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the improved YOLOVS8
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Abstract: Detection of surface defects in steel materials is a key link in ensuring the quality of products in the
manufacturing industry. Manual visual inspection and basic optical detection methods suffer from low efficiency and
high miss detection rates, and the limited samples of existing datasets restrict the model’ s generalization ability.
Therefore, this paper proposes a lightweight steel surface defect detection method that integrates LS-DCGAN data
augmentation with an improved YOLOv8 model. Firstly, to address the issue of insufficient sample diversity in the
NEU-DET dataset, we use an LS-DCGAN generative adversarial network for data augmentation, effectively
supplementing the morphological features and distribution characteristics of defect samples. Secondly, we conduct
triple optimization on the YOLOv8 model to propose the SPH-YOLO detection algorithm: reconstructing the C2f
module structure to enhance feature extraction capabilities, embedding an attention mechanism to improve focus on
defect areas, and designing a multi-level feature fusion pyramid for cross-scale information interaction. Finally, we
validate the improved model on the enhanced NEU-DET and GC10-DET datasets. Experimental results show that the
improved model achieves a 3.2% increase in mAP@50%, a 28.5% reduction in parameter count, and a 12.3%
decrease in computational load. Furthermore, the improvement method exhibits strong generalization ability,
effectively balancing the lightweight nature of the detection model and its detection performance.
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Table 3 Detection results of different SCSA configurations
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Table 4 Ablation experiments of the improved model on the dataset
4o AR C20 SCSA PSA HSFPN  mAP@50/%  Parameters/M GFLOPS/G

1 X X X X 75. 1 3.0 8.1

2 J X X X 76. 3 3.0 8.1

3 J J X X 78.3 3.0 8.1

4 J X J X 78.0 3.2 8.4

5 J X X J 77.1 1.9 7.0

6 NG NG N N 78. 1 2.2 7.1
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R-CNN, YOLOv5n, YOLOv6n, YOLOv8n, YOLOv9t,
YOLOv10 n, YOLO11; It #h, 75 B fili B Y | &2 813k JL4F
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Table 5 Comparison experiments of different models

o mAP@50 Parameters GFLOPS
21 5 Fi A1 2y M G
1 SSD 69. 2 24. 4 30. 68
2 FasterrRCNN  75.7 28.2 37.55
3 YOLOv5n 75.9 2.5 7. 20
4 YOLOv6n 73. 4 4.2 11. 90
5 YOLOv8n 76.3 3.0 8.10
6 YOLOv9t 74.8 2.0 7.90
7 k(23] 76.9 2.5 6. 90
8 SCHERL24] 77.8 2.8 7.70
9 YOLOv10n 73.1 2.7 8. 40
10 YOLO11 76.0 2.5 6. 40
11 Ours 78.1 2.2 7.10
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Table 6 Experiments of the improved model on GC10-DET

M A mAP@50/% Parameters/M GFLOPS/G
1 YOLOv8n 63.6 3.0 8.1
2 Ours 65. 2 2.2 7.1
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Fig. 12 Comparison of detection results

AR T — M T LSDCGAN B335 5% 1k
YOLOvS (804 e b ks 75 35 B 76 i e Tlk 3 5t vh 4R A
T BB AR AR 22 B TS 2 55 G T A TR S B A5 11 - i ()
B, LS-DCGAN 8 i 5/ Z 45t 2 504 A it 72, FID {8
4 DCGAN FEAIE 30. 296 , Jhy i 00 B8 260 2% 36 o 22 % 1) DIl 25 85
P4, FEBIR Wk J7 I, SPH-YOLO 1 %538 i C2f_SCSA #
Yook 2 ROBERAEAS B, RO AR PSA T & 1 LI T+
T/ INBR B 9 E FE AR ), dcJ5 8 HSFPN 4% 5 201 ) [ 1K 3t
TN, LY LSRR, G S B 7 R R I R O 4 R
GyImAs, SEELT RIS S BRI R . KRR
5% 2 R AR A SR A 7 5 b 38 3, A S B A D 2R 5 R 56 IE
TR ST
S &

(1] AEJE. 4K 3% Bk G A I A 1R 51 DG B R F 92 [D]. &
K E KK %, 2016.

+ 146 -

XIONG Y. Technology research on surface defects
detection and recognition of strip [D]. Chongqing:
Chongqging University,2016.

(2] Weife. 3k F IR 2 20 19 80bF 3¢ T B BG4S I 7 32 W
FE[DJ. s R TR, 2021,

YOU Q H. Research on defect detection of steel
surface methods based on deep learning[ D]. Wuhan:
Wuhan Textile University,2021.

(3] 3R], 84 R, Bl YOLOvVS (9 i % i it
R L], 7 AR, 2024,47(22) 1 161-168.
ZHANG H F,FENG Y L, HUANG ] F. Improving
YOLOVS conveyor belt defect detection[]J]. Electronic
Measurement Technology, 2024, 47(22):161-168.

(4]  EoIE, ZM4E0, 7284, % 3T YOLO-DEFW [ Xf 4
BB S IR SRR A 5 LT . b O, 2025,52(8) :64-76.
YUE] F, LI W M, NING L H.,et al. Real-time weld
defect detection algorithm based on YOLO-DEFW []].
Chinese Journal of Lasers, 2025,52(8) :64-76.

(5] A%, MR, smilA,. % HFBi# YOLOvSn BiEH
WS NRAT3C I S 5 R AR R[], o 2 LR 2
2#4%,2024,34(12) :178-186.



BEW A THE YOLOVS 9522 3 AR £ @ e e s m 7 ik

5524 W

[6]

[7]

(8]

[9]

(10]

[11]

[12]

[13]

ZHOU J CH, CHEN X, GAO J J, et al. Urban
spatially mixed traffic participants detection model
based on improved YOLOv8n[]]. China Safety Science
Journal, 2024,34(12) :178-186.
WIRAE 18 P B IR 4. PIC20-YOLO: 4 JF 2 i Sk 46
M Ak vk ). Ok TR, 2025,52(1) : 89-103.

HU Y L, YANG J, XU CY, et al. PIC2{-YOLO: A
lightweight method for the detection of metal surface
defects[ J]. Opto-Electronic Engineering, 2025,52(1):
89-103.

MRJE 223K, FLAE ¥ L 45, BT YOLOv8n 45 ki Il 55
ETELT ). AR DL 242, 2025, 46(7) :145-152.
CHEN S, LI J Q, KONG D X, et al. Research on green
orange detection algorithm based on YOLOv8n [ ] .
Journal of Chinese Agricultural Mechanization, 2025, 46
(7):145-152.

WEN L, WANG Y, LI X. A new cycle-consistent
adversarial networks with attention mechanism for
surface defect classification with small samples[]].
IEEE Transactions on Industrial Informatics. 2022,
18(12): 8988.

BEE AR N L 0,5 T DCGAN # i
BB G A BT VR T . T LR 4 R 2 2 i, 2023, 44
(4): 346-355.

LICH H, FU R ZH, LIU Y K, et al. A method for
generating tire defect images based on improved
DCGAN[]J]. Journal of Hebei University of Science
and Technology, 2023, 44(4) . 346-355.

WG 8RR R 45 BT DCGAN At # YOLOvSs
B ) 22 55 A e B A I vk LT . W 00 & H R, 2024,47
(3):144-155.

HUANG P, CAI L, CHEN B, et al. Defect detection
method of steel cord based on DCGAN and improved
YOLOvV5s[J]. Electronic Measurement Technology,
2024, 47(3) :144-155.

TR, XFA BRI, 55, & T BGE YOLOVSs 2 ffl
) 28 1%y 2 2B i, i = A Bk B AR I 43 [T/ O L. 18 AL T
M, 1-14 [ 2025-06-28 ]. https://doi. org/10.19678/].
issn. 1000-3428. 0070196.

SHEN M H, LIU Y J, CHEN ], et al. Defect
detection of printed circuit board assembly based on
lightweight YOLOvS[J/OL]. Computer Engineering,
1-14. [2025-06-28 ]. https://doi. org/10. 19678/i.
issn, 1000-3428. 0070196.

PERGHE T, B F ki CycleGAN 5 YOLOvS #Y
R T 7 o0 25 B 80 O i L. Aol AR 24k, 2025, 41
(8):147-155.

LIANG X F, WEI ZH W. Segmenting tomato stems
and branches at night time using improved CycleGAN
and YOLOv8[J]. Transactions of the Chinese Society
of Agricultural Engineering, 2025, 41(8). 147-155.
Sy TR B M. Wl YOLOVS 1 % it 28 B 53 9
R g L] T R . 2024, 47(15) :125-134,
YI L, HUANG ZH W,YI Y W. Improved YOLOvS8
foreign object detection method for transmission lines
[J]. Electronic Measurement Technology, 2024, 47
(15):125-134.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

SHEN M, LIU Y, CHEN J, et al. Defect detection of
printed circuit board assembly based on YOLOv5[]].
Scientific Reports, 2024, 14(1): 19287.

LIAN J.HE J.NIU Y. et al. Fast and accurate detection
of surface defect based on improved YOLOw4 [ ] 1.
Assembly Automation, 2022, 42(1): 134-146.

MR T L, SCR L 48 2T CA-YOLOVS iy #4 %L
A5 TR B A D 7 i [T, Ot - O, 2024, 35
(1):21-28.

YANG S Q, DING F, WEN H X, et al. Hot-rolled
steel strip surface defects detection based on CA-
YOLOvVS5 [J]. Journal of Optoelectronics * Laser,
2024,35(1) :21-28.

ZHOU F, DENG H, XU Q, et al. CNTR-YOLO:
Improved YOLOVS5 based on convnext and transformer
for aircraft detection in remote sensing images[]].
Electronics, 2023, 12(12) :2671.

BN IE AL D  SEATHE L 45 JE T TCM-YOLO R 45 1
<G5 JB AR T BB A 7 L LT ). AL L AR, 2025,51(6)
338-348.

ZHAO X H, XIE L X, MU D C, et al. Metal surface
defect TCM-YOLO
methods[ ] ]. Computer Engineering, 2025, 51 (6):
338-348.
WANG ],

recognition

detection based on network

SU Y, YAO J, et al
and processing method based on an
improved version of YOLOv5 [ ] J.
Informatics, 2023, 77: 102196.
KRR, R ERE, 5% 5T SAC-YOLO mf &1k
LUYPIE R B SR L) ], v TR R % 4% 4k, 2025, 39
(3):59-69.

ZHANG ZH Q. LI CH, WANG K X, et al
Lightweight fabric defect segmentation algorithm
based on SAC-YOLO[]]. Journal of Xi'an Polytechnic
University,2025,39(3) :59-69.
RADFORD A, METZ L,

Unsupervised representation

Apple rapid

Ecological

CHINTALA S
learning  with deep
convolutional generative adversarial networks [ ] ].
ArXiv preprint arXiv:1511. 06434,2015.

SI Y. XU H,ZHU X, et al. SCSA: Exploring the
synergistic effects between spatial and channel
attention[ ] ]. Neurocomputing,2025,634:129866.

LIU L J, ZHANG Y, KARIMI H R. Resilient
machine learning for steel surface defect detection
The
International Journal of Advanced Manufacturing
Technology, 2024,134(9) :4639-4650.

KONG H ZH. YOU H ZH. Improved steel surface
defect detection algorithm based on YOLOvS8 [J .
IEEE Access, 2024,12: 99570-99577.

based on lightweight convolution [ J J.

EEE T

BEH LU R, EZOR 76 8 Dok 52 I i 3

BE2E S H BRI,
E-mail: E-mail: 1813510516(@qq. com

ERCEGEE) WL B, RO S5 W A % T

T 5 Tl 0 e B I R AL B

E-mail : caoshuang@nuist. edu. cn

o 147 -



