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Improved non-dominated whale optimization algorithm for
input shaper parameter tuning

Xu Bo Li Shun Yu Hao

(School of Electromechanical Engineering, Beijing Information Science & Technology University,Beijing 100192, China)

Abstract: Aiming at the problems of industrial robots in torsional vibration optimization, such as the tendency to fall
into local optimum, slow optimization speed. and poor optimization effect, this paper proposes an improved method
based on the non-dominated Sorting Whale Optimization Algorithm (NSWOA). Firstly, by introducing the non-
dominated sorting algorithm to perform Pareto optimization on the three objectives, the exploration ability of the
solution space and the distribution performance in multi-objective optimization are significantly enhanced. Secondly, the
NSWOA is combined with input shaper technology. Through transfer function transformation, online signal acquisition
and offline optimization processing are realized., which avoids the problem that online optimization is prone to exciting
system vibration, while offline modeling has low accuracy. The algorithm is verified on the B&R test platform. The
results show that compared with PSO, DBO and ACO. the non-dominated sorting whale optimization algorithm based
on the input shaper shows significant advantages. The overshoot is reduced by 80.6%, 92.1% and 92.8%.,
respectively. The system adjustment time is 10. 9%, 7. 2% and 6. 7% of the other three methods, respectively. While
significantly suppressing the system torsional vibration, the dynamic performance of the system is only slightly
sacrificed, achieving a fast and vibration-free system response. This verifies the rationality and superiority of the
algorithm.

Keywords: industrial robot;torsional vibration;improved non-dominated sorting whale optimization algorithm; Pareto is

optimal; input shaping
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Fig. 1 Schematic diagram of the belt drive system in

industrial robot joints
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Fig. 2 Input shaper principle
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Table 1 Parameters of multi-mass torsion test platform
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