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Human action recognition based on radar time-frequency feature extraction
and CBAM-MFResNet
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(1. College of Information, Yunnan University, Kunming 650500, China;2. University Key Laboratory of Internet of

Things Technology and Application, Kunming 650500, China)

Abstract: To solve the problems of insufficient time-frequency feature representation ability and insufficient neural network
feature learning in the existing radar human behavior recognition, a human behavior recognition method based on radar time-
frequency feature extraction and CBAM-MFResNet is proposed. In the time-frequency feature extraction section, radar echo
signals are processed, the distance window function is used to constrain the spectral energy diffusion problem in the behavioral
signal, and along the slow time dimension, an adaptive wavelet threshold-Chebyshev window function co-processing
mechanism is constructed to suppress clutter interference. Micro-Doppler time-frequency diagrams are obtained by time-
frequency analysis. In the network model building section, a CBAM-MFResNet model for behavior recognition is constructed,
the lightweight convolutional attention mechanism is introduced into the residual neural network to enhance the representation
of key features; and an efficient parallel multi-scale feature learning module was designed to learn diverse feature information to
reflect the feature differences of different behaviors to the greatest extent. Finally, the fused features are input into the fully
connected layer for classification. Experimental results show that the proposed model and clutter filtering algorithm can
effectively improve the accuracy of the recognition system, and the average recognition accuracy of different human behaviors
reaches 98 %.
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Fig. 15 Filtering results of different methods
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Table 2 Ablation study results
S8 +ResNetl8 +CBAM +PMFL  fE#fi#/ %
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Table 3 Comparison of recognition performance

of different models

T MR R %
CNN™ 93. 97
AlexNet™" 93. 54
RD-CNN™V 92. 33
VGG—19—Net™ 96. 86
AR SCAR T 98. 00
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Table 4 Comparison results of different input characteristics and network model methods

B E Tk CEZE0 SRR/ %
2% R0 3 Pl M PR 4 e B XA B 89. 40
Wiig R R+G+B =@ iE" 6 CNN 97.58
R - B 2 B [ - 22 L B - 22 0 = Al A 6 CNN+LSTM 93. 39
i ] - 5 s [ - 2 % ) 0oL 3 5 0 6 CNN+SMAN 97.58
Tk 22 3% )y 5 i 1l 6 AR SCAR T 98. 00
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