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摘 要:较高的风电功率预测精准度,能够保障电网可持续稳定运行。针对风电数据的波动性和随机性等特征导致

预测精准度欠佳的问题,基于分解-预测模型,提出使用连续变分模态分解算法(SVMD)分解数据,双向时间卷积网络

(BiTCN)和双向长短期记忆网络(BiLSTM)进行预测为基础的分解预测模型,以提升短期风电功率预测的精准度。使

用加入牛顿法增强局部搜索能力的壮丽细尾鹩莺优化算法(SFOA-N)搜寻SVMD的最佳惩罚因子和预测模型的最佳

超参数。针对BiTCN中指数增长膨胀率无法适应不同时间序列中的复杂模式的技术难题,提出一种加入动态膨胀率

预测模块改进BiTCN的创新方法,可根据输入数据的不同自动调整膨胀率,从而提升预测性能。经本文数据集验证,
与单一BiTCN模型对比,基于优化SVMD-IBiTCN-BiLSTM模型的决定系数达到了0.998

 

2,平均绝对百分比误差、
均方根误差和平均绝对误差分别下降了3.57、9.94和7.21,具有较高的预测精度。
关键词:风电功率预测;连续变分模态分解;双向时间卷积网络;双向长短期记忆网络;壮丽细尾鹩莺优化算法
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Abstract:The
 

accuracy
 

of
 

wind
 

power
 

prediction
 

is
 

crucial
 

for
 

ensuring
 

the
 

sustainable
 

and
 

stable
 

operation
 

of
 

power
 

grids.
 

To
 

address
 

the
 

issue
 

of
 

inadequate
 

prediction
 

accuracy
 

caused
 

by
 

the
 

volatility
 

and
 

stochasticity
 

of
 

wind
 

power
 

data,
 

this
 

study
 

proposes
 

a
 

decomposition-prediction
 

model
 

based
 

on
 

the
 

Successive
 

Variational
 

Mode
 

Decomposition
 

(SVMD)
 

algorithm
 

for
 

data
 

decomposition,
 

combined
 

with
 

a
 

Bidirectional
 

Temporal
 

Convolutional
 

Network
 

(BiTCN)
 

and
 

Bidirectional
 

Long
 

Short-Term
 

Memory
 

Network
 

(BiLSTM)
 

for
 

prediction.
 

The
 

Splendid
 

Fairy-wren
 

Optimization
 

Algorithm
 

enhanced
 

with
 

Newtonian
 

method
 

(SFOA-N)
 

is
 

employed
 

to
 

optimize
 

SVMD's
 

penalty
 

factor
 

and
 

the
 

hyperparameters
 

of
 

the
 

prediction
 

model,
 

thereby
 

improving
 

local
 

search
 

capability.
 

To
 

resolve
 

the
 

technical
 

challenge
 

that
 

the
 

exponentially
 

growing
 

dilation
 

rate
 

in
 

BiTCN
 

struggles
 

to
 

adapt
 

to
 

complex
 

patterns
 

across
 

different
 

time
 

series,
 

an
 

innovative
 

dynamic
 

dilation
 

rate
 

prediction
 

module
 

is
 

proposed.
 

This
 

module
 

automatically
 

adjusts
 

dilation
 

rates
 

according
 

to
 

varying
 

segments
 

of
 

input
 

data,
 

significantly
 

enhancing
 

prediction
 

performance.
 

Experimental
 

results
 

demonstrate
 

that
 

compared
 

with
 

standalone
 

BiTCN
 

models,
 

the
 

optimized
 

SVMD-IBiTCN-BiLSTM
 

model
 

achieves
 

a
 

coefficient
 

of
 

determination
 

of
 

0.998
 

2,
 

with
 

mean
 

absolute
 

percentage
 

error,
 

root
 

mean
 

square
 

error,
 

and
 

mean
 

absolute
 

Error
 

reduced
 

by
 

3.57,
 

9.94,
 

and
 

7.21
 

respectively,
 

demonstrating
 

superior
 

forecasting
 

accuracy.
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0 引  言

  风能作为一种清洁、高效的能源,已成为我国能源结构

调整和绿色发展的重要方向[1]。然而,风能的随机性、波动

性和预测困难等特点给电网调度和电力系统运行带来很大

的挑战。因此,提升风电功率预测的准确性尤为重要[2]。
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长期以来,国内外学者针对提高风电功率预测问题开

展了深入的研究,并陆续提出了一系列基于机器学习的预

测方法。现在比较受欢迎的是在数据处理阶段引入了模态

分解算法,然后使用机器学习方法预测,构建分解-预测的

框架[3]。
在数据处理部分,变分模态分解[4](variational

 

mode
 

decomposition,
 

VMD)是现在常用的算法。但是 VMD算

法需要人为设置模态数、惩罚因子等参数,参数选择不当会

影响分解效果,针对这个问题研究人员提出连续变分模态

分 解[5]
 

(sequential
 

variational
 

mode
 

decomposition,

SVMD),分解过程不需要设置模态数。但是惩罚因子仍需

设置,为此引入了启发式优化算法。文献[6]提出一种使用

鲸鱼优化算法寻找SVMD最佳惩罚因子;文献[7]使用灰

狼优化算法寻找SVMD最佳惩罚因子。但是大多数启发

式优化算法的全局探索和局部开发的平衡不够好,全局搜

索能力比较强但是局部搜索能力较弱,文献[8]提出牛顿-
拉夫逊优化算法,结合了牛顿法的快速收敛特性和启发式

算法的全局搜索能力,可知牛顿法局部搜索能力较强。
在预测部分,机器学习因其具有较高的预测精度,并且

成本较 低,备 受 研 究 者 关 注,诸 如 双 向 长 短 期 记 忆

(bidirectional
 

long
 

short-termmemory,BiLSTM)网络,双
向 时 序 卷 积 网 络 (bidirectional

 

temporal
 

convolutional
 

network,BiTCN)等。相较于单一的机器学习预测模型,采
用多种机器学习算法的组合预测模型,展现出更好的稳定

性、灵活性和预测精度,成为当前研究与实际应用热点。文

献[9]通过结合BiTCN和BiLSTM 模型降低了预测误差,
提高了预测精度,但是该模型并没有解决超参数对预测结

果的影响。冯平平等[10]使用改进蜣螂优化算法优化模型

的超参数,但是只搜索了隐藏层神经元数、初始学习率和正

则化参数;文献[11]使用改进龙虾优化算法寻找BiTCN-
BiLSTM最佳超参数,但是搜索超参数不够全面;文献[12]
提出基于BITCN、BiLSTM和注意力机制并由改进的麻雀

搜索算法优化的组合模型,但是超参数搜索依然不够全面。
柳博等[13]提出使用改进的白鲸优化算 法 优 化 BiTCN-
BiGRU方法中涵盖的超参数比较全面。但是由于使用优

化方法搜寻的BiTCN网络中卷积膨胀率过于固定,导致无

法适应不同时间序列中的复杂模式。
综上所述,本文提出一种改进壮丽细尾鹩莺优化算法

(superb
 

Fairy-wren
 

optimization
 

algorithm-Newton,SFOA-N)
搜索连续变分模态分解(SVMD)合适的惩罚因子、搜索增

加了动 态 膨 胀 率 预 测 模 块 改 进 的 双 向 时 间 卷 积 网 络

(improve
 

bidirectional
 

temporal
 

convolutional
 

network,

IBiTCN)以及双向长短期记忆网络(BiLSTM)最佳超参数

的短期风电功率预测模型。该模型解决了启发式优化算法

的局部搜索能力不足,BiTCN网络膨胀率不够灵活的问

题,本文工作主要如下:

1)SFOA 引入牛顿法。针对壮 丽 细 尾 鹩 莺 优 化 算

法[14](superb
 

Fairy-wrenoptimization
 

algorithm,SFOA)局
部搜索能力不足的问题,引入牛顿法进行局部搜索,提高算

法优化能力,改进后SFOA进行全局搜索,牛顿法进行局

部优化。

2)SFOA-N-SVMD分解去噪。通过连续变分模态分

解对风电数据进行分解去噪,并使用SFOA-N进行参数寻

优,选择合适的惩罚因子。分解得到的IMF作为预测模型

输入,可以剔除信号中的噪声和冗余信息,提供更干净和精

确的数据给预测模型,有助于提高模型的预测准确性。

3)改进BiTCN模型。将扩张因果卷积中的膨胀率由

原来的指数增长转换为由动态膨胀率预测模块预测输入的

膨胀率,使模型更灵活,可以根据输入数据的不同自动调整

膨胀率,从而提升预测性能。

4)构建SFOA-N-IBiTCN-BiLSTM 预测模型。使用

SFOA-N对预测模型进行超参数寻优。然后对本文模型进

行全面的对比消融实验。

1 数据分解模型

1.1 壮丽细尾鹩莺优化算法

  壮丽细尾鹩莺优化算法是2025年新提出的启发式算

法,灵感来源于壮丽细尾鹩莺的3种自然行为:幼鸟生长、
繁殖喂养、躲避天敌。通过模拟评估时间的变化来模拟其

在空间中的搜索能力,以有效地解决现实环境中的优化问

题。每个SFOA成员是问题的候选解决方案,并使用向量

进行数学建模。向量的每个元素对应于决策变量,所有

SFOA成员共同构成整个算法如式(1)所示。

X =

X1

︙

Xi

︙

XN
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􀭡
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􀪁
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􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

N×D

(1)

式中:X 为SFOA全局矩阵,Xi是第i个成员,xi,d 是搜索

空间中SFOA的决策变量。

1)初始化阶段。在开始主要策略前,需要先初始化种

群的位置,公式如下:

X = (ub-lb)×rand(0,1)+lb (2)
式中:ub和lb分别表示搜索空间在第j维的上、下边界,

rand(0,1)为区间[0,1]内的随机数。

2)幼鸟生长阶段。当判断到幼鸟在种群中的比例较大

(用一个系数r来衡量)时,算法进入幼鸟生长阶段。因为

幼鸟数量过多会影响种群整体生存,需要通过大量学习与

位置变动,促使幼鸟尽快成长为成鸟,从而提升搜索的全局

探索能力。

3)繁殖哺育阶段。当算法检测到环境危险因子较低

(以s表示)且成鸟为主时,种群会转入繁殖哺育阶段。算

法中,为评估环境危险程度,首先用式(3)来计算环境风险

量,模拟风险波动。当s 值偏小意味着环境相对安全,
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SFOA在繁殖期间,几只成员轮流照顾卵直到它们孵化。
这种行为导致SFOA在巢附近小范围内移动,并且每个

SFOA成员都有机会外出寻找食物和照顾孩子,使SFOA
在一定局部范围内进行深入探索。

s=r1×20+r2×20 (3)
式中:r1 和r2 为[-1,1]区间的随机数。

4)避免自然敌人阶段。若检测到环境的危险因子s较

高,表明当前情形不利于繁殖,种群会切换到天敌规避阶

段。此时,算法参考壮丽细尾鹩莺遇到捕食者时的两种典

型行为:被天敌盯上的鸟快速逃窜,而其他同伴会在空中抖

动羽毛示警,形成较大的扰动。以此来设计个体位置更新

的模式,令整个种群获得随机跳动,以跳出局部陷阱,极大

地增加了SFOA在空间探索中的随机性。

SFOA计算公式如式(4)所示。

Xnewi,j =
Xt

i,j+(lb+(ub-lb)×rand),r>0.5
Xb×C+(Xb-Xt

i,j)×p, r≤0.5,s>20
Xb+Xi,j×l×k, r≤0.5,s≤20

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

(4)
式中:Xb 表示全局最佳解位置,C 为一个常数,p 表示成

熟度,l是莱维飞行随机步长,k是自适应飞行平衡因子用

于控制逃逸幅度。

1.2 壮丽细尾鹩莺-牛顿优化算法

  牛顿法(Newton's
 

method,NM)是一种用于寻找实数

域和复数域上方程根的迭代优化算法。在优化领域,牛顿

法主要用于寻找可导函数的局部极值(最小值或最大值)。
其核心思想是通过利用目标函数的二阶导数(Hessian矩

阵)信息,构建二次近似模型,从而快速收敛到极值点。迭

代公式为:

xk+1 =xk -H(xk)-1▽f(xk) (5)
式中:▽f(xk)是梯度,H(xk)是 Hessian矩阵。

SFOA-N流程图如图1所示,SFOA-N基于种群多样

性或迭代次数阈值触发SFOA全局搜索,通过模拟幼鸟生

长阶段的随机搜索和躲避天敌的莱维飞行,SFOA能有效

探索解空间,避免陷入局部最优。当适应度变化率低于阈

值或检测到局部收敛趋势时,引入牛顿法进行局部优化,利
用其二阶导数信息快速收敛到精确解,弥补SFOA局部搜

索能力的不足,算法进行梯度和 Hessian计算,若 Hessian
矩阵非正定,添加正则项。

1.3 连续变分模态分解

  连续变分模态分解是基于VMD改进的分解算法,分
解时不需要人为设置模态个数,用于将复杂的信号分解为

一系列模态函数(intrinsic
 

mode
 

function,IMF)。SVMD
核心思想是通过变分模态分解的方式,逐次从信号中提取

模态函数,在每个迭代步骤中,SVMD通过最小化信号与

模态函数之间的差异来更新模态函数,直到收敛,分解工程

基于以下4个准则:
1)每个模态应围绕其中心频率紧凑,使其信号成分集

图1 SFOA-N流程图

Fig.1 SFOA-N
 

flow
 

chart

中在特定的频率范围内。

2)通过最小化残差信号的能量来实现去除白噪声的能

力,降低噪声对信号分析的影响,提高信号的纯净度。

3)滤除新模态在其前面模态中心频率附近处的信号成

分,确保不同模态之间具有较好的区分度。

4)满足上述3个准则后,将得到的模态组合时能够完

整地重构原始信号。

2 预测模型原理

2.1 改进双向时间卷积网络

  BiTCN的核心特性:因果卷积:这种卷积方式确保在

预测当前时刻的值时,模型仅依赖于当前时刻及之前的信

息,从而保证了预测的因果性;扩张卷积:通过在卷积核中

的元素之间引入“间隔”,扩张卷积能够在不增加卷积核尺

寸的前提下,有效地扩大卷积的感受野,捕捉更广泛的时序

依赖关系;残差链接:残差连接的设计允许信息直接跨层传

递,绕过某些中间层。这种机制有助于缓解深层网络中常
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见的梯度消失问题,从而提高模型的训练效率和性能。
在TCN架构中,膨胀率是按照层数呈指数增长的,第

1层的膨胀率d=1,第2层d=2,第3层d=4,依此类推。
这种固定模式虽然能够有效扩大感受野,但缺乏灵活性,无
法根据输入数据的特性进行自适应调整。本文提出了一种

动态膨胀率预测模块。在该模块的作用下,每个残差块的

膨胀率不再遵循预设的指数增长规律,而是能够依据输入

数据的特征动态地进行调整。模型可以在不同层次或不同

时间步长上灵活选择合适的膨胀率,从而更好地适应数据

中潜在的周期性特征和长期依赖结构。
动态膨胀率预测层步骤如下:

1)输入特征,定义:

X ∈RB×T×C (6)
式中:B 表示批次大小,T 表示时间步,C 表示通道数。

2)局部特征提取和全局特征提取,局部特征使用一维

卷积,卷积核为3,ReLU激活函数;全局特征提取使用全局

平均池化捕获全局统计量,ReLU激活函数,公式如下:

Hlocal =ReLU(Conv1D(X,Wlocal)) (7)
式中:Wlocal 为局部卷积核权重,Hlocal 为局部特征。

μ =
1
T∑

T

t=1
Xt∈RB×C (8)

Hglobal =ReLU(Wglobal·μ+bglobal)∈RB×H (9)
式中:Wglobal 为全连接层权重,bglobal 为偏置。

3)特征融合与膨胀率预测,把提取的特征进行融合,然
后使用Sigmoid函数进行预测,公式如下:

Ffused = [Hlocal;Hglobal􀱋1T] (10)

α =σ(W2·ReLU(W1·Ffused +b1)+b2) (11)
式中:􀱋1T 表示将全局特征沿时间步复制T 次,W1、W2 为

融合层权重,b1、b2 为偏置,σ(·)为Sigmoid激活函数。

4)膨胀率映射,将系数映射到预设的膨胀率范围,通过

STE进行量化,同时保持梯度传播,公式如下:

d =1+α·(dmax-1) (12)
式中:dmax 为人为设定最大膨胀率,本文设定为24。

dquant = d +(d- d ).deatch() (13)
数据经过动态膨胀率预测层得到了预测的膨胀率,然

后把得到的膨胀率输入一维扩张因果卷积。图2为动态膨

胀率预测层的提取部分的网络结构,图3为动态膨胀率预

测层的流程图。

2.2 双向长短期记忆网络

  BiLSTM 是循环神经网络的一种高级变体,它通过在

RNN的基础上增加一条反向的记忆链条,能够更有效地捕

捉数据中的长期依赖关系。LSTM 的核心机制是细胞状

态,它像一条信息传送带一样,贯穿整个时间序列,使得信

息可以在序列中保持和传递。在每个时间步,LSTM 通过

输入门、遗忘门和输出门的协同作用,对细胞状态进行精确

的信息更新和传递。图4所示为 LSTM 每个时间步细

节图。

图2 动态膨胀率预测层特征提取部分网络结构

Fig.2 Dynamic
 

expansion
 

rate
 

prediction
 

layer
 

feature
 

extraction
 

part
 

of
 

the
 

network
 

structure

图3 动态膨胀率预测流程图

Fig.3 Flowchart
 

of
 

dynamic
 

expansion
 

rate
 

prediction

图4 简化LSTM细节图

Fig.4 Simplified
 

LSTM
 

detailing

遗忘门:决定哪些信息需要被保留,哪些信息需要被丢
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弃,它接收当前输入xt 和上一时刻的隐藏状态st-1 作为输

入,通过一个Sigmoid激活函数将其映射到0~1之间的

值。遗忘门的计算公式如下:

ft =σ(Wf·[st-1,xt]+bf) (14)
式中:σ是sigmoid激活函数;Wf 是遗忘门的权重矩阵;bf

是遗忘门的偏置项。
输入门:负责控制当前输入中有多少信息将被更新到

细胞状 态 中。它 同 样 接 收 xt 和st-1 作 为 输 入,通 过

Sigmoid函数计算出一个更新比例,同时通过一个Tanh激

活函数对当前输入进行变换,然后将两者相乘得到需要更

新到细胞状态中的信息。计算公式如下:

it =σ(Wi·[st-1,xt]+bi) (15)

C
~

t=tanh(WC·[st-1,xt]+bC) (16)
式中:Wi,Wc 是输入门和候选记忆单元状态的权重矩阵;

bi,bc 是输入门和候选记忆单元状态的偏置项。
输出门:决定当前时刻的输出,以及哪些信息将从细胞

状态流向隐藏状态,计算公式如下:

ot =σ(Wo·[st-1,xt]+bo) (17)

si =oi*tanh(Ci) (18)
式中:Wo 是输出门的权重矩阵;bo 是输出门的偏置项。

2.3 SFOA-N-IBiTCN-BiLSTM预测模型

  本研究创新性地提出IBiTCN-BiLSTM 混合预测架

构,并且使用SFOA-N对组合模型的超参数进行寻优,图5
为该架构模型图。该架构在传统的BiTCN网络基础上引

入了动态膨胀率预测模块,有效解决了传统BiTCN网络在

调整扩张率时灵活性不足的问题。通过不断调整扩张率,
模型能够扩大卷积核的感受野,从而捕捉到更广泛时间范

围内的依赖关系。随后,这些提取的特征被送入BiLSTM
网络,进一步挖掘时间序列数据中的长期依赖性。最终,经
过全连接层的特征映射,模型能够高效地预测时间序列数

据。该模型不仅提高了预测的准确性,还增强了模型对复

杂时间序列数据的适应性和鲁棒性。

图5 SFOA-N-IBiTCN-BiLSTM组合预测模型图

Fig.5 Diagram
 

of
 

the
 

SFOA-N-IBiTCN-BiLSTM
 

combined
 

prediction
 

mode

3 优化SVMD-IBiTCN-BiLSTM 分解预测模型

3.1 预测模型流程

  本研究提出的优化SVMD-IBiTCN-BiLSTM 短期风

电功率分解预测模型,其创新性框架如图6所示,具体流

程包含四大核心技术环节:

1)数 据 预 处 理 阶 段:使 用 矩 阵 分 解 (matrix
 

factorization,MF)找到两个低秩矩阵,使得它们的乘积能

够尽可能地逼近原始矩阵的已知部分,原始矩阵的缺失部

分由对应位置低秩矩阵乘积填补,实现缺失值处理。使用

局部离群因子算法(local
 

outlier
 

factor,LOF),通过比较样

本点与其邻域样本点的局部可达密度,计算每个样本点的

LOF分数,根据设定的阈值区分出异常样本,使用中位数

进行替换,实现异常数据剔除。

2)信号分解优化阶段:使用SFOA-N对SVMD的惩

罚因子进行寻优,使用式(19)作为适应度函数,实现对非

平稳风电功率信号的自适应分解,将复杂的风电功率信号

分解为多个功率分量和功率残差。

f(K,α)=∑
K

k=1
Entropy(uk)+λ·‖OriginalSignal-

∑
K

k=1
uk‖2

2 (19)

式中:K 为模态数,α为惩罚因子。

3)多 模 态 预 测 阶 段:基 于 参 数 优 化 后 的IBiTCN-
BiLSTM 混 合 架 构 进 行 分 模 态 预 测,首 先 SFOA-N 对

IBiTCN-BiLSTM预测模型使用式(20)作为适应度函数进

行超参数寻优后,模型实现对各IMF分量的高精度独立

预测。
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图6 优化SVMD-IBiTCN-BiLSTM模型图

Fig.6 Diagram
 

of
 

the
 

NCS-SVMD-IBiTCN-BiLSTM
 

model

f(θ)=ValidationLoss+γ·ModelComplexity
(20)

式中:θ为各种超参数,γ为正则化参数。

4)预测重构阶段:将各子模态预测结果按照时间步进

行线性叠加,最终输出风电功率预测值。
本研究提出的分解预测模型首先通过频域分解将复杂

信号分解为更易处理的分量,然后通过IBiTCN-BiLSTM模

型对每个分量进行精准预测,最后通过重构步骤整合所有

预测结果,从而得到最终的风电功率预测值。该方法能够

有效提高预测的准确性,同时增强模型的鲁棒性和适应性,
使其在不同的数据集上均能表现出良好的性能。
3.2 评价指标

  为了评估不同预测模型的预测效果,本文选用了如下

误差指标:平均绝对误差(mean
 

absolute
 

error,MAE)、平
均绝 对 百 分 比 误 差 (mean

 

absolute
 

percentage
 

error,

MAPE)、均方根误差(root
 

mean
 

squared
 

error,RMSE)、决
定系数(r-square,R2),计算公式如下:

MAPE =
1
N∑

N

i=1

ypre
i -yi

ymax

(21)

RMSE =
1
N∑

N

i=1

(yi
pre-yi)2 (22)

MAE =
1
N∑

N

i=1
|ypre

i -yi| (23)

R2 =1-
∑

q

i=1

(yi
pre-yi)2

∑
q

i=1

(y-i-yi)2
(24)

式中:N 为样本容量;yi 为实际值;ypre
i 为预测值。

4 实验结果与分析

4.1 数据准备

  本文数据集来自新疆某风电场,采样时间为2019年1
月1日~2019年1月31日,间隔时间为15

 

min,共采集了

2
 

976条数据。数据集训练、验证和测试划分为7∶2∶1。
实验环境配置:操作系统 Windows

 

11,CPU 为Intel
(R)

 

Core(TM)
 

i7-14650HX
 

2.20
 

GHz,显卡为 NVIDIA
 

GeForce
 

RTX
 

4050,python版本:3.9.21,tensorflow-gpu
版本:2.10.0。

4.2 SFOA-N的优化性能分析

  为了验证SFOA-N优化算法的性能,将其与未改进的

壮丽细尾鹩莺优化算法、鲸鱼优化算法(whale
 

optimization
 

algorithm,WOA)、灰 狼 优 化 算 法(grey
 

wolf
 

optimizer,

GWO)、牛顿-拉夫逊优化算法(Newton
 

Raphson,NR)、加
入SPM 混 沌 映 射 的 改 进 麻 雀 算 法 (improve

 

sparrow
 

search
 

algorithm,ISSA)、加入Circle混沌映射的变色龙优

化算法(fast
 

chameleon
 

swarm
 

algorithm,FCSA)进行对

比,以式(19)为适应度函数。
如图7迭代曲线对比所示,本文提出的改进壮丽细尾

鹩莺优化算法在参数寻优过程中展现出显著优势,从图中

可以看出,SFOA-N在迭代过程中迅速降低了适应度值,
并在较早的迭代次数内达到了较低的适应度值,与其他算

法相比,SFOA-N不仅在初期迭代中表现出更快的收敛速

度,而且在迭代后期也保持了较低的适应度值,显示出更

强的稳定性和鲁棒性。然后以式(20)为适应度函数对

IBiTCN-BiLSTM模型进行超参数寻优,并且使用数据集

验证SFOA-N优化结果。超参数搜索区间如表1所示。

图7 各优化算法的适应度迭代曲线

Fig.7 Iterative
 

curves
 

of
 

fitness
 

for
 

each
 

optimization
 

algorithm

如图8可视化对比所示,经SFOA-N算法优化的预测

模型输出曲线(虚线)与真实功率序列(实线)贴合度更高,
决定系数R2 达到了0.9959。由表2可知,在关键误差指

标方 面,SFOA-N 优 化 方 案 相 较 ISSA 等 优 化 方 法,

MAPE、RMSE、MAE分别为1.19、4.64和2.41,验证了

SFOA-N算法在模型超参数优化中的先进性,在结合牛顿
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  表1 超参数搜索区间

Table
 

1 Hyperparameter
 

search
 

intervals
超参数 寻优范围

批量大小 [20,500]
初始化学习率 [0.001,0.1]
正则化参数 [0.000

 

1,0.001]
IBiTCN单元数 2、4、8
BiLSTM神经元数 [10,50]
全连接层激活函数 Sigmoid、ReLU

图8 优化算法寻优对比图

Fig.8 Optimization
 

algorithm
 

optimization
 

comparison
 

chart

表2 优化算法寻优误差指标对比

Table
 

2 Comparison
 

of
 

optimization
 

error
 

indicators
 

of
 

optimization
 

algorithms
优化方法 MAPE RMSE MAE R2

SFOA-N 1.19 4.64 2.41 0.995
 

9
SFOA 2.11 5.99 4.24 0.993

 

7
WOA 2.47 7.31 5.01 0.989

 

9
GWO 3.06 8.68 6.12 0.985

 

9
NR 2.46 7.24 4.98 0.990

 

1
ISSA 2.31 7.13 4.77 0.990

 

7
FCSA 2.19 7.01 4.32 0.991

 

1

法加强局部搜索能力之后,显著提升SFOA的优化能力。

4.3 SVMD分解结果

  基于连续变分模态分解算法对原始风电功率序列进

行频域解耦,惩罚因子在经过SFOA-N优化算法进行搜寻

后结果为2
 

897,其他核心参数设置如下:收敛容差阈值严

格控制在1×10-8,确保分解过程达到全局最优。经完整

迭代计算后,共析取出46个本征模态函数及1个残差分

量,其中前7阶IMF的时频分布及残差信号如图9所示。
为聚焦关键特征,本文选取前7个主导模态进行可视化分

析,各IMF分量按频率从高到低有序排列(IMF1~IMF7

频率依次递减),残差分量则表征原始数据中的低频噪声。

图9 SVMD前7个模态函数和残差

Fig.9 SVMD
 

first
 

7
 

modal
 

functions
 

and
 

residuals

4.4 结果分析

  1)IBiTCN对比实验

为了验证增加动态膨胀率预测模块的预测模型效果

要优于使用优化算法对膨胀率搜寻的预测模型,本文与未

经过改进的SFOA-N-BiTCN-BiLSTM 模型和引言中所提

基 于 BiTCN 改 进 的 IDBO-BiTCN-BiLSTM-SA 模 型、

ECOA-BiTCN-BiLSTM 模 型、ISSA-BiTCN-BiSTM-AM
模型进行对比实验。

如图10预测曲线对比及表3定量分析所示,集成动态

图10 改进BiTCN对比曲线

Fig.10 Improved
 

BiTCN
 

contrast
 

curve
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  表3 改进BiTCN对比试验误差指标对比

Table
 

3 The
 

comparison
 

of
 

error
 

indexes
 

in
 

BiTCN
 

comparison
 

test
 

was
 

improved
模型 MAPE RMSE MAE R2

SFOA-N-IBiTCN-BiLSTM 1.19 4.64 2.41 0.995
 

9
IDBO-BiTCN-BiLSTM-SA 2.17 6.09 4.27 0.993

 

2
ECOA-BiTCN-BiLSTM 2.49 7.37 5.05 0.989

 

6
ISSA-BiTCN-BiSTM-AM 2.39 6.89 4.11 0.992

 

1
SFOA-N-BiTCN-BiLSTM 2.17 7.01 4.33 0.991

 

2

膨胀率预测模块的改进型IBiTCN网络展现出显著性能提

升,相较于BiTCN模型 MAPE、RMSE和 MAE分别下降

了0.98、2.37和1.92。本文改进的组合预测模型比使用

优化算法搜寻和注意力机制改进BiTCN模型效果要好,
由此表明引入动态膨胀率预测模块的改进是有效的,提升

了模型的预测性能。

2)消融实验

为了验证构建的优化SVMD-IBiTCN-BiLSTM 分解

预测模型各模块的有效性和可靠性,进行消融实验。实验

以IBiTCN为基准,依次加入BiLSTM、SVMD和SFOA-N
模型,观察各模块对模型性能的影响。

从图11对比曲线和表4定量分析中可以明显看出,随
着模型复杂度的增加,预测性能得到了显著提升。图11
显示本文提出的模型与真实值的拟合度最高,预测曲线

(虚线)与真实值几乎完全重合。这表明本文模型在捕捉

时间序列数据的局部和全局特征方面具有显著优势。表4
可以看出,随着模型的改进,这些误差指标逐渐降低,而R2

值逐渐提高。特别是经过SVMD分解后再进行训练的模

型,其R2 值比单独使用BiLSTM模型提高了0.01,达到了

0.9960。在使用SFOA-N算法进行超参数优化后,本文模

型的R2 值进一步提升至0.9982。图11和表4共同验证

了本文提出的SVMD-IBiTCN-BiLSTM 分解预测架构在

图11 消融实验对比曲线

Fig.11 Ablation
 

experiment
 

comparison
 

curves

  表4 消融试验误差指标对比

Table
 

4 Comparison
 

of
 

error
 

indexes
 

in
 

ablation
 

tests
模型 MAPE RMSE MAE R2

BiLSTM 4.93 13.04 9.97 0.968
 

1
IBiTCN 4.08 10.62 8.26 0.978

 

4
IBiTCN-BiLSTM 3.14 8.67 6.35 0.985

 

4
SVMD-IBiTCN-BiLSTM 1.09 3.92 2.19 0.996

 

0
本文模型 0.85 2.58 1.73 0.998

 

2

风电功率预测任务中的优越性能,特别是结合SFOA-N算

法进行超参数优化后,模型的预测精度达到了非常高的

水平。

3)风电功率预测最新模型对比实验

为了验证优化SVMD-IBiTCN-BiLSTM 模型在其他

预测模型上的优势,本文选取风电功率预测最新的预测模

型:SNGF-RERNN-SCSO[15]、VMD-MHBA-LSTM[16]、Bi-
NDCE-UPF[17]、FFN-TCN[18]、BO-CNN-BiGRU-SA[19]。

如图12和表5所示,通过对比可以明确地看出,本文

提出的组合预测模型在各项评价指标上均显著优于其他

风电功率预测的最新模型。图12展示了不同模型对风电

功率的预测曲线,其中本文模型与真实值的拟合度最高,
预测曲线与真实值几乎完全重合。这表明本文模型在捕

捉时间序列数据的局部和全局特征方面具有显著优势。
表5可以看出,本文模型在 MAPE、RMSE、MAE指标上

分别为0.85、2.58、1.73,这些值均低于其他模型,表明本

文模型在预测精度上具有明显优势。本文模型的R2 指标

达到了0.9982,远高于其他模型,进一步证明了本文方法

在风电功率预测中的有效性。实验验证了本文提出的组

合预测模型在风电功率预测任务中的优越性能,特别是在

预测精度和拟合度方面,本文模型均表现出色,能够有效

提高风电功率预测的准确度。

图12 最新模型对比曲线

Fig.12 Comparison
 

curves
 

of
 

the
 

latest
 

model

通过图12和表5的对比分析,可以明确地看出,本文

提出的组合预测模型在各项评价指标上均显著优于其他
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  表5 最新模型误差指标对比

Table
 

5 Comparison
 

of
 

the
 

latest
 

model
 

error
 

indicators
模型 MAPE RMSE MAE R2

SNGF-RERNN-SCSO 4.08 10.62 8.26 0.978
 

8
VMD-MHBA-LSTM 2.21 7.11 4.39 0.991

 

1
Bi-NDCE-UPF 2.51 7.52 5.11 0.989

 

7
FFN-TCN 3.29 9.24 6.65 0.983

 

9
BO-CNN-BiGRU-SA 2.43 7.14 4.91 0.990

 

4
本文模型 0.85 2.58 1.73 0.998

 

2

风电功率预测的最新模型。图12展示了不同模型对风电

功率的预测曲线,其中本文模型与真实值的拟合度最高,
预测曲线与真实值几乎完全重合。这表明本文模型在捕

捉时间序列数据的局部和全局特征方面具有显著优势。
表5可以看出,本文模型在 MAPE、RMSE、MAE指标上

分别为0.85、2.58、1.73,这些值均低于其他模型,表明本

文模型在预测精度上具有明显优势。本文模型的R2 指标

达到了0.9982,远高于其他模型,进一步证明了本文方法

在风电功率预测中的有效性。实验验证了本文提出的组

合预测模型在风电功率预测任务中的优越性能,特别是在

预测精度和拟合度方面,本文模型均表现出色,能够有效

提高风电功率预测的准确度。

4)泛化实验

为了验证本文模型的泛化性,选取来自于法国的风电

场2017年1月的风电数据,和来自与土耳其风电场2018
年1月的风电数据,经过相同数据预处理方法后,使用两

个风电场数据进行泛化实验,本文模型分别与BiTCN(模
型一)和 文 献 [20]提 出 的 这 两 个 数 据 集 最 新 模 型:

CEEMDAN-EWT-LSTM
 

(模型二)进行对比。
表6为误差指标对比结果,从表中可以看出,本文模

型与单一BiTCN模型对比在MAPE、RMSE和MAE指标

上,法国数据集分别降低了2.82、91.4和58.73,R2 从

0.8561提升到0.9976,土耳其数据集上分别降低了1.63、

197.05和54.64,R2 提升到了0.987
 

1。本文模型与模型

二对比在 MAPE、RMSE和 MAE指标上,法国数据集下

降了0.65、21.56和14.34,R2 提升了0.0145,土耳其数据

  
表6 泛化实验误差指标对比

Table
 

6 Comparison
 

of
 

error
 

indexes
 

in
 

generalization
 

experiments
模型 数据集 MAPE RMSE MAE R2

模型一 法国 3.45 107.58 70.75 0.856
 

1
模型一 土耳其 2.56 279.30 92.83 0.845

 

9
模型二 法国 1.28 37.74 26.36 0.982

 

2
模型二 土耳其 1.38 119.25 50.08 0.971

 

9
本文模型 法国 0.63 16.18 12.02 0.996

 

7
本文模型 土耳其 0.93 82.25 38.19 0.987

 

1

集分别下降了0.45、111和11.89,R2 提升到了0.987
 

1。
验证了本文模型在风电功率预测的泛化性,在不同的数据

集上均有良好的表现。

5 结  论

  为进一步提高风电输出功率预测的准确度,本文提出

了一种优化SVMD-IBiTCN-BiLSTM 的短期风电功率预

测模型,通过算例分析,得出以下结论:
本研究提出的SFOA-N算法,能够有效的解决SFOA

算法局部搜索能力较弱的问题,提高了算法的搜寻能力。
本研究提出的IBiTCN模型,通过引入动态膨胀率预

测模块解决了BiTCN模型膨胀率过于固定,无法适应不

同时间序列中的复杂模式的问题,改进后的模型可以在不

同层次或不同时间步长上灵活选择合适的膨胀率,以便于

提取更多序列特征,提高预测精准度。
本研究使用SFOA-N 搜寻SVMD最佳惩罚因子和

IBiTCN-BiLSTM 模型的最佳超参数,构建优化SVMD-
IBiTCN-BiLSTM的分解预测模型,经过一系列试验验证,
该模型能够提高风电功率预测精准度。

本文所提模型在风电功率预测任务中虽具有较高的

准确,但模型未考虑不同季节、天气等因素,而且模型对计

算资源需求高,后续将会在这些方向进一步改进。
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