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摘 要:钢材表面缺陷检测是保障制造业产品质量的关键环节,人工目视与基础光学检测方法存在效率低、漏检率高

等问题,且现有数据集样本有限制约模型泛化能力。为此,本文提出一种基于LS-DCGAN数据增强与改进YOLOv8
的轻量化钢材表面缺陷检测方法。首先针对NEU-DET数据集样本多样性不足的问题,采用LS-DCGAN生成对抗网

络进行数据增强,有效补充缺陷样本的形态特征与分布特性;其次对YOLOv8模型进行三重优化提出SPH-YOLO检

测算法:重构C2f模块结构增强特征提取能力,嵌入注意力机制提升缺陷区域聚焦度,设计多级特征融合金字塔实现

跨尺度信息交互;最后在增强后的NEU-DET与GC10-DET数据集上进行验证,实验表明改进模型在 mAP@50%指

标上提升3%,参数量减少28.5%,计算量降低12.3%,且改进方法具有泛化能力,检测有效地实现了检测模型轻量化

和检测性能的平衡。
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Abstract:
 

Detection
 

of
 

surface
 

defects
 

in
 

steel
 

materials
 

is
 

a
 

key
 

link
 

in
 

ensuring
 

the
 

quality
 

of
 

products
 

in
 

the
 

manufacturing
 

industry.
 

Manual
 

visual
 

inspection
 

and
 

basic
 

optical
 

detection
 

methods
 

suffer
 

from
 

low
 

efficiency
 

and
 

high
 

miss
 

detection
 

rates,
 

and
 

the
 

limited
 

samples
 

of
 

existing
 

datasets
 

restrict
 

the
 

model's
 

generalization
 

ability.
 

Therefore,
 

this
 

paper
 

proposes
 

a
 

lightweight
 

steel
 

surface
 

defect
 

detection
 

method
 

that
 

integrates
 

LS-DCGAN
 

data
 

augmentation
 

with
 

an
 

improved
 

YOLOv8
 

model.
 

Firstly,
 

to
 

address
 

the
 

issue
 

of
 

insufficient
 

sample
 

diversity
 

in
 

the
 

NEU-DET
 

dataset,
 

we
 

use
 

an
 

LS-DCGAN
 

generative
 

adversarial
 

network
 

for
 

data
 

augmentation,
 

effectively
 

supplementing
 

the
 

morphological
 

features
 

and
 

distribution
 

characteristics
 

of
 

defect
 

samples.
 

Secondly,
 

we
 

conduct
 

triple
 

optimization
 

on
 

the
 

YOLOv8
 

model
 

to
 

propose
 

the
 

SPH-YOLO
 

detection
 

algorithm:
 

reconstructing
 

the
 

C2f
 

module
 

structure
 

to
 

enhance
 

feature
 

extraction
 

capabilities,
 

embedding
 

an
 

attention
 

mechanism
 

to
 

improve
 

focus
 

on
 

defect
 

areas,
 

and
 

designing
 

a
 

multi-level
 

feature
 

fusion
 

pyramid
 

for
 

cross-scale
 

information
 

interaction.
 

Finally,
 

we
 

validate
 

the
 

improved
 

model
 

on
 

the
 

enhanced
 

NEU-DET
 

and
 

GC10-DET
 

datasets.
 

Experimental
 

results
 

show
 

that
 

the
 

improved
 

model
 

achieves
 

a
 

3.2%
 

increase
 

in
 

mAP@50%,
 

a
 

28.5%
 

reduction
 

in
 

parameter
 

count,
 

and
 

a
 

12.3%
 

decrease
 

in
 

computational
 

load.
 

Furthermore,
 

the
 

improvement
 

method
 

exhibits
 

strong
 

generalization
 

ability,
 

effectively
 

balancing
 

the
 

lightweight
 

nature
 

of
 

the
 

detection
 

model
 

and
 

its
 

detection
 

performance.
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0 引  言

  随着制造业智能化升级加速,钢材作为工业基础材料

在汽车制造、建筑工程、机械装备等领域的质量要求日趋严

苛,钢材缺陷如裂纹、划痕、孔洞等不仅会影响产品的性能,
还可能导致设备故障甚至安全事故[1]。传统的钢材缺陷检
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测方法通常依赖人工目视检查或简单的光学检测设备,这
些方法不仅耗时耗力,而且在检测过程中容易出现漏检或

误检的情况[2]。此外,现有钢材缺陷数据集样本数量有限,
限制了模型的性能和泛化能力[3]。

钢材缺陷数据集通常包含多种缺陷,仅仅靠图像采集

很难获得充足且特征多样化的数据集。数据增强是解决数

据量和数据多样性不足的有效方法,能够扩展样本规模并

丰富特征表达空间,提升训练模型的泛化能力。文献[4-7]
使用了几何变换和添加噪声等数据增强变换方式,优化了

模型的性能,但对复杂纹理缺陷的特征多样性增强有限。
除了传 统 的 数 据 增 强 方 法,生 成 对 抗 网 络(generative

 

adversarial
 

network,
 

GAN)也常常被用来进行数据增强。

Wen等[8]通过向CycleGAN引入注意力机制来合成缺陷

样本,在钢材和布匹数据集上提升了识别准确率,但该方法

需配对无缺陷样本辅助生成,制约了其在仅需缺陷样本场

景的应用。李春华等[9]通过添加残差网络和注意力机制改

进DCGAN,增强了生成图像的结构真实性,但纹理细节多

样性和微小缺陷生成能力仍有不足。
将生成对抗网络与目标检测模型相结合,已成为解决

钢材缺陷检测中数据稀缺与模型性能瓶颈问题的一种有效

策略。这种组合不仅能扩充数据集、丰富特征表达,更能直

接优化最终检测模型的精度与泛化能力。当前研究主要采

用分阶段式实现,近期研究探索了不同生成方式:黄鹏

等[10]通过优化DCGAN网络参数并调整生成器结构,生成

高分辨率的钢丝帘布缺陷图像以扩充小样本数据集,有效

提升了后续YOLO模型的检测精度和泛化能力。针对数

据集中类别不平衡问题,沈明辉等[11]提出了 Attention-
GAN模型,在生成器中引入注意力模块以生成更具多样性

的缺陷图像,有效解决了某些类别样本不足的问题,再改进

YOLOv8s模型,轻量化模型在提升检测精度的同时显著

减少参数量,有效解决了漏误检率高的问题。梁喜凤等[12]

针对夜间低光照环境下数据质量差和模型特征提取能力不

足的难题,融合改进CycleGAN生成高质量夜间图像扩充

数据集,并构建NTS-YOLO模型,最终有效地改善模型在

夜间环境下的分割效果。

在目标检测模型本身的研究方面,尤其是针对检测任

务对 实 时 性、精 度 和 模 型 大 小 的 综 合 需 求,YOLO 系

列[13-14]算法因其高效性成为优选,并得到了广泛研究和改

进。Lian等[15]通过知识蒸馏和预测尺度改进YOLOv4模

型,mAP@0.5提升5.2%。杨森泉等[16]引入坐标注意力

机制,有效地提升了检测精度,但带来一定计算开销。Zhou
等[17]结合了Transformer模块和CBAM模块改进YOLOv5
算法,虽然提升了检测的精度,但是模型体积增大35%。赵

小虎等[18]的TCM-YOLO通过可变形卷积降低漏检率,但增

加了计 算 的 参 数 量。Wang等[19]采 用 MobilenetV2压 缩

YOLOv5,降低了模型参数量和计算复杂度,但小缺陷漏检

率上升。张周强等[20]构建SAC-YOLO模型,模型参数量减

少了45.8%,mAP@0.5提升0.5%,在轻量化同时提高了精

度,但对多尺度特征融合能力有限。这些改进往往在提升某

一指标时,难以避免地牺牲其他方面,尤其在处理钢材表面

常见的小尺寸、多尺度缺陷。
综合上述分析,当前钢材表面缺陷检测面临的核心难

题体现在两个层面:1)生成图像的质量和多样性仍存在不

足,并且复杂的GAN改进方案会增加训练成本;2)未达到

模型轻量化与检测精度的平衡。虽然提出了一些轻量化的

模型,但在降低模型参数量的同时,检测精度提升小甚至有

的会有所下降。基于上述情况,本文提出了一种基于LS-
DCGAN数据增强与轻量化SPH-YOLO的钢材缺陷检测

方法:1)通过最小二乘损失改进DCGAN,在保持生成模型

结构简洁的前提下,克服传统GAN的模式崩溃问题,稳定

生成高质量缺陷样本;2)构建轻量化SPH-YOLO模型:利
用C2f_SCSA模块强化空间-通道特征交互、引入PSA注

意力机制聚焦微小缺陷、设计 HSFPN通过跨层级特征重

构压缩计算量,从而实现精度与效率的协同优化。

1 基于LS-DCGAN的数据增强

  2015年,Radford等[21]将CNN与GAN融合,提出了一

种新型生成对抗网络DCGAN,将CNN引入到生成模型当

中来做无监督的训练,利用CNN强大的特征提取能力来提

高生成网络的学习效果,DCGAN的模型结构如图1所示。

图1 DCGAN网络结构

Fig.1 The
 

model
 

structure
 

of
 

DCGAN
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  相比于GAN,DCGAN进行了多项优化:首先,在生成

器中摒弃池化层,转而利用转置卷积操作实现特征图的空

间维度扩展,并将全连接层替换为卷积层,构建出无全连接

约束的端到端卷积网络。其次,针对激活函数,生成器在输

出层采用双曲正切(Tanh)函数约束像素值范围,中间层则

通过ReLU增强非线性表达能力;接着,判别器输出端采用

Sigmoid函数输出概率置信度,隐藏层使用Leaky
 

ReLU缓

解梯度稀疏性。最后,网络在生成器与判别器的各卷积层

后加入批量归一化(BN),通过规整化特征分布抑制梯度异

常波动,显著提升模型收敛效率并降低过拟合风险。
在DCGAN框架中,判别器作为二分类器采用交叉熵损

失函数,这种设计仅关注分类准确性,在生成对抗训练的后

期容易引发梯度衰减问题。当判别器对生成样本的输出值

接近0(假)或1(真)时,其梯度幅值会随sigmoid函数特性呈

现指数衰减。尤其对那些判别置信度较高但实际分布仍偏

离真实数据的生成样本,生成器难以获得有效的梯度信号

进行参数更新,导致模型收敛停滞和生成质量下降。
针对这一关键问题,本研究提出LS-DCGAN模型,通

过最小二乘损失改进原始框架。判别器采用连续型最小

二乘损失,计算其输出与目标分布(真实样本标签为1,生
成样本标签为0)的平方误差,替代原有的交叉熵损失。当

判别器对生成样本的输出偏离目标值时,平方误差损失会

施加更强惩罚,迫使生成器持续优化样本分布。最小二乘

损失通过平滑的梯度空间缓解模式崩溃,使生成器能稳定

学习真实数据分布,尤其在钢材表面缺陷生成任务中,该
损失函数对局部纹理梯度变化高度敏感,能够保持缺陷形

态多样性与纹理细节真实性。

LS-DCGAN判别器和生成器的损失函数分别如下:

LD =
1
2Ex~pdata(x)

[(D(x)-b)2]+

1
2Ez~pz(z)

(D(G(z))-a)2  (1)

LG =
1
2Ez~pz(z)

(D(G(z))-c)2  (2)

其中,a是假数据的标签(通常为0),b 是真实数据的

标签(通常为1),c是希望判别器认为生成数据为真实的标

签(通常为1),Pz
 (z)代表噪音样本的分布。

2 基于改进YOLOv8的钢材缺陷检测 

  YOLOv8是由Ultralytics团队提出的深度学习网络,
其结合了目标检测、实例分割和实时追踪等多项任务。其

凭借 高 效 的 实 时 检 测 能 力 在 工 业 场 景 中 广 泛 应 用。

YOLOv8的网络结构延续了输入端(Input)、主干网络

(Backbone)、颈部网络(Neck)和预测端(Head)的四阶段设

计:输入端集成自适应数据增强策略,并引入锚框自优化

机制,通过进化算法动态调整预设锚框尺寸;主干网络采

用C2f模块替代传统C3模块,结合深度可分离卷积与跨

阶段密集连接,在降低计算复杂度的同时增强多尺度特征

提取能力;颈部网络升级为双向特征金字塔,通过加权双

向跨尺度连接实现更高效的特征融合;预测端引入解耦检

测头,将分类与回归任务分离以优化梯度传播,并采用

Task-Aligned
 

Assigner动态标签分配策略,通过概率对齐

机制提升正负样本匹配效率。此外,YOLOv8在损失函数

中融合Distribution
 

Focal
 

Loss与CIoU,兼顾分类置信度

校准与 边 界 框 回 归 精 度,后 处 理 阶 段 则 通 过 改 进 的

Cluster-NMS算法过滤冗余检测框,显著提升复杂场景下

的缺陷识别鲁棒性,其结构如图2所示。

图2 YOLOv8网络结构

Fig.2 YOLOv8
 

network
 

structure

本文选用YOLOv8作为钢材表面缺陷检测的基础模

型,但在NEU-DET数据集的实际测试中,存在对缺陷区

域响应不足的问题,其较高的计算复杂度同时制约了工业

场景的实时性需求。因此,本文提出SPH-YOLO表面缺

陷检测网络模型,创新设计如下: 
1)C2f_SCSA模块:重构多尺度特征交互路径,通过空

间-通道双维度信息增强,提升划痕等线性缺陷的跨层级表

征能力;

2)
 

PSA注意力机制:加权融合不同尺度特征图,通过

逐位置权重校准聚焦微缺陷区域,增强对微小缺陷的关注

能力;

3)
 

Neck层集成 HSFPN模块:
 

通过跨层级特征压缩

与重参数化设计,
 

优化多尺度信息传递,降低计算和内存

消耗。SPH-YOLO模型如图3所示。

2.1 C2f_SCSA
  C2f模块是YOLOv8中用于特征提取与特征聚合的

重要组成部分,其通过逐层融合不同深度的特征,提升了

检测任务的准确性。但C2f存在以下局限:空间与通道信

息交互不和多语义特征融合欠缺,在多尺度、复杂纹理背

景中,特征间的语义差异可能导致关键信息被弱化。本文

基于SCSA的理论框架[22],对C2f进行改进,提出了C2f_
SCSA模块,加入的SCSA模块,通过整合共享多语义空间

注意力(SMSA)和渐进通道自注意力(PCSA),实现对多语

义特征的高效提取和深度融合,能够增强对缺陷特征的捕

捉能力。SCSA由SMSA和PCSA通过串联连接,其模块

结构如图4所示。
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图3 SPH-YOLO网络结构

Fig.3 SPH-YOLO
 

network
 

structure

图4 SCSA网络结构

Fig.4 SCSA
 

network
 

structure

  SMSA首先通过双向特征解耦策略,将输入特征沿高

度与宽度维度分别进行全局平均池化,生成两个独立的一

维序列特征。每个序列特征进一步划分为4组语义子特

征,分别采用3×3、5×5、7×7、9×9的多尺度一维深度卷

积提取局部-全局空间特征,并通过共享卷积核实现跨维特

征对齐。经过组归一化消除子特征间语义干扰后,采用

Sigmoid函数融合多尺度空间先验,构建具有空间判别力

的注意力权重。

PCSA模块基于渐进式压缩策略优化通道交互。首先

对SMSA输出的空间增强特征进行动态池化降维,采用3
组深度可分离卷积并行生成查询、键、值向量。接着,通过

单头自注意力机制计算通道间相似性矩阵,结合空间先验

引导的特征重校准,有效缓解多尺度卷积引发的语义差异。
最终经层级归一化与非线性激活,实现通道特征的融合。

PCSA(XS)=Softmax
QKT

C  V (3)

式中:Xs 为SMSA的输出特征,Q、K、V 为通过线性变换

从Xs 提取的查询、键和值矩阵。
SCSA通过结合SMSA和PCSA两个模块,使得通道

能够更好地关注重要的空间区域。在SMSA中,多语义空

间信息的集成和渐进压缩策略有效地为通道注意力提供

了空间先验,而PCSA则利用这些空间信息,通过自注意

力机制进一步优化通道特征,缓解了不同语义层次的差

异。设 计 的 C2f_SCSA 模 块 结 构 如 图 5 所 示,将

YOLOv8n的C2f替换成能够有效增强对关键特征提取能

力的C2f_SCSA,有效地结合了通道和空间注意力的优势,
提高了缺陷检测的准确率。
2.2 PSA注意力机制

  钢材表面缺陷多呈现为多尺度分布特性,其中划痕呈

线状拓扑结构,裂纹具有分形扩展特征,这些特征在复杂

背景下容易被掩盖,从而导致漏检或误检的发生。为了应

对多样的缺陷形态以及不同尺度的特征,本文在主干网络
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图5 C2f_SCSA模块结构

Fig.5 C2f_SCSA
 

module
 

structure

加入了PSA注意力机制,该机制通过并行处理空间维度上

的特征,高效地提取全局信息并增强对缺陷区域关注

能力。

PSA的结构如图6所示首先,PSA模块将输入特征图

在通道维度进行均匀划分,对部分子特征执行多分支注意

力计算:1)通过多头自注意力机制(MHSA)建立像素级长

程依赖关系,聚焦局部区域的细微纹理变化;2)引入带有

门控单元的前馈网络(FFN)对注意力特征实施非线性变

换,通过特征解耦增强缺陷区域与背景的区分度。最后采

  

用跨路径特征融合策略,将注意力路径输出的精细化局部

特征与另一路径保留的全局上下文特征进行通道拼接,在
空间-通道双重维度实现互补性特征增强。

图6 PSA模块结构

Fig.6 PSA
 

module
 

structure

2.3 HSFPN金字塔结构

  HSFPN多级特征融合金字塔模块旨在通过基于层次

尺度的设计来实现多尺度融合,使得模型能够捕获更全面

的目标的特征信息。它主要由特征选择模块和特征融合

模块组成,
 

HSFPN模块的示意图如图7所示。

图7 HSFPN网络结构

Fig.7 HSFPN
 

module
 

structure

  特征选择模块由CA模块和维度匹配模块DM共同构

建,他们负责多级特征的提取以及维度匹配工作。在完成

骨干网络特征提取后,注意力增强模块(CA)对输入特征映

射执行通道校准操作,该模块采用双池化路径架构:首先

通过全局平均池化与全局最大池化操作并行提取空间上

下文信息,这两种池化策略协同作用以实现特征聚合与维

度压缩。随后使用Sigmoid激活函数,生成通道注意力权

重向量用于量化各通道的语义重要性。在特征优化阶段,
维度匹配模块(DM)通过1×1卷积核将特征映射通道数

降至256维,该降维操作确保了后续多层级特征融合过程

中不同尺度特征张量的维度一致性,为构建高效的多尺度

特征金字塔奠定基础。

SFF模块的架构设计如图8所示,其核心机制采用双

路径特征交互策略:首先利用深层网络生成的高层语义特
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征作为注意力引导,通过动态加权机制对浅层特征中的关

键语义信息进行选择性保留;随后将浅层特征与原始高层

特征在通道维度进行自适应融合,最终构建出具有多尺度

表征能力的特征金字塔。当给定一个输入高级特征fhigh

∈RC×2H×2W
 

和一个输入低尺度特征flow ∈R
C×H×W1

 

时,首
先通过3×3卷积核、步长为2的转置卷积层对高层特征进

行空间维度扩展,生成与低层特征具有相同空间分辨率的

特征大小f
 

high︵ ∈RC×2H×2W
 

。然后,为了统一高级特征和低

尺度特征的维度,使用双线性插值来向上或向下采样高级

特征,得到特征fatt∈R
C×H1×W1

 

。接着,将经过注意力机制

后的低层特征与高级特征在通道维度进行拼接,通过1×1
卷积实现跨层特征融合,最终输出增强型特征表示,得到

fout∈R
C×H1×W1

 

。其中,C 表示通道数,H 表示高级特征图

的高度,W 表示高级特征图的宽度,W1 表示低尺度特征图

的宽度,H1 表示将高级特征进行双线性插值处理后的特征

图高度。SFF选择特征融合过程如式(4)、(5)所示。

fatt =BL(T-Conv(fhigh)) (4)

fout =flow ×CA(fatt)+fatt (5)

图8 SFF结构图

Fig.8 SFF
 

module
 

structure

3 实验及结果

3.1 NEU-DET数据集

  本实验选用东北大学的热轧带钢缺陷数据集作为缺

陷检测数据集,该数据集一共包含6类典型工业缺陷类

别:裂纹(Cr)、夹杂(In)、斑块(Pa)、麻点(Ps)、铁皮(Rs)以
及划痕(Sc)。每类缺陷样本均包含300张图像,大小为

200
 

pixel×200
 

pixel,均为灰度图像,这6类缺陷的部分典

型样本图像如图9所示。

图9 NEU-DET缺陷图

Fig.9 NEU-DET
 

defect
 

images

3.2 LS-DCGAN数据增强

  本实验将NEU-DET图像传入LS-DCGAN网络中进

行训练。实验的硬件环境如表1所示。

表1 实验配置

Table
 

1 Experimental
 

configuration
参数名称 实验参数配置

CPU 12th
 

Gen
 

Inter(R)
 

Core(TM)
 

i5-12400H
GPU NVIDIA

 

GeForce
 

RTX
 

3060
内存 32

 

GB
显存 12

 

GB
环境配置 Python

 

3.8 CUDA
 

11.6 Torch
 

1.12.0

在对抗网络的训练中,为了优化目标函数并在接近最

优解时实现更好的性能,设置了学习率lr=0.002。本实验

将迭代次数(epoch)设置为20
 

000次,batch_size设置为

64。实验所采用的梯度优化算法是Adam优化算法,其中

一阶矩优化指数衰减率为beta1=0.9,二阶矩优化指数衰

减率为beta2=0.999。

LS-DCGAN生成的缺陷样本如图10所示,在针对钢

材表面缺陷生成任务时,能够保持缺陷形态的多样性和纹

理真实性。
为了评估生成的图像质量,设计对比试验,评价指标

选用弗雷歇初始距离(Fr􀆧chet
 

inception
 

distance,FID)。

FID通过比较生成图像与真实图像在特征空间中的分布

来评估生成图像的质量,FID越小,图片的生成质量越好。
实验得出,DCGAN在 NEU-DET上的FID为139.5,LS-
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图10 缺陷样本和生成样本

Fig.10 Input
 

images
 

and
 

generated
 

images

DCGAN模型取得了97.3的FID值。相较于
 

DCGAN模

型的139.5,FID值降低了30.2%,这验证了前文所述梯度

平滑机制的有效性。
为 验 证 LS-DCGAN 增 强 数 据 的 有 效 性,基 于

YOLOv8框架设计对比实验:在 NEU-DET数据集原始6
类缺陷(每类增强200张)上,分别测试经典增强(噪声+色

彩组合)、DCGAN生成及LS-DCGAN生成3种数据方案

的性能。如表2所示,LS-DCGAN以76.3%
 

mAP@50%
领先,较原始数据提升1.2%,较DCGAN提升0.4%。结

果表明:通过最小二乘损失改进的生成模型,其合成数据

可超越传统增强与基础GAN方案,为钢材缺陷检测提供

更有效的特征学习样本。

表2 不同数据增强方法在YOLOv8上的性能对比

Table
 

2 Comparison
 

of
 

detection
 

performance
 

of
 

different
 

data
 

augmentation
 

methods
 

on
 

YOLOv8
增强类型 方法 mAP@50/%
原始数据 - 75.1
经典增强

 

噪声+色彩 76.0

生成式
DCGAN 75.9
LS-DCGAN 76.3

为了保证实验最终的测试集一致性,本文使用 LS-
DCGAN网络生成的钢材缺陷图像仅添加到训练集。每一

类添加200张,扩充后的 NEU-DET包含数据增强后的

3
 

000个图像文件和其对应 YOLO格式标签文件。本研

究将数据集按照8∶1∶1随机划分成训练集、验证集和测

试集进行实验。

3.3 YOLOv8网络的训练

  训练YOLOv8网络实验的硬件环境同上表1实验配

置一致,将数据集输入网络进行训练,epoch设置为300
轮,设置batch_size为16,初始学习率为0.01,梯度优化算

法采用SGD优化算法,未提到的参数均按照YOLOv8n官

方默认参数设置。

3.4 评价指标

  为客观量化模型检测性能,本实验具体选用以下3项

作为评估模型性能的核心指标:1)
 

平均精度均值(mean
 

average
 

precision,
 

mAP),即基于交并比(IoU)阈值0.5的

检测框匹配准则计算的类别平均精度均值;2)
 

模型参数量

(Params),反映网络复杂度的可训练参数总量;3)
 

浮点运

算量(FLOPs),表征前向推理过程的理论计算强度。平均

精度均值反应模型的检测精度,参数量和浮点计算量反应

模型的大小和计算复杂度。其中平均精度均值和模型的

准确率(P)、召回率(R)以及准确率的计算公式为:

P =
TP

TP+FP×100%
(6)

R =
TP

TP+FN ×100%
(7)

AP =∫
1

0
P(R)dR (8)

mAP =
∑

n

i=1
AP(i)

n
(9)

其中,TP 表示模型正确检测出的目标数、FP 表示模

型错误检测出的目标数、FN 表示模型未能正确检测出的

目标数。AP(i)表示第i类目标的P-R 曲线面积;n 表示

检测缺陷的类别数。

3.5 实验结果对比分析

  为了选择更有效地添加SCSA模块的方式,本实验对

比了替换不同类别和位置的SCSA模块:组别1(SCSA1替

换全部C2f)、组别2(SCSA2替换全部C2f)、组别3(SCSA1
替换HEAD部分的C2f)、组别3(SCSA2替换HEAD部分

的C2f)。结果如表3所示,可以看出,在计算量和参数量

基本相同的情况下,组1和组2相比原始C2f在检测精度

上有显著提升,分别提高了2.2%和
 

1.4%,组1提升最多,
表明在钢材表面缺陷检测中,SCSA1替换全部C2f的方式

增强了多尺度下特征融合的效果,更有利于捕捉特征信息

较少的目标,因此选择这种方式改进C2f。
为了更加直观的体现本文提出的模型各改进部分对

模型检测精度的提升效果,进行了消融实验,每次仅改变

一个模块,在保持环境不变的条件下进行实验,实验结果

如表4所示,“√”表示在该实验中使用了该模块,“×”表示

在该实验中未使用该模块。从表中可以看出,对比第1组

和第2组实验,数据增强后检测的 mAP@50%提升了
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1.2%,第3组实验中,SCSA的加入使模型的平均精度均

值提升了2%,对参数量和浮点计算量没有太大影响。在

第4组实验中,引入的PSA使 mAP@50%提高了1.7%,
但同时增加了模型的参数量和计算量。在第5组实验中,

HSFPN的引入大幅降低了浮点计算量和参数量,但是对

mAP@50%的提升有限,提高了0.8%。从第6组实验中

可以看出最终改进后的 YOLOv8模型在提升了3%平精

度均值的同时,使浮点计算量降低了12.3%,参数量降低

了26.7%。

表3 不同SCSA配置的检测结果

Table
 

3 Detection
 

results
 

of
 

different
 

SCSA
 

configurations

组别 mAP@50/% Parameters/M GFLOPS/G
1 78.3 3 8.1
2

 

77.6 3 8.1
3 76.2 3 8.1
4

 

76.0 3 8.1

表4 改进模型在数据集上消融实验

Table
 

4 Ablation
 

experiments
 

of
 

the
 

improved
 

model
 

on
 

the
 

dataset
组别 是否数据增强 C2f_SCSA PSA HSFPN mAP@50/% Parameters/M GFLOPS/G
1 × × × × 75.1 3.0 8.1
2 √ × × × 76.3 3.0 8.1
3

 

√ √ × × 78.3 3.0 8.1
4 √ × √ × 78.0 3.2 8.4
5 √ × × √ 77.1 1.9 7.0
6

 

√ √ √ √ 78.1 2.2 7.1

  图11给出了训练后本文提出的轻量化模型和基础模

型对数据集进行瑕疵检测的结果。其中第1列是检测的

图11 检测效果对比

Fig.11 Comparison
 

of
 

detection
 

results

  原图,第2列是基础模型,第3列是本文提出的改进模型。
在图11第1、2、3和5行中,基础模型均出现了漏检的情

况。其中第1、5行是对铁皮和麻点这种容易混淆目标的

漏检,第2、3行是对划痕和夹杂这种稍大目标的漏检。从

第4行可看出,相比于基础模型,改进后模型对麻点的检

测准确率更高,并且没有出现框的混合情况。
为了验证本研究模型的性能,在相同的实验条件下,

将改进后的模型于其他模型进行对比,包括SSD、Faster
 

R-CNN、YOLOv5n、YOLOv6n、YOLOv8n、YOLOv9t、

YOLOv10n、YOLO11;此外,在基础模型上复现近几年

文献[23]、文献[24]提出的基于YOLOv8改进的方法。详

细结果展示在表5中。

表5 不同模型的对比实验

Table
 

5 Comparison
 

experiments
 

of
 

different
 

models

组别 模型
mAP@50
/%

Parameters
/M

GFLOPS
/G

1 SSD 69.2 24.4 30.68
2 Faster-RCNN 75.7 28.2 37.55
3 YOLOv5n 75.9 2.5 7.20
4 YOLOv6n 73.4 4.2 11.90
5 YOLOv8n 76.3 3.0 8.10
6 YOLOv9t 74.8 2.0 7.90
7 文献[23]

 

76.9 2.5 6.90
8 文献[24] 77.8 2.8 7.70
9 YOLOv10n 73.1 2.7 8.40
10 YOLO11 76.0 2.5 6.40
11 Ours 78.1 2.2 7.10
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  可以看出,相比于 YOLOv8n基础模型,YOLOv5n、

YOLOv9t、YOLOv10n和YOLO11的模型具有更低的计

算量或参数量,但是改进后的模型在计算量和参数量降低

的情况下,精度提升更大。虽然文献[23]和文献[24]提出

的基于YOLOv8改进的方法表现出了更低的计算复杂度,
但在检测精度上SPH-YOLO效果更优。剩下的模型在精

度、计算量和参数量方面都不及改进后的模型,其中SSD
和Faster-RCNN的计算量和参数量甚至是其他模型的3
倍以上。结果表明,设计的C2f_SCSA、PSA和 HS-FPN
模块提升了模型在钢材表面缺陷检测的精度,使模型能更

好地平衡性能和效率。
为了验证本文提出的SPH-YOLO算法的泛化能力,

使用GC10-DET目标缺陷数据集进行实验,GC10-DET
 

包

含了冲孔(Pu)、焊缝(Wl)、新月形缝隙(Cg)、水斑(Ws)、油

斑(Os)、丝斑(Ss)、夹杂物(In)、轧坑(Rp)、折痕(Cr)、腰部

折痕
 

(Wf)
 

10种缺陷,包含2
 

294张图像。实验将数据集

划分为训练集1
 

833张、验证集229和测试集230张。结

果如表6和图12所示。实验结果表明,改进模型的检测准

确率提高了1.6%,参数量降低了26.6%,计算量降低了

12.3%,证明了本文改进算法对于目标检测的提升效果良

好,具有一定的泛化能力。

表6 改进模型在GC10-DET上的实验

Table
 

6 Experiments
 

of
 

the
 

improved
 

model
 

on
 

GC10-DET

组别 模型 mAP@50/% Parameters/MGFLOPS/G
1 YOLOv8n 63.6 3.0 8.1
2 Ours 65.2 2.2 7.1

图12 检测效果对比

Fig.12 Comparison
 

of
 

detection
 

results

4 结  论

  本文提出了一种基于LS-DCGAN数据增强与轻量化

YOLOv8的钢材缺陷检测方法,旨在解决工业场景中钢材

表面缺陷样本多样性不足与检测模型部署效率的平衡问

题。LS-DCGAN通过最小二乘损失重构生成过程,FID值

较DCGAN降低30.2%,为检测模型提供更多样的训练数

据。在模型改进方面,SPH-YOLO首先通过C2f_SCSA模

块强化多尺度特征交互,其次加入的PSA注意力机制提升

微小缺陷的关注能力,最后使用 HSFPN轻量颈网降低计

算开销。实验结果表明,改进后的方法检测性能更好且不

易漏检,实现了检测精度与计算效率的协同优化。未来的

研究中考虑把模型进行实际部署,在实际检测系统中验证

工程的实用性。
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