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摘 要:
 

针对现有雷达人体行为识别存在的时频特征表征能力不足,以及神经网络识别准确率较低的问题,提出一种

基于雷达时频特征提取和CBAM-MFResNet的人体行为识别方法。在时频特征提取部分,对雷达回波信号进行处

理,运用距离窗函数约束行为信号中的频谱能量扩散问题,并沿慢时间维度构建自适应小波阈值-切比雪夫窗函数协

同处理机制抑制杂波干扰,通过时频分析获得微多普勒时频图。在网络模型构建部分,构建用于行为识别的CBAM-
MFResNet模型,将轻量化卷积注意力机制引入到残差神经网络中,从而增强关键特征表示;同时设计高效的并行多

尺度特征学习模块学习多样化特征信息,最大限度地反映不同行为的特征差异;最后,将融合后的特征输入到全连接

层进行分类。实验结果表明,本文所提的模型和杂波滤除算法有效提高了识别系统的准确率,对不同人体行为的平均

识别准确率达到98%。
关键词:行为识别;FMCW雷达;时频特征提取;杂波抑制;并行多尺度特征
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Abstract:
 

To
 

solve
 

the
 

problems
 

of
 

insufficient
 

time-frequency
 

feature
 

representation
 

ability
 

and
 

insufficient
 

neural
 

network
 

feature
 

learning
 

in
 

the
 

existing
 

radar
 

human
 

behavior
 

recognition,
 

a
 

human
 

behavior
 

recognition
 

method
 

based
 

on
 

radar
 

time-
frequency

 

feature
 

extraction
 

and
 

CBAM-MFResNet
 

is
 

proposed.
 

In
 

the
 

time-frequency
 

feature
 

extraction
 

section,
 

radar
 

echo
 

signals
 

are
 

processed,
 

the
 

distance
 

window
 

function
 

is
 

used
 

to
 

constrain
 

the
 

spectral
 

energy
 

diffusion
 

problem
 

in
 

the
 

behavioral
 

signal,
 

and
 

along
 

the
 

slow
 

time
 

dimension,
 

an
 

adaptive
 

wavelet
 

threshold-Chebyshev
 

window
 

function
 

co-processing
 

mechanism
 

is
 

constructed
 

to
 

suppress
 

clutter
 

interference.
 

Micro-Doppler
 

time-frequency
 

diagrams
 

are
 

obtained
 

by
 

time-
frequency

 

analysis.
 

In
 

the
 

network
 

model
 

building
 

section,
 

a
 

CBAM-MFResNet
 

model
 

for
 

behavior
 

recognition
 

is
 

constructed,
 

the
 

lightweight
 

convolutional
 

attention
 

mechanism
 

is
 

introduced
 

into
 

the
 

residual
 

neural
 

network
 

to
 

enhance
 

the
 

representation
 

of
 

key
 

features;
 

and
 

an
 

efficient
 

parallel
 

multi-scale
 

feature
 

learning
 

module
 

was
 

designed
 

to
 

learn
 

diverse
 

feature
 

information
 

to
 

reflect
 

the
 

feature
 

differences
 

of
 

different
 

behaviors
 

to
 

the
 

greatest
 

extent.
 

Finally,
 

the
 

fused
 

features
 

are
 

input
 

into
 

the
 

fully
 

connected
 

layer
 

for
 

classification.
 

Experimental
 

results
 

show
 

that
 

the
 

proposed
 

model
 

and
 

clutter
 

filtering
 

algorithm
 

can
 

effectively
 

improve
 

the
 

accuracy
 

of
 

the
 

recognition
 

system,
 

and
 

the
 

average
 

recognition
 

accuracy
 

of
 

different
 

human
 

behaviors
 

reaches
 

98%.
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0 引  言
 

  近年来,随着生物识别技术的不断发展,人机交互的频

率不断提高,人体行为识别的研究引起了广泛的关注,在安

全保障[1-2]、医疗健康监护[3]和智慧家居[4]等领域具有重要

应用价值。
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目前人体行为识别可利用的技术有基于可穿戴式设备

的技术以及基于非接触式传感器的技术。基于可穿戴式设

备的人体行为识别技术,主要依靠内置陀螺仪和加速度传

感器采集运动特征数据[5],通过分析角度、速度等参数变

化,实现动作分类,但随身携带这些设备会影响人体舒适

感,缺乏便捷性。相比之下,基于非接触式传感器的行为识

别技术可以避免这些问题。非接触式传感器主要使用光学

传感器或雷达来识别人体动作。近年来,基于光学传感器

的视觉行为识别技术取得显著进展,在性能和识别精度上

展现出明显优势[6]。然而,基于光学传感器的方式对成像

质量要求较高,容易受到光照强度、摄像头像素等客观条件

的影响,在极端光照环境下无法正常工作,且存在用户隐私

泄露风险。相较于其他传感方式,雷达传感器具备非接触

探测、抗干扰性强、穿透性能优异及隐私保护等优势,具有

重要的研究价值和应用前景。本文采用的雷达为调频连续

波(frequency
 

modulated
 

continuous
 

wave,FMCW)制式,体
积小,抗干扰能力强,能全天时全天候工作,可以准确连续

采集丰富的人体行为数据,使其表征的特征更加丰富。
当前基于FMCW雷达人体行为识别技术的文献中,利

用微多普勒谱图进行行为特征提取和分析已成为热门的研

究方向。相较于其他传统机器学习方法,深度学习方法展

现出了较好的鲁棒性[7]。文献[8]将微多普勒谱图和距离-
时间谱图分别输入卷积神经网 络(convolutional

 

neural
 

network,CNN)进行特征提取并融合,对六种日常动作进

行识别,但对于重要特征提取和利用仍有待增强。文献[9]
基于 塔 式 卷 积 神 经 网 络 (tower

 

convolutional
 

neural
 

network,TowerCNN),从微多普勒谱图的各个颜色通道提

取特征作为模型的输入,但当雷达特征图色彩信息不丰富

时,其模型性能表现不佳。文献[10]使用双向长短期记忆

网络(bi-directional
 

long
 

short-term
 

memory,Bi-LSTM)学
习连续动作的时间序列信息进行人体行为识别,但由于Bi-
LSTM在处理长序列时会出现信息丢失和混淆等问题,从
而导致识别准确率较低。文献[11]提出卷积门控递归单元

神经网络,通过短时傅里叶变换生成的微多普勒谱图对不

同人体行为进行分类,但由于实验采用模拟数据,未考虑真

实环境中噪声干扰的影响。
具体而言,这些基于FMCW雷达人体行为识别技术的

文献中,普遍未充分考虑静态杂波干扰对后续行为识别应

用带来的严重阻碍。同时,以上文献中的神经网络部分大

多只采用简单的卷积块堆叠,部分信息丢失,进而影响行为

识别的准确率。
针对上述问题,本文使用英国格拉斯哥大学公开的人

体行为数据集[12],提出一种基于雷达 时 频 特 征 提 取 和

CBAM-MFResNet的人体行为识别方法。对雷达回波信

号沿距离维度运用布莱克曼窗约束行为信号中的频谱能量

扩散问题,并沿慢时间维度构建自适应小波阈值-切比雪夫

窗函数协同处理机制抑制杂波干扰,提取微多普勒时域谱

图作为分类特征。同时,基于文献[13]提出的残差网络

(residual
 

neural
 

network,ResNet)引入卷积块注意力模块

(convolutional
 

block
 

attention
 

module,CBAM)[14],并设计

并行多尺度特征学习(parallel
 

multi-scale
 

feature
 

learning,

PMFL)模块用于人体行为识别。实验结果表明,本文所提

方法显著提升了特征表征能力,最终实现了较高的行为识

别准确率。

1 雷达时频域分析

1.1 调频连续波雷达检测原理

  FMCW雷达系统框图如图1所示。

图1 FMCW雷达系统框图

Fig.1 FMCW
 

radar
 

system
 

block
 

diagram

调频连续波(FMCW)雷达通过发射天线(TX)向目标人

体行为发射连续调频信号,也称啁啾(Chirp)信号,其频率随

时间线性增加。雷达发射的FMCW信号如式(1)所示。

ST(t)=ATcos(2πfct+π
B
Tt2+θ(t)) (1)

式中:AT 为发射的FMCW信号的幅值;fc 为载波中心频

率;B 为调频带宽,T 为Chirp的持续时间,B/T 为调频斜

率,θ(t)为相位噪声。
当雷达检测到运动目标时,接收天线(RX)捕获经目标

反射的回波信号,雷达接收到的反射信号[15]如式(2)所示。

SR(t)=ARcos[2πfc(t-τ)+π
B
T
(t-τ)2+θ(t-τ)]

(2)
式中:AR 为回波信号的幅值;τ为信号在发射和接收过程

中的延迟时间。
混频器将发射信号和接收信号进行混频,再经过低通

滤波器滤除高频部分,得到中频(intermediate
 

frequency,

IF)信号如式(3)所示。

SIF(t)=hLPF*{ST(t)×SR(t)}=
1
2ATARcos(2π

B
Tτt+2πfcτ-π

B
Tτ2+Δ(θ)) (3)

式中:hLPF 为低通滤波器的冲激响应,* 为卷积运算,Δθ
为残余噪声相位项。

模数转换器(analog
 

to
 

digital
 

converter,ADC)将滤波

后的中频信 号 转 换 为 数 字 信 号,以 便 数 字 信 号 处 理 器

(digital
 

signal
 

processing,DSP)进行数字信号处理。

1.2 微多普勒频谱预处理

  原始雷达回波数据以一维复杂数组的形式排列,为方

便数据处理,将数组重新排列为 M ×N 的二维信号矩阵,
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M 表示每个 Chirp信号上的采样点数,N 表示采集的

Chirp信号的数量。对每个雷达信号矩阵,沿快时间维进

行距离快速傅里叶变换(fast
 

fourier
 

transform,FFT),得到

二维时间-距离谱图[16]。对二维时间-距离谱图的慢时间维

度进行滤波,抑制其静态目标和慢速杂波。根据滤波后的

时间-距离谱图信息,选择10~30距离单元范围的样本值

应 用 短 时 傅 里 叶 变 换 (short
 

time
 

fourier
 

transform,

STFT),最终得到微多普勒时域谱图(doppler-time-map,

DTM),如图2所示。

图2 微多普勒图(DTM)生成方法

Fig.2 Doppler-Time-Map(DTM)
 

generation
 

method

2 行为识别系统设计

2.1 整体框图

  本文行为识别系统整体框架如图3所示,该框架由时

频特征提取和网络模型架构两部分组成。首先,在时频特

征提取阶段,对原始雷达回波数据进行数据重排、在距离维

度运用距离窗函数对行为回波信号进行处理、沿快时间维

进行距离FFT操作以提取距离信息,得到二维时间-距离

特征图;然后,通过构建自适应小波阈值-切比雪夫窗函数

协同处理机制,对二维时间-距离谱图的慢时间维度进行高

效的杂波干扰去除,通过STFT得到处理后的微多普勒时

频图;最后,在网络模型架构阶段,构建用于行为识别的

CBAM-MFResNet分类模型,该模型通过引入注意力机制

并设计高效的并行多尺度特征学习模块,有效提升了微多

普勒特征的判别性表征能力,将处理后的微多普勒谱图输

入到CBAM-MFResNet中进行学习和分类识别。整个流

程实现了从原始雷达回波信号到时频特征再到分类结果的

端到端处理,具有较高的人体行为识别精度。

图3 整体框图

Fig.3 Overall
 

block
 

diagram

2.2 时频特征提取

  1)
 

二维距离谱图

为提取用户行为模式的多普勒特征信息,首先对重排

后的FMCW信号进行距离FFT,将雷达信号从二维时间

域转换为距离-慢时间域,得到二维时间-距离谱图。为解

决时间-距离谱图中存在的频谱能量扩散问题,采用距离窗

函数对数据进行处理。窗函数选取Blackman窗。对距离

特征而言,该窗函数具有显著的旁瓣衰减特性,有利于解决

由频谱泄露引起的频谱能量扩散问题,有效实现对距离维

度中的杂波抑制以及关键行为信息增强,应用距离窗函数

前后的时间-距离谱图分别如图4(a)、(b)所示,可见行为特

征信息更为明显。

图4 应用距离窗函数前后的时间距离谱图

Fig.4 Range-Time-Map
 

before
 

and
 

after
 

applying
 

the
 

distance
 

window
 

function

2)
 

静态杂波抑制

实际场景下捕获的雷达回波信号中,除了预期的行为

多普勒频移外,还包含背景中家具、墙壁和其他静态物体引
起的杂波信号。静态杂波会严重干扰目标微动特征的提

取,影响对运动目标的检测性能。
为抑制静态杂波,本文在时频分析前构建自适应小波阈

值-切比雪夫窗函数协同处理机制抑制背景静态杂波。首先

选取Symlet小波对二维时间-距离谱图进行多尺度小波分

解。提取其尺度系数cj,k 和小波系数di
j,k ,对每一层的小波

系数进行动态调整,将处理后得到的小波系数di
j,k 与尺度系

数cj,k 结合,重构二维距离谱图。对于微多普勒特征而言,
Symlet小波的正交性和紧支撑性可以使得其谱图在重构时

实现信号与杂波的有效分离[17],其阈值函数为:

f(x)=
0,|x|<λ

sgn(x)|x|-
1

λ2+e|x|-λ
􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 ,|x|≥λ 
(4)

阈值λ可表示为式(5):

λ=σ 2lnM (5)
式中:σ为FMCW信号的方差;M 为Chirp信号上的采样点数。

随后将重建后的谱图通过切比雪夫窗函数进一步滤

波。对于微多普勒特征而言,该窗函数可以有效减少其杂

波干扰,提高目标信号清晰度,其频谱函数为:

W(k)=∑
N-1

n=0

cos (N-1)cos-1 βcos
πn
N  􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁  
cos[(N-1)cos-1(β)]

e
-j
2π
Nkn

(6)
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其中,N 为采样点数,0≤k≤N -1,β可表示为:

β=cosh
1

N-1
cosh-1 10

A
20  􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 (7)

其中,A 为旁瓣电平dB值。
雷达谱图杂波抑制处理效果,如图5所示,其中,红色矩

形框内表示被滤除的杂波分量。可见通过上述操作可以有

效滤除静态干扰,使行为动作更为突出,特征信息更为明显。

图5 杂波抑制前后对比图

Fig.5 Comparison
 

diagram
 

before
 

and
 

after
 

clutter
 

suppression

3)
 

短时傅里叶变换

时频分析方法可有效提取并表征微多普勒信号的时频

特征。为实现对目标微多普勒特征的提取,本实验对滤波

后的时间-距离矩阵的距离单元进行短时傅里叶变换,得到

微多普勒频谱图像。STFT的数学表达式为:

STFT(f,k)= ∑
+∞

n= -∞
x(n)w(n-k)e-j2πfn (8)

其中,w(n)表示窗口函数,本文采用汉明窗口。最后

将多个距离单元的微多普勒图进行非相干叠加得到6种行

  

为的微多普勒图,如图6所示。微多普勒频谱图通过振荡

捕捉目标的细微运动。由于不同身体部位在各种动作中的

速度会发生变化,因此,微多普勒频谱图可以有效地用于人

体动作识别。

图6 不同人体行为的微多普勒频谱图

Fig.6 Micro
 

Doppler
 

spectrum
 

of
 

different
 

human
 

behaviors

2.3 网络模型架构

  本文构建的人体行为识别网络模型,如图7所示。该

模型由特征提取层、特征增强层和分类器三部分组成。首

先通过基于迁移学习的Resnet18对输入微多普勒图进行

初始特征提取,将提取到的特征通过特征增强层进行特征

过滤和增强,特征增强层由CBAM注意力机制和并行多尺

度特征学习模块组成。最后经过全局平均池化层和全连接

  

图7 人体行为识别网络模型

Fig.7 Human
 

behavior
 

recognition
 

network
 

model

层进行分类处理。

1)
 

骨干网络

本文选用ResNet18作为骨干网络。ResNet18不仅网

络深度适中,还引入了残差结构,有效地解决了随着神经

网络深度增加而丢失信息的问题。该模型通过对输入图

像进行多层特征映射,最终提取出512维度的特征向量。
传统的卷积神经网络在训练数据量有限的情况下难

以展 现 出 良 好 效 果。相 比 之 下,迁 移 学 习 (Transfer
 

Learning)通过利用在大规模数据集ImageNet上预训练的

模型参数作为初始化,可以有效解决人体行为识别任务中

训练数据不足的难题,提升模型的特征提取能力和训练效

率。因此,本文采用模型级迁移学习[18]方法,即使用大规

模数据集ImageNet自然图像作为源域进行预训练,将学

习到的知识在模型层面迁移到目标域DTM中实现跨域学

习。该方法首先通过ImageNet数据集对ResNet18进行

预训练,得到预训练的权重参数;然后冻结ImageNet预训

练ResNet18的全部卷积层,以保留其强大的特征提取能

力,并在平均池化层后引入CBAM注意力机制和多尺度特

征学习模块,仅训练新增模块和分类器来实现对目标任务

的适配优化,最终输出分类结果。通过该方法能充分利用

在大规模数据上训练得到的特征,显著提升模型的训练效

率和判别能力。基于迁移学习的ResNet18网络模型结构

图如图8所示。

2)
 

CBAM注意力机制

微多普勒特征中包含人体运动速度的变化情况以及

运动信号的关联信息,因此,本实验在模型架构中引入

·702·



 第48卷 电 子 测 量 技 术

图8 ResNet18网络结构

Fig.8 ResNet18
 

network
 

architecture

CBAM注意力机制,其通道-空间注意力结构可自适应增

强 关 键 运 动 特 征。CBAM 是 集 成 了 通 道 注 意 模 块

(channel
 

attention
 

module,CAM)和空间注意模块(spatial
 

attention
 

module,SAM)的轻量级注意力机制模块[14],如
图9所示。

通道注意力模块利用具有两个全连接层的多层感知

器来处理通道维度信息,以捕捉微多普勒谱图的色彩特

征变化。空间注意力模块从输入中揭示相关的空间特

征,关注谱图中各个色彩分量的位置信息。通过该模块,
能帮助模型更好地关注谱图重要的颜色或纹理特征,从
而更有效地提取不同行为特征关键像素区域,同时区分

其相似性,最终得到较高的准确率。整体注意力过程可

以表示为:

F'=Mc(F)􀱋F
F″=Ms(F')􀱋F' (9)

其中,􀱋 表示逐元素乘法,F″是最终的精化输出。

图9 注意力机制网络架构

Fig.9 Attention
 

mechanism
 

network
 

architecture

3)
 

并行多尺度特征学习模块

为最大限度地反映不同行为的特征差异以提高识别

准确率,本研究创新性地设计了并行多尺度特征学习模

块,如图10所示。即运用多种尺度的卷积核更全面地捕

捉动作特征,增强模型的特征抽象能力。
该模块采用四路并行架构,选用1×1、3×3和5×5的

3种尺度的小卷积核,获取4类不同感受野的特征数据。

然后,将得到的四路特征信息在通道维度上进行拼接。最

后,采用3×3最大池化与1×1卷积对多尺度特征进行更

高层次的抽象和整合,获得更具判别性的多尺度特征表

示。该模块用公式表示为:

Output=Conv1×1(Cat(f1,f2,f3,f4)) (10)
其中,fI 表示第I个分支提取到的特征,Cat(·)表示

拼接操作,Conv1×1(·)表示卷积核大小为1×1的卷积

操作。

图10 PMFL网络结构

Fig.10 PMFL
 

network
 

structure

3 实验验证

3.1 数据集与实验设置

  本文所用数据集采用英国格拉斯哥大学公开的人体行

为数据集[12],使用的雷达是Ancortek公司生产的FMCW雷

达,该雷达中心频率为5.8
 

GHz,带宽为400
 

MHz,每个

Chirp信号的持续时间为1
 

ms。该数据集包含7个不同时

间点采集到的子数据集,共有72名不同年龄、身高、体重

的志愿者参与数据采集,每个受试者对同一种行为重复

2~3次,共测得1
 

754个原始数据。将数据集按照8∶2分

为训练集和测试集。数据类型包含6种人体日常活动,活
动数据分布如表1所示。

表1 人体活动数据分布

Table
 

1 Distribution
 

of
 

human
 

activity
 

data

活动 样本个数 测量时间/s
行走 312 10
坐下 312 5

站起来 312 5
捡东西 309 5
喝水 312 5
跌倒 197 5
总计 1

 

754 -

行为识别模型使用Pytorch深度学习框架实现,并在

NVIDIA公司的GeForce
 

RTX
 

3060Ti
 

GPU上进行训练,
输入图像为224

 

pixel×224
 

pixel。最大迭代次数为100,
采用Adam优化器更新网络训练参数。由于学习率是网

络的一个重要参数,它直接影响网络模型的性能,过大的

学习率可能会导致损失函数震荡或模型训练不稳定,而
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学习率过小会使收敛速度过慢或陷入局部最优。为探寻

合适的学习率使网络快速收敛到最优解,本文将学习率

设置为0.1、0.01、0.001、0.000
 

1进行对比,训练曲线如

图11所示,可见学习率设置为0.000
 

1时模型准确率较

高,且较稳定。因此,选择0.000
 

1作为本文网络的最佳

学习率。

图11 不同学习率的准确率对比

Fig.11 Accuracy
 

comparison
 

of
 

different
 

learning
 

rates

3.2 模型评估

  训练集的损失曲线如图12所示。由图12可知,随着

模型的训练深入,训练集的损失值会逐渐降低并趋于稳

定,表明该模型在训练集上的拟合效果越来越好且较为

稳定。

图12 模型训练的loss曲线

Fig.12 Loss
 

curve
 

of
 

model
 

training

  随着训练轮次的增加,训练数据的准确率逐渐提高并

趋于稳定,表明该模型容易收敛,如图13所示。为评估该

模型在测试集上的性能,本文绘制了6种行为分类的混淆

矩阵,如图14所示。该模型最终的平均分类准确率达到

98.00%,实验结果表明,该模型具有较高的识别准确率。

图13 模型的准确率变化曲线

Fig.13 Accuracy
 

curve
 

of
 

model

图14 混淆矩阵

Fig.14 Confusion
 

matrix

3.3 杂波滤除算法的有效性

  为验证本文所提杂波滤除算法的有效性,在相同条件

下分别比较了延迟对消法和均值相消法[19]对微多普勒谱

图的处理效果,如图15所示,其中,红色矩形框内表示不

  

图15 不同方法滤波结果

Fig.15 Filtering
 

results
 

of
 

different
 

methods
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同方法对零多普勒频率附近的干扰分量的滤除结果。
由图15可知,均值相消处理后,零多普勒频率附近的干

扰分量依然较强;双延迟线对消结构虽然提升了杂波抑制能

力,但牺牲了对连续微多普勒特征的捕获性能;相较之下,本
文提出的联合滤波算法在零多普勒频带内实现了均衡的杂波

抑制性能,较好地保持了人体行为微多普勒特征的完整性。
为进一步验证不同方法滤波处理得到的特征的识别

能力,分别使用均值相消、双延迟线对消以及本文所提滤

波方法对原始雷达回波数据进行特征提取,将处理后的微

多普勒谱图输入到本文所提网络中进行训练和识别测试。
图16是3种不同滤波算法的各行为特征识别准确率。

从图16可知,本文提出的滤波算法在分类性能上要

优于均值相消和双延迟线对消算法,平均分类精度分别高

出4%,5%。由此可见,本文提出的滤波方法对行为识别

有很大的影响。同时可以看到基于均值相消方法和基于

双延迟线对消方法对捡东西、喝水两种人体行为的识别,
效果并不是很理想。由于捡东西和喝水属于精细人体行

为,均值相消算法对杂波的抑制能力有限难以满足高分辨

率场景需求,对精细动作特征的捕捉存在困难,从而影响

人体行为的识别精度。

图16 不同滤波方法的行为识别精度比较

Fig.16 Comparison
 

of
 

behavior
 

recognition
 

accuracy
 

of
 

different
 

filtering
 

methods

相比之下,本文提出的杂波滤除算法得到的微多普勒

谱图具有更高的识别精度,能有效地滤除静态杂波,实现

人体行为关键特征的准确提取,无论是对精细动作(如喝

  

水、捡东西)、日常基础动作(如坐下、站立)还是整体运动

(如行走、跌倒)都有较好的识别效果。

3.4 消融实验

  为 验 证 本 文 所 提 模 型 各 组 成 部 分 的 合 理 性,以
ResNet18模型作为主干网络,进行以下消融实验,结果如

表2所示。
表2 消融实验结果

Table
 

2 Ablation
 

study
 

results
实验 +ResNet18 +CBAM +PMFL 准确率/%
1 √ — — 93.41
2 √ √ — 96.85
3 √ — √ 95.42
4 √ √ √ 98.00

由表2可知,在ResNet18基础上分别引入CBAM 注

意力机制和PMFL模块时,其准确率均得到提高,表明注

意力机制与多路并行多尺度卷积模块各自在增强关键特

征、提升模型性能方面的有效性。同时引入CBAM注意力

机制与PMFL模块时,其准确率得到进一步提升,最终达

到98%。这一结果表明了本文所提出的模块组合在提升

模型性能方面的优势。

3.5 网络模型实验对比

  为客观评价本文方法的性能,验证所提出方法的优越

性,将本文模型与近期使用相同数据集的其他行为识别方

法进行对比,如表3所示。研究结果表明,本文方法在分

类准确率上均超过了之前的识别方法。

表3 不同模型识别人体行为的性能比较

Table
 

3 Comparison
 

of
 

recognition
 

performance
 

of
 

different
 

models
模型 分类准确率/%
CNN[8] 93.97
AlexNet[20] 93.54
RD-CNN[21] 92.33

VGG-19-Net[22] 96.86
本文模型 98.00

此外,为进一步探究输入特征及网络模型对实验结果

的影响,与相同传感器下(FMCW雷达)的不同输入特征及

网络模型方法进行比较,如表4所示。
表4 不同输入特征及网络模型方法对比结果表

Table
 

4 Comparison
 

results
 

of
 

different
 

input
 

characteristics
 

and
 

network
 

model
 

methods
输入特征 行为类型 网络模型 分类准确率/%

去噪频谱图灰度图像[23] 4 堆叠式自动编码器 89.40
频谱图R+G+B三通道[9] 6 CNN 97.58

时间-距离、时间-多普勒、距离-多普勒三域融合[24] 6 CNN+LSTM 93.39
时间-距离、时间-多普勒双域融合[25] 6 CNN+SMAN 97.58

微多普勒频谱图 6 本文模型 98.00
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  研究结果表明,本文所提方法在现有工作基础上分类

准确率得以提高。由表4可知,与其他不同输入特征相

比,本文采用微多普勒频谱图作为输入特征能更好地保留

目标动态特征,基于微多普勒频谱图的方法可以达到更优

的识别效果;与其他网络模型相比,本文所提人体行为模

型CBAM-MFResNet在行为识别准确率上更具优势。

4 结  论

  本文提出了一种基于雷达时频特征提取和CBAM-
MFResNet的人体行为识别方法。该方法对雷达回波数据

进行分析处理,利用布莱克曼窗约束行为信号的频谱能量

扩散,并沿慢时间维度构建自适应小波阈值-切比雪夫窗函

数协同处理机制抑制杂波干扰,处理得到每种行为的微多

普勒谱图,以此作为神经网络的输入,并对ResNet18进行

改进,引入轻量化卷积块注意力模块与并行多尺度特征学

习模块,用来增强模型对行为特征的区分能力。实验结果

表明,平均分类准确率可达98%,表明本文提出的杂波滤

除算法和分类模型有效提高了FMCW 雷达行为识别的准

确率。在未来的研究中,将针对更精细的行为特征展开研

究,同时进一步优化网络模型架构,减少模型复杂度和参

数量。
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