:7
个。当设置offset=120

 

mV时,比较基准电压进一步抬

升,高于示波器第二回波峰值,示波器第一回波和第二回波

均被略过,此时 MS1030可检测采样到5个振荡回波和3

个衰减回波,从而可确定,第5采样回波对应于示波器的第

7回波,从而根据测量得到的非零后沿参考跨度时间和非

零前沿参考跨度时间,结合初始脉冲周期,可以计算出过零

前沿参考跨度时间,进而可推算得到第3组实验的超声波

飞渡时间为54.521
 

μs,与前述标准值54.521
 

μs相等。

表4 基于回波特征衰减检测的测量原理的实验数据-3
Table

 

4 The
 

results
 

of
 

measurement
 

principle
 

based
 

on
 

echo
 

characteristic
 

attenuation
 

detection-3

项目 数值或状态值

超声波示波器回波序号 7 8 9 10
回波测量采样序号 5 6 7 8

接收换能器响应波状态 震荡 衰减 衰减 衰减

非零后沿参考跨度时间/μs60.929
 

61.906
 

62.874
 

63.831
 

非零前沿参考跨度时间/μs60.611
 

61.608
 

62.609
 

63.621
 

脉冲中位参考跨度时间/μs60.770
 

61.757
 

62.742
 

63.726
 

过零前沿参考跨度时间/μs60.520
 

61.507
 

62.492
 

63.476
 

非零脉冲脉宽跨度时间/ns 318
 

298
 

265
 

210
 

非零脉冲脉宽时间差值/ns 2
 

-20
 

-33
 

-55
 

超声波飞渡时间计算值/μs54.520
 

- - -

  对比表2和4两组实验数据可知:在不同的非零比较

基准电压下,回波特征衰减检测的测量原理依旧能够实现

准确检测,而不受非零比较基准电压变化的影响。
由于 MS1030芯片内置比较器的非零比较模式 下

offset的最大可配置值约为120
 

mV。利用 MS1030演示

板,针对常规小口径水表工作电压范围的最高值3.6
 

V和

最低值2.7
 

V 两 种 情 况,将offset分 别 设 置 为40、80、

120
 

mV时,进行了系统的实验测试,得到了与表2~4实

验相一致的结论,从而系统证明了回波特征衰减检测测量

原理的稳定性和可靠性,简省起见,不再罗列更多数据。

2 超声流量仪表可测性设计增强

  根据现行的水表型评实验标准要求,对于电池供电的

水表,厂家须单独提供一块未安装电池的水表,由计量院进

行水表标称工作电压范围的实验和测试,以确认是否符合

其标称电压范围。然而,由于相关水表标准的实验方法中

并未规定供电电压的具体实验方法和实验标准流程,导致

该项实验和测试实际上无法实施。此外,现有电池供电的

超声水表均不具备外部供电功能,而是直接由内部电池供

电且电池不可拆卸,因此无法直接对超声水表进行与电池

供电相关的超声波流量仪表固有特性方面的实验和测试,
如超声波水表对电源噪声、电源衰减的容忍度的相关试验

和测试。因此,以超声水表为例,需要增强超声流量仪表可

测性设计,以方便在超声水表研制、计量院型评批准、生产

出厂批量检验、水司安装前抽检等各阶段,进行涉及电源的

各项实验和测试。
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如图4所示,文献[49]提出了可测性增强的超声波流

体流量测量仪表的设计方法和仪表装置,其中换能器设置

于测量管中,换能器与总电路模块连接,因此换能器在总电

路模块的控制下可定时地进行超声波的发送和接收,测量

管中的流体流动时,总电路模块便可以基于对换能器的超

声波发送和接收事件的测量,来计算顺流和逆流的超声波

飞渡时间的时间差,进而利用测量管、换能器的规格和流体

的类型来确定测量管中流体的流速和流量。由于电源接口

与开关模块连接,电池与开关模块连接,开关模块与可断续

供电的电路单元连接,因此,在需要对超声波流体流量测量

仪表进行各种测试时,便可以在电源接口接入外部电源,从
而使得外部电源通过开关模块对可断续供电的电路单元提

供不同特性的电源供电,以便对超声波流体流量测量仪表

进行测试。在不需进行测试时,电池对可断续供电的电路

单元供电。

图4 电源可测性设计的超声波流量计量装置原理图

Fig.4 Diagram
 

of
 

the
 

ultrasonic
 

liquid
 

flow
 

instrument
 

with
 

supply
 

measurable
 

design

  基于文献[49]内容,进一步研制可测性增强的超声水

表,进而可以进行超声流量仪表一些与超声波固有特性相

关的试验和测试。

3 超声流量仪表测试设备的升级

  除了前文提到的现有测量原理方面的可能原因,造成

超声水表长期工作稳定性与工作可靠性问题的另外一个原

因是现有超声水表出厂测试所用的检测设备测试功能不完

整,导致潜在问题无法在型评检测阶段和出厂检测阶段被

检出。例如,当前《GB/T
 

778.2-2018饮用冷水水表和热水

水表》(以下简称“水表国标”)中,尽管规定水表寿命方面的

要求,但并未规定电源和电池寿命和工作电压范围实验的

具体方法,这导致超声水表在型评阶段的检测不完备,存在

潜在问题的超声水表不能被有效检出而被批准生产和使

用,而超声水表长期工作稳定性与可靠性问题通常在工作

2~3年以后才会随着水表的电池衰减、水表结垢、换能器

衰减等因素而逐步暴露出来,这导致存在问题的超声水表

长期带病运行,从而造成计量结果不准确。
以户用小口径超声波水表为例,通常由内置电池供电

如ER26500型锂亚电池,全新的ER26500型锂亚电池开路

电压可达3.6
 

V以上,但随着超声水表的长期运行,电池不

断放电,电池的开路电压随之下降。接下来分别对直流电

源供电、满电的ER26500型电池供电和放电后的ER26500
型电池供电3种情况进行测试,其中以9.87

 

kΩ电阻来模

拟待机状态下超声水表的等效电阻,以31
 

Ω电阻来模拟主

动测量状态下超声水表的等效内阻。实验数据如表5
所示。

以9.87
 

kΩ电阻模拟超声水表待机状态,分析实验数

  
表5 直流电源与电池供电能力实验数据

Table
 

5 The
 

measurement
 

results
 

of
 

DC
 

supply
 

and
 

battery
 

power
 

supply
 

capability

参数
直流电源 ER26500型锂电池

最大输出电流2
 

A 电池满电 电池放电

负载电阻/Ω 9.87
 

K 31
 

9.87
 

K 31
 

9.87
 

K 31
 

电池电压/V 3.65
 

3.65
 

3.64
 

2.07
 

3.02
 

0.63
 

负载电流/mA 0.37
 

117.58
 

0.37
 

66.81
 

0.31
 

20.32
 

输出功率/mW 1.35
 

428.58
 

1.34
 

138.36
 

0.92
 

12.80
 

据可知:用直流电源模拟满电电池在水表待机状态的供电

量,两者结果基本一致;而用直流电源模拟放电后电池在

水表待机状态的供电量,两者结果有偏差,此时直流电源

输出功率与电池供电输出功率的偏差约0.4倍。以31
 

Ω
电阻模拟超声水表主动测量时状态,分析实验数据可知:
用直流电源模拟满电电池在超声水表主动测量状态的供

电量,两者结果偏差较大,直流电源输出功率与电池供电

输出功率的偏差约2.1倍;而用直流电源模拟放电后电池

在超声水表主动测量状态的供电量,两者结果偏差巨大,

此时直流电源输出功率是电池供输出功率的32.5倍。
实验数据表明,采用现有的供电设备和当前实验方法

得到的测量数据与超声波水表的实际运行情况存在显著

区别,实验方法不科学,以其作为超声水表型评批准实验

和出厂检测实验的实验标准和参照并不妥当。
文献[50]提出了适用于超声波流体流量仪表和电磁

流体流量仪表测试的电源模拟装置、检测系统及检测方

法,用于完成相应的测试和实验。
如图5所示,电源模拟模块包括可调直流电源以及参
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数模拟器,直流电源的电流能够通过第一控制开关到达目

标受电装置,且参数模拟器可以模拟目标电源的各项参

量,使得提供至目标受电装置的电压/电流与目标受电装

置自身电池提供的电压/电流接近。因此,利用电源模拟

装置对目标受电装置供电所做测试的结果会较为准确,其
结果较为接近目标受电装置内置电池时的实际工作状态。

图5 电源模拟装置及其测试系统原理图

Fig.5 Diagram
 

of
 

the
 

simulated
 

supply
 

instrument
 

and
 

its
 

test
 

system

文献[50]和文献[51]提出了适用于超声波流体流量

仪表的创新测试系统架构,基于所述文献提出的系统架

构,进一步研制相应的流体流量仪表测试设备,以实现对

超声波水表在研发阶段、计量院型评实验阶段、以及出厂

检定测试阶段对系统噪声、电源衰减的容忍度、及换能器

性能衰减进行全面等效测试,确保超声水表的检测结果尽

可能与超声水表运行的全生命周期情况相符合,一方面避

免存在长期工作稳定性与可靠性潜在设计问题的流量仪

表被型评批准而投入生产,另一方面,避免存在潜在问题

的超声波水表被过检出厂,从型评批准和出厂检测两个环

节确保流量仪表的长期工作稳定性与可靠性。

4 结  论

  本文从测量原理的层面,探寻超声水表长期工作稳定

性与可靠性问题的可能原因,即基于第一回波检测的超声

波渡越时间测量存在检测出错的趋势和概率,并可以导致

计量精度下降或计量出错。提出了基于特征衰减检测的

声波飞渡时间测量原理,该原理因其检测的对象是超声回

波特征和特征衰减,并且特征衰减是必然发生的确定性事

件,故该测量原理对于环境变化和仪表的衰减具有天然免

疫力,同时,如作者在文献[44]中所述,该测量原理和检测

方法具备检测错误的自我识别和自适应调整能力。结合

《我国水表行业“十四五”发展规划纲要》和《超声水表若干

重要问题的分析与讨论》内容可以看到,超声水表的长期

工作稳定性与可靠性问题是制约超声水表进入大规模商

业应用的主要因素,因此,需要加快基于创新测量原理的

超声水表的研制和试验,同时还需要加快与测量原理相配

套的超声水表测试仪器设备的研制和试验,使得超声水表

在生产阶段就能够进行长期工作稳定性和可靠性的必要

模拟测试,从而使得基于创新原理的超声水表可以尽快实

现大规模商用。本文的问题探析、测量原理方法、测试设

备及可测性设计的创新技术方案同样适用于超声燃气表

和超声油表等其他超声波流体流量计量仪表。
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