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摘 要:为了克服现有基于自注意力机制的Transformer超分辨率模型在计算复杂度和局部细节捕捉方面的局限

性,提出了一种优化的轻量级超分辨率网络结构,旨在协同利用全局、非局部和局部特征来实现更高效的重建。首先,
构建了包含动态条带注意力与无偏差动态频域感知的空频特征聚合层用以捕捉全局与非局部特征,确保网络能充分

地恢复图像特征。然后,构建了局部细节增强层以对局部上下文编码并进行通道混合,确保图像的细节恢复。最后,
由多个空频特征调制块逐级提取特征并进行上采样重建以得到最终的超分辨率图像。本算法在Set14、BSD100、

Urban100等5个超分辨率领域的公共数据集上进行了对比分析,其中,在2倍重建任务上,较同为轻量级超分辨率网

络的ShuffleMixer相比,在减少了24.2%的FLOPs并使用更小训练集的同时,PSNR与SSIM在 Urban100上分别高

出了0.54
 

dB和0.005
 

5。实验表明,提出的模型在轻量级超分辨率任务中表现优异,并在性能和复杂度之间取得了

良好的平衡。
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Abstract:
 

To
 

overcome
 

the
 

limitations
 

of
 

existing
 

Transformer-based
 

super-resolution
 

models,
 

which
 

rely
 

on
 

self-
attention

 

mechanisms
 

and
 

face
 

challenges
 

in
 

computational
 

complexity
 

and
 

local
 

detail
 

capture,
 

an
 

optimized
 

lightweight
 

super
 

resolution
 

network
 

is
 

proposed.
 

The
 

network
 

aims
 

to
 

efficiently
 

utilize
 

global,
 

non-local,
 

and
 

local
 

features
 

for
 

enhanced
 

reconstruction.
 

First,
 

a
 

spatial-frequency
 

feature
 

aggregation
 

layer,
 

incorporating
 

dynamic
 

strip
 

attention
 

and
 

unbiased
 

dynamic
 

frequency
 

awareness,
 

is
 

used
 

to
 

capture
 

global
 

and
 

non-local
 

features,
 

ensuring
 

that
 

the
 

network
 

can
 

effectively
 

recover
 

image
 

feature.
 

Then,
 

to
 

ensure
 

the
 

restoration
 

of
 

image
 

details,
 

a
 

local
 

detail
 

enhancement
 

layer
 

is
 

constructed
 

to
 

encode
 

local
 

context
 

and
 

perform
 

channel
 

mixing.
 

Finally,
 

multiple
 

spatial-frequency
 

feature
 

modulation
 

blocks
 

progressively
 

extract
 

features
 

and
 

perform
 

up-sampling
 

reconstruction
 

to
 

produce
 

the
 

final
 

super-resolution
 

image.
 

The
 

proposed
 

algorithm
 

was
 

benchmarked
 

on
 

five
 

public
 

super-resolution
 

datasets,
 

including
 

Set14,
 

BSD100,
 

and
 

Urban100.
 

Under
 

the
 

×2
 

reconstruction,
 

it
 

reduces
 

FLOPs
 

by
 

24.2%
 

and
 

requires
 

a
 

smaller
 

training
 

dataset
 

compared
 

with
 

ShuffleMixer,
 

another
 

lightweight
 

super-resolution
 

network,
 

while
 

attaining
 

gains
 

of
 

0.54
 

dB
 

in
 

PSNR
 

and
 

0.0055
 

in
 

SSIM
 

on
 

the
 

Urban100.
 

Experiments
 

show
 

that
 

the
 

proposed
 

network
 

excels
 

in
 

lightweight
 

super-
resolution

 

tasks,
 

achieving
 

a
 

good
 

balance
 

between
 

performance
 

and
 

complexity.
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0 引  言

  单图超分辨率(single
 

image
 

super-resolution,
 

SISR)

是一个典型的病态问题,旨在将低分辨率(low
 

resolution,
 

LR)图像提升至所需的高分辨率(high
 

resolution,
 

HR)并
尽可能还原其高频细节。自Dong等[1]提出第一个基于卷
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积神经网络(convolution
 

neural
 

network,
 

CNN)的SISR网

络SRCNN以来,出现了许多优秀的端到端SISR方法[2-3]。
近年来,越来越多复杂且对硬件要求较高的算法被提出,如
非局部注意力和Transformer模型所使用的自注意力机制

等[4-5],以及一些混合注意力机制[6]。尽管这些模型在性能

上表现优异,但其高昂的计算复杂度和庞大的资源需求,限
制了其在实际场景中的应用。

为了缓解高计算成本这一问题,Shi等[7]利用亚像素卷

积在进行特征处理后做可学习的上采样操作,由该方法抽

象出的后采样型超分辨率网络架构一直沿用至今。Hui
等[8]基于信息提取机制提出了具有对比度感知注意力层的

信息多重蒸馏块。周登文等[9]提出了一种多尺度的特征融

合模块以提取多种尺度的特征,并通过通道搅乱注意力模

块促进特征通道之间的信息流动以增强特征选择能力。杨

胜荣等[10]提出一种结合信息蒸馏及双链路上采样的超分

辨率重建算法,首先通过多尺度信息蒸馏模块对特征进行

多维度提取,其次蒸馏机制将多尺度特征进行选择性提炼,
并将蒸馏出的部分特征利用层次注意力机制进行全局复

用,不仅降低了网络参数,还能获取更丰富的上下文信息。

Sun等[11]采用了一种基于多尺度表示的特征调制机制,通
过利用非局部特征关系动态选择代表性特征,取得了显著

成果。李轩等[12]针对轻量级网络存在的特征提取方式单

一、中间层特征提取不充分等问题,利用多尺度卷积、通道

压缩与坐标注意力等手段,提出了一种高效的通道可分离

残差网络。然而,尽管这些轻量化算法在计算效率上表现

优异,但由于其感受野受限,难以充分捕捉全局上下文信

息,因此在复杂场景下的重建效果仍有待提升。
针对 上 述 问 题,本 文 提 出 了 以 空 频 特 征 调 制 块

(spatial-frequency
 

feature
 

modulation
 

block,
 

SFFMB)为主

体的轻量级超分辨率网络SFFMNet。其中的空频特征聚

合层(spatial-frequency
 

feature
 

aggregation
 

layer,
 

SFFAL)
利用大核可分离卷积与核选择机制构成的动态条带注意力

(dynamic
 

strip
 

attention,
 

DSA)进行非局部特征提取,同时

在FFT变换后的频域空间中利用提出的无偏差动态频域

感知(unbiased
 

dynamic
 

frequency
 

awareness,
 

UDFA)从全

局角度进行细节恢复。之后,通过由部分卷积与门控机制

构成的局部细节增强层(local
 

detail
 

enhancement
 

layer,
 

LDEL)来实现跨通道交互并对局部特征进行建模,保证重

建后的图像在指标与视觉效果上更加精准与自然。

1 基于空频特征调制的轻量级超分辨率网络

SFFMNet设计

1.1 网络结构

  所提出的基于空频特征调制的轻量级超分辨率网络

SFFMNet如图1(a)所示。其主要由SFFMB模块作为主

体,同时为降低内存消耗[13],网络采用多个SFFMB级联的

方式构成,根据实验经验值,本文选择8个SFFMB级联作

为网络主体。
对于输入的LR图像,首先使用3×3的卷积作为浅层

特征提取器将输入转换至特征空间。浅层特征经由网络主

体提取更深、更抽象的高级特征。受Transformer架构在

特征提取方面的启发,本文提出的SFFMB采用相似的设

计原则,将层归一化(layer
 

normalization,
 

LN)、SFFAL、

LN和LDEL顺序堆叠以进行特征提取,并在前一组LN、

DSA和后一组LN、LDEL之间添加残差连接来促进信息

的高效传递和提升训练时的稳定性。该模块可表示为:

N1 =LN(X) (1)
Z =SFFAL(N1)+X (2)
N2 =LN(Z) (3)

Ẑ =LDEL(N2)+Z (4)
其中,LN(·)代表对输入进行层归一化,SFFAL(·)

与LDEL(·)为本文所提出的两个模块,X 与Ẑ 为SFFMB
的输入与输出,其余变量为中间变量。

之后,对深层特征利用上采样模块重建 HR结果。为

了保持网络的轻量化,仅使用一个3×3卷积层将通道维度

转换为适应上采样比例的特定尺寸,并使用亚像素卷积操

作进行放大。
最后,利用由 L1像素损失和基于快速傅里叶变换

(fast
 

fourier
 

transform,
 

FFT)的频率损失构成的联合损失

L = ‖SR -IHR‖1 +λ‖F(ISR)-F(IHR)‖1 来 训 练

SFFMNet,其中ISR 和IHR 分别为超分辨率图像和原始高

分辨率图像,F 为快速傅里叶变换,λ为平衡参数并根据经

验设置为0.01。
1.2 空频特征聚合层

  为了解决自注意力机制及其变体计算复杂度高的问

题,本文设计如图1(b)所示的轻量级空频特征聚合层

(SFFAL)以高效的建模由空域和频域表示的非局部信息。
尽管本文的主要动机在于利用频谱图的全局属性,但空域

信息的利用仍是必要的。因此,分别提出了动态条带注意

力分支(DSA)和无偏差动态频域感知(UDFA)分支。

1)动态条带注意力

相关 文 献 的 表 明,具 有 大 核 注 意 力 (large
 

kernel
 

attention,
 

LKA)的 CNN 模 型 可 以 在 性 能 方 面 与 基 于

Transformer的模型竞争[14-15]。本工作受上述文献启发提

出了一种动态条带注意力,以在空域分支中作为自注意力

机制的替代。DSA的结构如图2(a)所示,其主要由条带大

核注意力(large
 

strip
 

kernel
 

attention,
 

LSKA)与自适应核

选择机制构成。
考虑到大卷积核虽然能直接带来感受野的提升,但参

数与计算量也会成倍的增长。本工作在核层面与卷积层面

均进行了等效分解,如图2(b)所示。对于本文提出的条带

大核注意力LSKA,其参数量与浮点运算量为:

Param =2×(2d-1)×C+2×
k
d ×C+C2 (5)

·781·
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图1 SFFMNet总览

Fig.1 Overview
 

of
 

SFFMNet

图2 DSA模块概览

Fig.2 Overview
 

of
 

the
 

DSA
 

module

FLOPs=

H ×W ×(2×(2d-1)×C×C+2×
k
d ×C+C2)(6)

其中,k为最终等效的卷积核大小,d为卷积核的膨胀

系数,C、H 和 W 分别为特征的通道数、高度和宽 度。

LSKA相较图2(c)所示的原始大核卷积可以分别节省

(2d-1)
2

和 k
2d

的参数量和FLOPs,因此该方法不仅能够

有效减轻计算压力,还能保留大卷积核的原始特性。
此外,由于不同类型的图像区域对上下文信息的依赖

程度可能存 在 显 著 差 异,本 文 利 用 了 自 适 应 核 选 择 技

术[16],对于具有不同卷积核的多个分支,沿通道维度选择

性的将它们融合在一起,让模型不仅能学习到不同通道间

的关系,还能学习到不同大小卷积核之间的关系。此处,将

其与LSKA结合在一起以形成DSA,如图2(a)所示,以使

得超分辨率模型可以利用不同感受野的上下文信息来实现

更有效的恢复。
具体来说,在DSA包含两个卷积分支,前支使用3×3

的原始条状卷积与膨胀率为2的3×3的条带卷积来实现7
×7的感受野,后支接收前支输出的特征图并使用3×3的

原始条状卷积与膨胀率为2的5×5条带卷积来实现11×
11的感受野,后支所输出的特征图具有等效17×17的感

受野。这使网络可以提取更大范围的特征,从而获得丰富

的上下文信息。该过程可以表示如下:

Y =Conv(2d-1)×1(Conv1×(2d-1)(Fin)) (7)

Y =DConv k
d  ×1

(DConv
1×

k
d  
(Y)) (8)

Att=Conv1×1(Y) (9)

Z =Att*Y (10)
其中,Fin 与Y 分别为LSKA的输入与输出,Conv1×1

为逐点卷积,Att代表注意力图,Z则是最终的输出。之

后,两组DSA的输出经1×1卷积降维并拼接后进行平均

与最大池化以提取空间关系描述符,用卷积运算获得空间

维度上的特征映射以转换为空间注意力图。对于每个空间

注意力图再应用Sigmoid函数来获取每个DSA的通道权

重。该过程可表示为:

Ŷ1 =Conv1×1(FDSA1
),Ŷ2 =Conv1×1(FDSA2

) (11)

Y
~

=Concat(Ŷ1,Ŷ2) (12)

Y
·
=Concat(Pavg(Y

~),Pmax(Y
~)) (13)

Y
·
DSA1
,Y
·
DSA2 =Split(σ(Conv7×7(Y

·)) (14)
随后,通过对权重和相应的特征图进行逐个元素乘以

来获得加权的DSA。最后,这些特征图由1
 

×
 

1卷积层融

合,产生最终的注意力特征Y 。调制后的结果Zs 为原始输
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入F 和注意力图Y 的乘积:

Y =Conv1×1(Ŷ1ŶDSA1 +Ŷ1ŶDSA2
) (15)

Zs =F*Y (16)

2)无偏差动态频域感知

本文提出无偏差动态频域感知的动机在于:在其他频域

工作中,如FFC[17]与FFT-ReLU[18]等,卷积算子被直接应用

于频谱,然而频谱的每个元素都分别由实数和虚数组成,使
用点卷积来跨双通道的处理会导致数据实部和虚部之间的

交换,从根本上破坏了图像的空间结构和特征定位。因此,
本文将频域特征的实部与虚部隔离后,用不同的卷积核来进

行频域变换。此外,为了有效地提取图像退化后的频率特

征,本文提出了两个核心模块:其一,考虑到频谱中的每个元

素都会影响图像的整体结构,本文设计了频谱位置信息嵌入

(spectrum
 

position
 

information
 

embedding,
 

SPIE)模块来保持

重建 时 图 像 的 原 始 结 构;其 二,提 出 了 频 域 动 态 卷 积

(spectrum
 

dynamic
 

convolution,
 

SDC)来对各频率分量进行

不同的变换以增强建模的灵活性。由这两个核心模块构成

的无偏差动态频域感知(UDFA)模块,如图3所示。

图3 UDFA模块

Fig.3 The
 

UDFA
 

module

具体来说,输入特征首先通过2D-rFFT获得频域特

征,分别提取实部与虚部后进行通道维度上地拼接,产生的

联合特征会被依次送入上文的两个核心模块,如图3所示。

SPIE以深度卷积进行建模并与残差相加以获得包含位置

信息编码的频域特征,如式(17)所示。

FSPIE =FC +DWConv3×3(FC) (17)
其中,FSPIE 为SPIE输出的结果,FC 为实部与虚部拼

接后的特征。

SDC则先以点卷积与 Softmax操作获取动态系数

coefficient0,…,coefficientn ,该系数与对应的卷积核相乘

后,生成一系列可学习的卷积核,这些新卷积核将作为特定

频域分量的实际卷积参数。其可以被表示为:

f u,v
sdc =∑

n

i=1
coefficentu,v

i ×convi (18)

FSDC =f u,v
sdc (FSPIE) (19)

其中,u,v分别代表频谱图中的坐标,f u,v
sdc 代表频域

动态卷积操作,FSDC 为SDC输出的结果。

1.3 局部细节增强层

  上节所述的空频特征聚合层(SFFAL)侧重于捕获全

局信息,缺乏对图像局部细节的捕获能力。因此,本文设计

了局部细节增强层(LDEL)来实现跨通道交互的同时对局

部特征进行建模。考虑到常规的FFN缺乏空间维度上的

信息交换且通道中存在大量冗余信息,本文利用部分卷积

与门控机制对FFN进行了改进。
如图1(c)所示,LDEL首先进行部分卷积,将特征分为

{FL
1,FL

2}两部分,对FL
1 使用一个原始3×3卷积和GELU

以强化特征中的局部信息。随后,经过处理的FL
1 和FL

2 在

通道维度上拼接,并通过带有GELU的1×1卷积执行跨

通道交互,同时扩展特征维度至隐藏空间。之后对特征进

行门控,具体为扩展后的特征被再次分为两部分 X'1 和

X'2,其中X'1 经过一个3×3深度卷积和GELU以进一步

编码局部特征。然后,X'1 和X'2 通过元素乘法融合。最

后,使用一个1×1卷积还原特征维度。LDEL可以被表

示为:

X'=GELU(Conv1×1(PConv(FL
in))) (20)

Y =X'1·DWConv(X'2),X'= [X'1,X'2] (21)

ZLDEL=GELU(Conv1×1(Y)) (22)
其中,FL

in 为LDEL的输入特征图,[·,·]表示通道分

割,PConv(·)表示部分卷积,DWConv(·)表示深度卷

积,其余元素为中间变量。通过通道分割和信息聚合,

LDEL在保留重要信息的同时减少冗余,简化了通道维度

上的无用特征,进而提升了计算效率并与原始卷积构成的

前馈网络相比拥有相近的性能。

2 分析与讨论

2.1 实验数据集与实现方法

  1)数据集
 

网络采用DIV2K数据集[19]训练,并在常用的测试集

上 进 行 评 估,包 括 Set5、Set14、B100、Urban100 和

Manga109。评估时,SR图像被转换至 YCbCr颜色空间,
并在图像的Y通道上计算PSNR和SSIM,以评估恢复图

像的质量。

2)实现方法
 

在训练过程中,对训练集图像随机裁剪为大小64×64
的图像块,并对LR图像进行随机水平翻转和旋转作为基

本训练输入。进行实验的网络由8个SFFMB级联构成,
采用L1

 

Loss和FFT
 

Loss组成的联合损失函数进行训练,
并通过Adam优化器进行优化,β1=0.9,β2=0.99。初始

学习率为5×10-4,最小学习率为1×10-6,并通过余弦退火

策略进行更新。所有实验的迭代次数设置为600
 

000。所

有实 验 均 在 NVIDIA
 

GeForce
 

RTX4070
 

GPU 上 使 用

PyTorch框架进行。

2.2 与最新方法的比较

  1)定量比较
 

为了全面评估SFFMNet的性能,本节将SFFMNet与

最新的基于CNN的各类SR方法以及部分基于Transformer
的 方 法 进 行 比 较,包 括 SAFMN[11]、ShuffleMixer[20]、
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LAPAP[21]、FDIWN[22]、IMDN[23]、EDSR[24]与ESTR[25]。表1
展示了在基准数据集上对于×2,×3和×4放大因子的定量

比较结果,此外还列出了所使用的训练数据集、参数数量(#
Params)和浮点运算次数(#FLOPs)。

表1 不同数据集上,对于放大倍率2、3
 

和
 

4的平均PSNR/SSIM结果

Table
 

1 Average
 

PSNR/SSIM
 

for
 

scaling
 

factors
 

2,
 

3,
 

and
 

4
 

across
 

the
 

various
 

datasets
放大

倍率
算法

训练

数据集

#Params
/K

#FLOPs
/G

Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

×2

SAFMN DF2K 228 52 38.00/0.960
 

5 33.54/0.917
 

7 32.16/0.899
 

5 31.84/0.925
 

6 38.71/0.977
 

1
ShuffleMixer DF2K 394 91 38.01/0.960

 

6 33.63/0.918
 

0 32.17/0.899
 

5 31.89/0.925
 

7 38.83/0.977
 

4
LAPAP DF2K 548 171 38.01/0.960

 

5 33.62/0.918
 

3 32.19/0.899
 

9 32.10/0.928
 

3 38.67/0.977
 

2
FDIWN D2K 629 - 38.07/0.960

 

8 33.75/0.920
 

1 32.23/0.900
 

0 32.40/0.930
 

5 38.85/0.977
 

4
IMDN D2K 694 132 38.00/0.960

 

5 32.63/0.908
 

8 31.53/0.892
 

0 29.88/0.902
 

0 36.67/0.969
 

4
EDSR D2K 1370 316 37.99/0.960

 

4 33.57/0.917
 

5 32.16/0.899
 

4 31.98/0.927
 

2 38.54/0.976
 

9
ESTR D2K 678 1116 38.03/0.960

 

0 33.75/0.918
 

4 32.25/0.900
 

1 32.58/0.931
 

8 39.12/0.977
 

4
SFFMNet(Ours) D2K 444 69 38.10/0.961

 

3 33.82/0.919
 

6 32.25/0.900
 

1 32.43/0.931
 

2 38.94/0.977
 

6

×3

SAFMN DF2K 233 23 34.34/0.926
 

7 30.33/0.841
 

8 29.08/0.804
 

8 27.95/0.847
 

4 33.52/0.943
 

7
ShuffleMixer DF2K 415 43 34.40/0.927

 

2 30.37/0.842
 

3 29.12/0.805
 

1 28.08/0.849
 

8 33.69/0.944
 

8
LAPAP DF2K 594 114.4 34.36/0.926

 

7 30.34/0.842
 

1 29.11/0.805
 

4 28.15/0.852
 

3 33.51/0.944
 

1
FDIWN D2K 645 51 34.52/0.928

 

1 30.42/0.843
 

8 29.14/0.806
 

5 28.36/0.856
 

7 33.77/0.945
 

6
IMDN D2K 703 72 34.36/0.927

 

0 30.32/0.841
 

7 29.09/0.804
 

6 28.17/0.851
 

9 33.61/0.944
 

5
EDSR D2K 1555 160 34.37/0.927

 

0 30.28/0.841
 

7 29.09/0.805
 

2 28.15/0.852
 

7 33.45/0.943
 

9
ESTR D2K 770 835 34.42/0.926

 

8 30.43/0.843
 

3 29.15/0.806
 

3 28.46/0.857
 

4 33.95/0.945
 

5
SFFMNet(Ours) D2K 449 31 34.54/0.928

 

5 30.55/0.844
 

0 29.18/0.806
 

5 28.38/0.853
 

6 33.80/0.946
 

1

×4

SAFMN DF2K 240 14 32.18/0.894
 

8 28.60/0.781
 

3 27.58/0.735
 

9 25.97/0.780
 

9 30.43/0.906
 

3
ShuffleMixer DF2K 411 28 32.21/0.895

 

3 28.66/0.782
 

7 27.61/0.736
 

6 26.08/0.783
 

5 30.65/0.909
 

3
LAPAP DF2K 659 95 32.15/0.894

 

4 28.61/0.781
 

8 27.61/0.736
 

6 26.14/0.787
 

1 30.42/0.907
 

4
FDIWN D2K 664 28 32.23/0.895

 

5 28.66/0.782
 

9 27.62/0.738
 

0 26.28/0.791
 

9 30.63/0.909
 

8
IMDN D2K 715 41 32.21/0.894

 

8 28.58/0.781
 

1 27.56/0.735
 

3 26.04/0.783
 

8 30.45/0.907
 

5
EDSR D2K 1518 114 32.09/0.893

 

8 28.58/0.781
 

3 27.57/0.735
 

7 26.04/0.784
 

9 30.35/0.906
 

7
ESTR D2K 752 298 32.19/0.894

 

7 28.69/0.783
 

3 27.69/0.737
 

9 26.39/0.796
 

2 30.75/0.910
 

0
SFFMNet(Ours) D2K 456 18 32.33/0.896

 

5 28.73/0.784
 

5 27.64/0.738
 

8 26.32/0.784
 

5 30.72/0.911
 

5

  所提出的SFFMNet在所有基准数据集上的性能均优

于其 他 CNN 方 法。例 如,在 Urban100 数 据 集 上,

SFFMNet用更少的参数、FLOPs与更低的训练成本以

0.33
 

dB与0.03
 

dB的优势超越了LAPAP和FDIWN,对
于SAFMN与ShuffleMixer这种更小的模型,SFFMNet
以少量的参数与FLOPs为代价分别取得了0.59

 

dB和

0.58
 

dB的性能提升。这主要得益于SFFMB模块的非局

部建模能力。另外,在与Transformer网络的对比中,除保

持与ESTR近似性能的同时,在×2、×3与×4的放大因

子上,所分别产生的FLOPs仅为ESTR的6.18%、3.71%
与6.04%,这证明了本文所提出的空频特征聚合层在超分

辨率性能上的有效性,并且其很好地避免了自注意力机制

带来的计算压力。

2)定性比较
 

除了定量评估所提出的方法,本节将进一步展示模型

的可视化结果。图4显示了视觉比较的结果,本文提出的方

法在恢复平行直线和网格图案方面比列出的方法更准确,
模糊和伪影更少。例如,在 Urban100的img011图像中,

SFFMNet可以恢复更多的高质量平行直线。在img097中,

SFFMNet几乎复原了远处建筑中所有的窗格且结构正确。
在Set14的barbara图像中,其余方法均没有正确的恢复头

巾的纹理,而SFFMNet做到了完全的修复。这证实 了

SFFMNet在主观视觉质量方面表现更好,并证明了本文通

过利用空频特征进行自适应特征调制的方法的有效性。

2.3 实验结果与分析

  局部归因图(local
 

attribution
 

map,
 

LAM)[26]表明在

恢复过程中红色像素与矩形位置补丁之间的显著相关性。
此处,分别选取了高效超分模型中具有代表性的3个模型

进行LAM 比较,分别是轻量级模型SAFMN、中等模型

ShuffleMixer和IMDN。图5展示了LAM 比较的结果并

标注了相应的扩散指数(diffusion
 

index,
 

DI)值,更高的DI
值表示模型能涉及更广的像素范围。数据结果表明,本文

的网络可以探索更多的非局部信息以实现准确的图像超

分辨率。
此 外,本 文 还 从 特 征 图 与 其 功 率 谱 密 度 (power

 

spectral
 

density,
 

PSD)的角度对模型进行了解释。如图6
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所示,从空域特征图的角度可以观察到SFFAL的输出更

加关注图像的整体结构与周期性纹理。而LDEL的输出

则是更关注图像的局部细节,雕像和墙壁上的纹理共同印

证了这一点。

对于PSD图,将频谱进行了周期性的位移以使得低频

成分移至中心位置。可以观察到,SFFAL激活了更多的

低频成分,而 LDEL则 在 其 基 础 上 增 强 了 更 多 的 高 频

表示。

图4 Urban100与Set14数据集图像在细节区域内的视觉比较结果

Fig.4 Visual
 

comparison
 

results
 

in
 

detail
 

regions
 

of
 

images
 

from
 

the
 

Urban100
 

and
 

Set14
 

datasets

图5 LAM图分析结果与扩散指数

Fig.5 Analysis
 

results
 

of
 

LAM
 

maps
 

and
 

diffusion
 

indices
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图6 特征图与其功率谱密度分析

Fig.6 Analysis
 

of
 

feature
 

maps
 

and
 

corresponding
 

power
 

spectral
 

density

2.4 消融实验

  本节对所提出的网络进行了广泛的消融研究,以分析

和评估所网络中每个模块的效果。此处,本工作基于×4的

SFFMNet模型进行所有消融实验,并使用DIV2K数据集进

行训练,以确保公平的比较。消融结果如表2所示,分别在

Set5、Urban100和 Manga109数据集上进行性能评估。

LDEL模块通过跨通道交互机制增强局部细节捕捉能

力,其移除导致 Urban100数据集PSNR值下降0.31
 

dB;

  

SFFAL模块通过空频域特征融合以捕捉非局部信息,禁
用后使Set5和 Urban100的PSNR分别骤降1.76

 

dB和

0.53
 

dB;UDFA模块的频域处理单元(含SPIE与SDC组

件)通过建立全局频域依赖性优化特征表达,当替换其核

心SDC组件为FFT-ReLU 流[16]并且不分离实部与虚部

时,模型在Set5和Urban100的性能显著退化。实验数据

证实了各模块与本文提出的频域特征处理方法在特征建

模中的必要性。

表2 消融实验的方法及其在Set5和Urban100上×4的结果

Table
 

2 Ablation-study
 

configurations
 

and
 

their
 

×4
 

results
 

on
 

the
 

Set5
 

and
 

Urban100

消融实验
模块变化

DSA SPIE SDC LDEL
#Params
/K

#FLOPs
/G

Set5
PSNR/SSIM

Urban
 

100
PSNR/SSIM

w/o
 

LDEL √ √ √ 381 13.8 31.95/0.892
 

0 26.01/0.775
 

2
w/o

 

SFFAL √ 93 5.2 31.47/0.883
 

7 25.79/0.766
 

9
w/o

 

DFA √ √ 164 9.0 32.11/0.894
 

4 26.05/0.781
 

0
SPIE+FFT-ReLU √ √ FFT-ReLU √ 281 12.9 31.81/0.884

 

2 25.64/0.765
 

0
w/o

 

SPIE √ √ √ 445 17.7 32.27/0.896
 

1 26.28/0.783
 

8
Baseline √ √ √ √ 456 18.0 32.33/0.896

 

5 26.32/0.784
 

5

3 结  论

  本文提出了一种用于轻量级单图超分辨率的空频特

征调制网络SFFMNet,旨在高效地实现对单个图像的超

分辨率。
该网络主要由多个SFFMB模块级联构成,每一个

SFFMB模块均采用了全局到局部的特征提取策略,包含

用于进行非局部建模的SFFAL与局部信息增强的LDEL
模块。在SFFAL中,利用空域和频域来捕捉图像的非局

部信息并进行融合,使网络能以较低计算复杂度对图像特

征建立长程依赖关系,而在LDEL模块中,则利用部分卷

积和门控模块,在减少参数量的同时,既能执行通道混合

又能有效捕获局部上下文信息。大量实验表明,基于CNN
的SFFMNet在重建性能和计算效率之间实现了良好的

平衡。
本文的研究成果是为单图超分辨率的实现提供了一

种有效的解决方案,
 

有望在未来的超分辨率应用中发挥一

定作用。然而,同其他神经网络架构设计中的关键概念一

样,频域特征在神经网络中的作用仍未被充分探索。因

此,对于频域特征的可解释性研究以及开发更高效的频域

特征提取方法,将成为未来计算机视觉领域的重要方向

之一。
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