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Short-term wind power prediction method based on optimized
SVMD-IBiTCN-BiLLSTM model

Ding Haozhan'? Liu Shuo'? Ma Jiying"*
(1. College of Computer Science and Technology,Shenyang University of Chemical Technology,Shenyang 110142, China;
2. Liaoning Key Laboratory of Intelligent Technology for Chemical Process Industry,Shenyang 110142, China)

Abstract: The accuracy of wind power prediction is crucial for ensuring the sustainable and stable operation of power
grids. To address the issue of inadequate prediction accuracy caused by the volatility and stochasticity of wind power
data, this study proposes a decomposition-prediction model based on the Successive Variational Mode Decomposition
(SVMD) algorithm for data decomposition, combined with a Bidirectional Temporal Convolutional Network (BiTCN)
and Bidirectional Long Short-Term Memory Network (BiLSTM) for prediction. The Splendid Fairy-wren Optimization
Algorithm enhanced with Newtonian method (SFOA-N) is employed to optimize SVMD's penalty factor and the
hyperparameters of the prediction model, thereby improving local search capability. To resolve the technical challenge
that the exponentially growing dilation rate in BiTCN struggles to adapt to complex patterns across different time
series, an innovative dynamic dilation rate prediction module is proposed. This module automatically adjusts dilation
rates according to varying segments of input data, significantly enhancing prediction performance. Experimental results
demonstrate that compared with standalone BiTCN models, the optimized SVMD-IBITCN-BiLSTM model achieves a
coefficient of determination of 0.998 2, with mean absolute percentage error, root mean square error, and mean
absolute Error reduced by 3.57, 9. 94, and 7. 21 respectively, demonstrating superior forecasting accuracy.

Keywords: wind power forecasting; sequential variational mode decomposition; bidirectional temporal convolutional

network; bidirectional long short-termmemory;superb fairy-wren optimization algorithm
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Table 2 Comparison of optimization error indicators of

optimization algorithms

itk s MAPE RMSE MAE R’
SFOA-N 1.19 4. 64 2.41 0.995 9
SFOA 2.11 5. 99 4.24 0.993 7
WOA 2.47 7.31 5.01 0.989 9
GWO 3.06 8. 68 6.12 0.985 9
NR 2. 46 7.24 1.98 0.990 1
ISSA 2.31 7.13 4.77 0.990 7
FCSA 2.19 7.01 4.32 0.991 1

FNR R TR EE N 25 E R T SFOA ML ILEE 7.
4.3 SVMD Hf@&ER

FET SR Ay RS 43 AT X TR AE KR T R 5 gk
A3 B3 S8 A L B 5 R F7E 45T SFOA-N b B sk b 4748 5
JEAER N 2 897 AW Z.O S ER BN SE 22 BE ™
I 1X10 ° R g it R s B e/ m i, &5
AT JEHTER G 46 DARIEAL S B S 1 A5k 2 o
it P 7 B IME BB 5943 0 SR 2245 5 anE 9 Bk,
R R A SE R AR AR SCIR AT 7 A AL EAT vT AR 4
BT, 25 IMF 43 525 4% 59 2 D\ i B A JF HE 31 (IMF1 ~ IMF7

+ 104 -

Tl R AL B8 R I ik S 48 30 T A Y, A S 5 ok
253kt i SFOA-N-BiTCN-BIiLSTM #5 B #15| 75 v i 4%
T BITCN 2t # % IDBO-BITCN-BILSTM-SA ## #1
ECOA-BiTCN-BILSTM # % | ISSA-BITCN-BiSTM-AM
PR AT X HES2 86

L 10 TN 2R % Ee KR 3 A A M TR L B A

~ ASfE
SFOA-N- IBiTCN-BiLSTM
~- IDBO-BIiTCN-BIiLSTM-SA
-+- ECOA-BITCN-BiLSTM
ISSA-BiTCN-BiLSTM-AM

200} -+ SFOA-N-BiTCN-BiLSTM
1
175}
150}
B |
2125 1& ¢
% '
[ L 5
1§100 ;
& j
3y ,"*‘ia‘ J
o
50f |
/
f
251 ¢
0 20 100

B 10 it BITCN % b il &
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Table 3 The comparison of error indexes in BiTCN

comparison test was improved
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Table 4 Comparison of error indexes in ablation tests

Y MAPE RMSE MAE R2

SFOA-N-IBITCN-BILSTM 1.19  4.64 2.41 0.9959
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ECOA-BITCN-BILSTM  2.49  7.37 5.05 0.9896
ISSA-BiITCN-BiISTM-AM  2.39  6.89 4.11 0.9921
SFOA-N-BITCN-BILSTM  2.17 7.01 4.33 0.991 2
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Fig. 11 Ablation experiment comparison curves
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Table 6 Comparison of error indexes in

generalization experiments

i By MAPE RMSE MAE R’
PR — B[ 3.45 107.58 70.75 0.856 1
Wil —  +HH  2.56  279.30 92.83 0.845 9
L B 1 1.28  37.74  26.36  0.9822
B~ fHH  1.38  119.25 50.08 0.9719

AR hE 0.63 16.18 12.02 0.996 7
AR +HH 0.93 82.25  38.19  0.9871

+ 106 -

SR R RS R RE ) s Y IR R R s T R A S e
AR i IBITCN BEAL, 5@ 4 51 A 3l 35 2 ik R 75

DB A e 7 BITCN R ik 22 0o T [ 5 L J6 k386 A

(7] B T 3 370 e i) B2 B (] A0, 80t s A A TR AT LLAE AR

(] J2 R sl A [ A ) 24 b R0 3 4 53 1Y R ik 22, LUAE T

PRI 22 )7 51 R AIE , 12 ey TR v B

ABFFEME ] SFOA-N # 5 SVMD e ££ 48 57 ] 7 Al

IBITCN-BiLSTM # # 1 5 £ # 2 %, #4 & L fb SVMD-

IBITCN-BILSTM B 73 fif TN AL AL L 285 — 5 51 145 40 ik

T G A% B XU T RS TR o

A% S SR AR B AE K A, 3 SR B AT 45 b R B

HER (AR R % JEOR [R) 2271 L RS IR 3R T B A 4 3

AT K w5 Sk e X 8y 1) E— 2D ik

S % ik

(1] BRI&HE ., T3 M0, XUk B bR T o [ 58 I 25 44 78 1k i 35

ML), AR, 2025,30(3) : 1-6.
CHEN Y CH, WAN ] H. Prediction of the change
trend of China's energy structure under the goal of
“Dual Carbon”[]J]. Sino-foreign Energy,2025,30(3):
1-6.

(2]  Ehggsg. ib W ALA ) R GE i O ML AT 52 LT 0. f A%
59,2024, (12) :196-202, 232,

MA L L. Research on electricity pricing mechanism
adapted to the new power system[]]. Price Theory &-
Practice, 2024,(12):196-202,232.

(3] Al i A . T g XU H, g 3 30000 178 S o A B 25
W] BTl 285 015 B Ak . 2024, 14(10) : 129-130.

HE ZH F. XU G. A review of key technologies and
applications for wind power prediction[ J]. Modern

Economics and Informatization, 2024,
14(10) :129-130.

[4] DRAGOMIRETSKIY K. ZOSSO D. Variational
mode decomposition [ J]. TEEE Trans on Signal
Processing. 2013, 62(3): 531-544.

[5] NAZARI M, SAKHAEI S M. Successive variational
mode decomposition [ J]. Signal Processing, 2020,
174. 107610.

[6] XUZ, TAOJ, HU Y, et al.

Industrial

A WOA-SVMD and



[7]

[8]

[9]

[10]

[11]

[12]

[13]

TR ¥ .K FTH4 SVMD-IBITCN-BILSTM £ 7 &4 42 47 W &, o & Fm] 7 3 523 M
multi-scale CNN-transformer method for fault improved  beluga algorithm [ J J. Electronic

diagnosis of motor bearing [ J]. Measurement and
Control, 2025,DOI:10. 1177/0020294024131266.
ZHANG F. Fault diagnosis of induction motor rotor
broken bar based on GWO-SVMD-1D CNN [ C].
Fourth Advanced
Manufacturing Technology and Electronic Information
(AMTEI 2024). SPIE, 2025, 13515: 214-219.
SOWMYA R, PREMKUMAR M, JANGIR P.
Newton-Raphson-based optimizer: A new population-
based
optimization problems[J]. Engineering Applications of
Artificial Intelligence, 2024, 128: 107532.

REN Y. BIiTCN-DCMA: Research on prediction
method of photovoltaic power generation based on
and BiTCN-BiLSTM [ ] .
of Computing &.

International  Conference on

metaheuristic  algorithm  for  continuous

dynamic convolution

Academic Journal Information
Science, 2024, 7(7) . 23-30.

AP SCHF . E L . T IDBO K #9 BITCN-
BiLSTM-SA SER AR BN [J/OL . K FHAE 441 .
1-11[2025-05-017. https://doi. org/10. 19912/j. 0254-
0096. tynxb. 2024-1244.

FENG P P, WEN Q, WANG X, et al. Prediction of
ash accumulation of BiTCN-BILSTM-SA photovoltaic
modules based on IDBO optimization [ J/OL]. Acta
Solar-Energy Sinica, 1-11 [ 2025-05-01 ]. https://doi.
org/10. 19912/ 0254-0096. tynxb. 2024-1244.
ZHANG Y, LIU P, XU Y, et al. Prediction of cold
region dew volume an ECOA-BiTCN-
BiLSTM hybrid model[J]. Scientific Reports, 2025,
15(1) . 1-14.

QIAO L, GAO H. CUI Y. et al. Reservoir porosity
construction based on BiTCN-BiLSTM-AM optimized
by improved sparrow search algorithm[]]. Processes,
2024, 12(9) . 1907.

/IR VNS SR O O S Rl i S AR i U
BITCN-BiGRU £ 1 3t SOC 4 3 [J 1. o 7 I &
A ,2025,48(9) :75-83.

LIU B, WU S R, FU C, et al.
lithium battery optimized by BiTCN-BiGRU based on

based on

SOC estimation of

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Measurement Technology,2025,48(9) . 75-83.
JIA H, ZHOU X, ZHANG ], et al.

wren optimization algorithm: A novel metaheuristic

Superb fairy-

algorithm for solving feature selection problems[]].
Cluster Computing, 2025, 28(4): 246.

KHAMARI R C, MAMI S, BODKHE R G, et al.
Enhancing wind power forecasting accuracy: A hybrid
SNGF-RERNN-SCSO approach [ ] ].
2025, 295: 113513.

GUO L, XU C, YU T, et al. Ultra-short-term wind

power forecasting based on long short-term memory

Solar Energy,

network with modified honey badger algorithm [J].
Energy Reports, 2024, 12. 3548-3565.

LI C, XIAO B, YUAN Q. Ultra-short-term wind
power prediction algorithm based on bidirectional
neural controlled differential equations [ J]. Electric
Power Systems Research, 2025, 243. 111479,
MANSOOR M, TAO G, MIRZA A F, et al. Feature
fusion temporal convolution: Wind power forecasting
with light hyperparameter optimization [ J]. Energy
Reports, 2025, 13: 2468-2481.

CHEN W, HUANG H. MA X. et al. The short-term
wind power prediction based on a multi-layer stacked
model of BOCNN-BiGRU-SA [ ] ].
Processing, 2025, 156. 104838.
KARIJADI 1. CHOU SH Y, DERABHARATA A.
Wind power forecasting based on hybrid CEEMDAN-
EWT deep learning method[]]. Renewable Energy,
2023,218,119357.

Digital Signal

&N

iR E 5 A, B ST T 1] R B o o X A 2

R EE
E-mail:2234434188@qq. com

X HL A5 AT A 2 BRI ST 5 1 R R A o FRLHL ) R

T4
E-mail:3136088430@ qq. com

SRFCAFIEE) L BB, BRI 5 0 A H S

L BN E T
E-mail:83001421@qq. com

+ 107 -



