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摘 要:阿尔茨海默病
 

(AD)
 

是一种神经系统疾病,主要影响人的脑细胞,是痴呆症的主要形式,由于其不可逆的特

性,早期诊断对于减缓疾病进展至关重要。结构磁共振成像(sMRI)与氟脱氧葡萄糖正电子发射断层扫描(FDG-
PET)是目前在神经退行性疾病研究中被广泛应用的两种成像技术,结合这两种影像来评估大脑状态能提高结果的准

确性。本文提出了一种基于Vision
 

Transformer的多模态融合框架,通过自注意力视觉变换器从单模态影像中提取

特征,同时利用交互注意力融合网络专注于两种影像特征的相似性,既能强化各模态的独立表征能力,还能提高两种

模态的交互性。同时使用深度置信网络降低提取特征的冗余性,提高不同模态的信息互补,最后采用集成分类器做出

AD分类结果。选取 ADNI数据集,评估了提出网络的分类性能,准确率、敏感性和特异性分别达到了94.65%、

93.24%和95.62%,与目前的融合方法相比,所提出的方法在AD分类任务中取得了更优异的结果。
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Abstract:Alzheimer's
 

disease
 

(AD)
 

is
 

a
 

neurological
 

disorder
 

that
 

primarily
 

affects
 

a
 

person's
 

brain
 

cells
 

and
 

is
 

the
 

main
 

form
 

of
 

dementia;
 

due
 

to
 

its
 

irreversible
 

nature,
 

early
 

diagnosis
 

is
 

critical
 

to
 

slowing
 

the
 

progression
 

of
 

the
 

disease.
 

Structural
 

magnetic
 

resonance
 

imaging
 

(sMRI)
 

and
 

fluorodeoxyglucose
 

positron
 

emission
 

tomography
 

(FDG-
PET)

 

are
 

two
 

imaging
 

techniques
 

that
 

are
 

widely
 

used
 

in
 

neurodegenerative
 

disease
 

research,
 

and
 

combining
 

these
 

two
 

images
 

to
 

assess
 

the
 

brain
 

state
 

can
 

improve
 

the
 

accuracy
 

of
 

the
 

results.
 

In
 

this
 

paper,
 

we
 

propose
 

a
 

multimodal
 

fusion
 

framework
 

based
 

on
 

Vision
 

Transformer,
 

which
 

extracts
 

features
 

from
 

unimodal
 

images
 

through
 

a
 

self-attentive
 

vision
 

transformer,
 

and
 

at
 

the
 

same
 

time
 

focuses
 

on
 

the
 

similarity
 

of
 

the
 

features
 

of
 

the
 

two
 

images
 

by
 

using
 

an
 

interactive
 

attentional
 

fusion
 

network,
 

which
 

strengthens
 

the
 

independent
 

characterization
 

ability
 

of
 

each
 

modality,
 

and
 

also
 

improves
 

the
 

interactivity
 

of
 

the
 

two
 

modalities.
 

At
 

the
 

same
 

time,
 

a
 

deep
 

confidence
 

network
 

is
 

used
 

to
 

reduce
 

the
 

redundancy
 

of
 

the
 

extracted
 

features
 

and
 

improve
 

the
 

complementary
 

information
 

of
 

different
 

modalities,
 

and
 

finally
 

an
 

integrated
 

classifier
 

is
 

used
 

to
 

make
 

AD
 

classification
 

results.
 

The
 

ADNI
 

dataset
 

is
 

selected
 

and
 

the
 

classification
 

performance
 

of
 

the
 

proposed
 

network
 

is
 

evaluated,
 

and
 

the
 

accuracy,
 

sensitivity
 

and
 

specificity
 

reach
 

94.65%,
 

93.24%
 

and
 

95.62%,
 

respectively,
 

and
 

the
 

proposed
 

method
 

achieves
 

superior
 

results
 

in
 

the
 

AD
 

classification
 

task
 

compared
 

to
 

current
 

fusion
 

methods.
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0 引  言

  阿尔茨海默病(Alzheimer's
 

disease,
 

AD)是老年人中

最常见的痴呆症之一,它会逐渐导致不可逆的脑损伤并影

响正常的脑功能,大部分患者为65岁以上的人群。AD通

常表现为记忆、思维和情绪的异常,影响人们的正常活动。

AD不仅严重降低患者的生活质量,还会给护理人员带来

困扰。全球至少有5
 

000万人可能患有AD或其他痴呆症。
为痴呆症患者提供的医疗服务、长期照护以及临终关怀所

产生的总体费用支出持续上升,给医疗系统和社会资源带
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来显著压力。到2050年,AD患者的数量可能将达到1.15
亿[1]。因此,早期诊断和治疗阿尔兹海默症至关重要,利用

计算机辅助进行AD诊断,有利于医生做出正确结果。
医学影像技术是识别脑部疾病进展的有力工具。具体

地说,结 构 磁 共 振 成 像 (structural
 

magnetic
 

resonance
 

imaging,
 

sMRI)与正电子发射断层成像(positron
 

emission
 

computed
 

tomography,
 

PET)
 

可以辅助诊断疾病并监测其

进展。sMRI可以很好地量化
 

AD
 

患者的脑组织萎缩[2]。

Klöppel
 

等[3]利用受试者的
 

sMRI
 

图像生成大脑灰质密度

图,并利用支持向量机
 

(support
 

vector
 

machine,SVM)
 

实

现了对
 

AD
 

的识别。PET
 

可以监测人体葡萄糖代谢的变

化。Ou等[4]提取
 

PET
 

图像特征,通过逻辑回归区别健康

对照者和 AD。对于单一模态的特征,观察到的特征信息

通常仅从某个角度提供,而多模态的特征信息可以实现对

人脑更全面的研究。因此,开发基于多模态医学图像的

AD诊断模型已成为一种新趋势。最近的一些研究表明,
利用多模态脑成像数据做出的结果比单模态数据具有更好

的效果[5-7]。
现今许多研究采用深度学习的方法,使用多模态神经

影 像 数 据 进 行 脑 疾 病 诊 断[8-11]。 卷 积 神 经 网 络

(convolutional
 

neural
 

network,
 

CNN)在AD
 

诊断和预测方

面取得了令人瞩目的表现,在图像分割领域也取得诸多成

效[12-13]。在处理多模态信息时,大多数方法在图像级别执

行早期融合或在特征级别执行后期融合。需要注意的是,
由于

 

CNN
 

的局部性,早期融合会丢失不同模态之间的全

局交互,而后期融合缺乏中间特征之间的交互,因此不能充

分利用多模态信息。与
 

CNN
 

相比,Transformer
 

通过注意

力机制可以捕捉到隐藏在多模态特征中的长程依赖关系。
通常用于特征融合阶段,然而,不同模态的数据分布可能有

很大差异,并且提取的特征通常位于它们自己的空间中,这
使得很难通过注意力机制有效地学习多模态数据的互补

信息[14]。
近年来,研究通过结合sMRI和PET影像的深度学习

方法推动了AD诊断的发展。针对多模态融合,提出了不

同的策略,Lu等[15]使用多尺度深度神经网络融合 MRI和

PET提取一维特征。Lin等[16]提出3D可逆生成对抗网络

(generating
 

adversarial
 

networks,GAN)来弥补缺失数据,
并使用sMRI和PET数据的通道级早期融合进行 AD诊

断。Song等[17]通过将 MRI中灰质与 FDG-PET数据叠

加,并将其输入3DCNN进行分类。Liu等[18]提出一个级

联框架,包括多个深度3DCNN学习局部图像特征,并结合

2DCNN对高层特征进行融合。Feng等[19]结合3D
 

CNN
和LSTM,对 MRI和FDG-PET数据进行晚期融合来进行

AD诊断。Huang等[20]提出基于3DVGG的早期和晚期融

合方法。Narazani等[10]在研究基于3DCNN 的 MRI和

PET融合方法后发现,这些现有的多模态融合技术的诊断

性能尚未优于单独使用PET的效果。

Transformer在医疗影像任务中应用广泛,在使用多模

态影像进行 AD诊断中取得成果,Li等[21]结合CNN和

Transformer模块进行多模态医学图像融合。Zhang等[22]提

出一个端到端3D
 

ResNet框架,利用注意力机制在 MRI和

PET数据间融合多级特征。Gao等[23]提出多模态Mul-T,使
用DenseNet和空间注意力提取全局和局部特征,再通过跨

模态 Transformer 融 合 T1、T2-MRI和 PET 数 据。Miao
等[24]提出多模态多尺度Transformer融合网 MMTFN,结合

CNN残差模块和Transformer,联合学习多模态数据进行

AD诊断。Tang等[25]通过3DCNN提取结构性 MRI和PET
图像的深度特征表示,并利用改进的Transformer渐进学习

特征间的全局相关信息。这些方法通常采用CNN进行初步

特征提取,再利用Transformer实现特征融合。然而这些组

合方式无法完全发挥Transformer在多模态学习中的潜力,
导致部分病理特征丢失,产生了一些冗余信息,降低分类的

准确性,最终导致融合效果不够好。
为了应对所提及的问题,本文构建了一种基于多模态

影像AD分类方法。针对脑影像的特点,设计了一个基于

Vision
 

Transformer架构的特征融合网络[26],自注意力变

换器由一系列变换器块组成,每个块都具有多头自注意力

机制,独立提取sMRI和FDG-PET影像的特征,更加充分

地提取病理信息。同时引入交互注意力融合网络,专门捕

捉两种模态的重叠信息中的相关性,实现更有效的融合。
由于交互注意力模块尤其关注模态间的潜在相似性,得到

的高维特征可能存在冗余信息、噪声或弱相关特征,本文使

用深度置信网络(deep
 

belief
 

network,DBN)通过无监督学

习方式对特征进行进一步优化,增强关键特征的表征能力,
同时减少不必要的特征干扰,最终输入集成分类器得到分

类结果,本文提出的新型融合网络有效获取两种影像的互

补信息,提高了AD分类的准确率。

1 多模态影像分类网络

1.1 网络整体框架

  本研究构建了一种新颖的端到端多模态影像分类网

络,用于AD诊断,网络的整体架构如图1所示。该方法首

先通过自注意力视觉变换器从sMRI和FDG-PET影像中

分别提取病理特征FMRI 和FPET。同时这两种影像被输入

到交互注意力融合网络中进行信息融合,得到融合特征

FMP。最后,经过DBN处理的三种特征被输入至集成分类

器,完成阿尔茨海默症的分类任务。该计算过程可通过

式(1)表示。

P(Y)=Classifier(FDBN(FSelf(m,p)+FInteractive(m,p))
(1)

式中:P 代表分类结果,Classifier表示分类器,FDBN 表示

深度贝叶斯网络,FSelf 表示特征提取的自注意力视觉变换

器,FInteractive 表示交互注意力融合网络,用m、p 表示sMRI
和FDG-PET。
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图1 网络总体框架图

Fig.1 General
 

framework
 

diagram
 

of
 

the
 

network

1.2 自注意力视觉变换器

  本文的自注意力视觉变换器基于Vison
 

Transformer,
该架构由一系列变换器块组成,每个块都具有多头自注意

力机制[27],如图2所示。输入图像首先被分成不重叠的

块,然后线性嵌入并输入到变换器块中。此外,该模型使

用可学习的位置嵌入对每个块的空间信息进行编码。有

效捕捉
 

sMRI
 

和
 

FDG-PET
 

影像中的复杂空间依赖关系,
能够提取丰富的 特 征 信 息。与 传 统 的 卷 积 网 络 不 同,

Vison
 

Transformer可以捕捉长距离依赖关系,特别适用于

高维医学影像数据的处理。

图2 自注意力视觉变换器

Fig.2 Self-attention
 

vision
 

transformer

对于sMRI和FDG-PET影像m,p∈RH×W×D,本文将

其划分为大小为
 

h×w×d
 

的非重叠体素补丁。然后,每
个补丁被展平并投影到一个维度为fe 的特征空间,形成输

入张量Xm ∈R
N×fe,

 

其中,N 表示补丁的总数,特征嵌入

通过一个可学习的线性投影获得,确保每个补丁都被映射

到一致的特征维度。CNN和它有所不同,这种基于补丁的

嵌入方式能够保留更多的全局上下文信息。为了提取

sMRI
 

和FDG-PET的特征,在Vsion
 

Transformer
 

编码器

内利用自注意力机制。以sMRI支路为例,首先输入特征

通过层归一化得到式(2):

X̂m =LayerNorm(Xm) (2)
每个补丁的归一化特征经过线性投影,分别映射为查

询、键和值:Qm =X̂mWQ,
 

Km =X̂mWK,
 

Vm =X̂mWV。接着

计算 自 注 意 力 权 重 Am 为 Softmax
QmKT

m

fe  ,其 中,

softmax 归一化确保特征交互具有概率权重。最终的注

意力输出计算如式(3)所示。

Sm =AmVm (3)
这一机制允许每一个补丁关注影像中的相关区域,与

传统
 

CNN
 

只能关注局部区域不同,Vison
 

Transformer通

过自注意力机制让每个补丁与整个影像交互,提取全局信

息,提高了特征的判别能力,使模型更容易捕捉远程依赖

关系,从而提升医学影像分类的效果。为了增强特征的表

达能力,本研究采用多层编码器,每一层由自注意力、多层

感知机(multi-layer
 

perceptron,MLP)和残差连接组成,通

过残差连接将Sm 和X̂m 结合起来,再经过层归一化和MLP
得到输出如式(4)所示。

Xout
m =MLP LN Sm +X̂m    (4)

其中,MLP
 

模块包含一个两层的前馈网络,并采用
 

(gaussian
 

error
 

linear
 

unit,GELU)激活函数,以进一步优

化特征表达。为了同时捕捉精细特征和高级上下文信

息,本研究引入多尺度特征提取策略。在自注意力视觉

变换器之间使用下采样算子,这样可以在不同尺度上逐

步聚合信息,提高分类任务的鲁棒性。经过多层变换器

最终得到特征FMRI 和FPET,经过 DBN再相加得到特征

Xout
self。 自注意力机制允许模型捕捉远距离区域之间的依

赖关系,对识别医学影像中的细微病变尤为重要。自注

意力视觉变换器分支分别处理
 

sMRI
 

和FDG-PET数据,
确保提取互补特征,同时减少跨模态冗余。层级化、多尺

度特征学习策略提高了模型对图像分辨率和对比度变化

的适应性。

1.3 交互注意力融合网络

  在AD分类任务中,不同模态数据具有互补性,能够提

供多层次的病理信息。如何高效融合这些异质信息,是目

前的研究中的关键问题。本文设计了交互注意力融合网

络以充分利用
 

sMRI
 

和
 

FDG-PET
 

影像的互补信息,克服

了单模态特征提取的局限性。融合网络的主要优势是捕

捉跨模态相关性,仅靠自注意力视觉变换器提取sMRI
 

和
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FDG-PET会导致信息不完整,降低特征融合效果。本研

究提出的交互注意力融合网络包含两个独立的分支,分别

处理来自不同模态的输入数据。每个分支内部包含多个

堆叠的Vision
 

Transformer
 

编码器层,如图3所示。

图3 交互注意力融合网络

Fig.3 Interactive
 

attention
 

fusion
 

network

  首先将sMRI和FDG-PET影像分别输入到各自的嵌

入层进行处理。每个影像会被切割成若干个块,通过线性

映射到嵌入空间。接 着,为 每 个 模 态 添 加 位 置 编 码 如

式(5)、(6),这样可以补充空间信息,然后为了确保输入数

据的稳定性,对每个模态的嵌入进行归一化处理。

yMRI =xMRI +PEMRI (5)

yPET =xPET +PEPET (6)
在多头联合注意力机制(collaborative

 

attention,CA)
中,sMRI

 

模态的查询Q 将与yPET 的键K 和值V 进行加权

点积计算,以捕捉两种模态之间的交互信息。查询
 

QMRI
 是

通过对
 

yMRI
 输入进行线性变换得到式(7),FDG-PET的键

和值是通过线性变换从
 

yPET 输入获得式(8):

QMRI =LinearQ yMRI  (7)
KPET,VPET =LinearKV yPET  (8)
然后对

 

sMRI
 

模态的查询向量QMRI 和键向量KPET 进

行加权点积计算,以衡量
 

sMRI
 

模态对
 

FDG-PET
 

模态关

键特 征 的 关 注 程 度,即 计 算 注 意 力 分 数,计 算 方 式 如

式(9),
 

其中,d 表示查询和键维度。

AMRI-PET =
QMRI·KT

PET

d
(9)

然后对注意力分数进行Softmax归一化,以将其转换

为注意力权重矩阵。该步骤的目的是对sMRI查询向量与

FDG-PET不同区域的匹配得分进行归一化,使sMRI关注

的FDG-PET特征更加突出,同时抑制无关信息,Softmax
操作是针对点积注意力得分矩最后一个维度(dim=-1)
进行的,如式(10)所示。

AMRI-PET-Softmax =Softmax AMRI-PET  (10)
利用这些注意力权重对PET模态的值进行加权平均,

得到融合输出式(11):

OMRI-PET =AMRI-PET-Softmax·VPET (11)

另一条支路同样地计算得出OPET-MRI,然后进入切换

前馈神经网络(switch
 

feedforward
 

neural
 

network,Switch
 

FFN)。Switch
 

FFN是一个可选择性激活不同前馈网络的

机制,能够在降低计算开销的同时保持表示能力。为了保

持训 练 的 稳 定 性,再 次 对 Switch
 

FFN 的 输 出 进 行
 

LayerNorm
 

操作,两条支路如式(12)、(13)所示,相加得到

最终输出Xout
inter。

Xout
MP =LN SwitchFFN OMRI-PET    (12)

Xout
PM =LN SwitchFFN OPET-MRI    (13)

此过程将在多个Vision
 

Transformer
 

编码器层中进行

堆叠,并为最终任务(如分类、回归等)提供有效的特征表

示。经过多层编码后,输出能够捕捉sMRI和
 

FDG-PET
 

影像之间的复杂关系,并为后续任务提供有意义的信息。
联合注意力机制利用每个模态的查询与另一个模态的键

和值计算加权点积注意力,实现模态间信息的交互和融

合。Switch
 

FFN通过选择性激活前馈网络层,提高计算效

率的同时保持表达能力。LayerNorm在每个子模块前后

应用确保网络的训练稳定性。此架构实现了
 

sMRI
 

和
 

FDG-PET影像的有效融合,适用于多模态影像处理任务,
能够捕捉和利用不同模态之间的细粒度关系。

1.4 集成分类器

  前文中提到的,在多模态特征处理框架中,经过自注

意力视觉变换器处理得到的Xout
self,以及经过交互注意力融

合模块处理后的Xout
inter,再送入深度置信网络进行进一步的

特征提取与表示学习。DBN是一种无监督深度学习模型,
它由多个受限玻尔兹曼机(restricted

 

Boltzmann
 

machine,

RBM)堆叠构成。能够在高维特征空间中捕获复杂的非线

性关系,并学习到更具判别力的特征表示。经过DBN提

取的深度特征输入到集成分类器如图4所示,进行最终的

分类。

·41·



 

陈 洛
 

等:基于多模态影像的阿尔兹海默症分类研究 第23期

图4 集成分类器

Fig.4 Integrated
 

classifier

集成分类器 应 用 广 泛[28],本 文 设 计 了 一 个 典 型 的
 

Stacking
 

集成学习框架作为最终的分类器,用于对深度置

信网络输出的特征进行分类预测。该框架采用两层模型

结构,包括基分类器层和元分类器层,通过多模型集成的

方式提高模型的泛化能力和预测准确性。其中,基分类器

层包括SVM、随机森林(random
 

forest,RF)和梯度提升决

策树(eXtreme
 

gradient
 

boosting,XGBoost)3种不同类型

的分类器,这些分类器以并行方式对DBN提取的输入特

征进行处理,分别生成初步的预测结果。不同的基分类器

具有各自的优势,例如SVM在高维数据中表现优异,随机

森林在处理非线性关系和防止过拟合方面具有优势,而
XGBoost则因其强大的特征学习能力和对不平衡数据的

良好适应性而被广泛应用。这种多样化的基分类器设计

能够有效捕捉数据中的不同模式,通过模型的多样性来增

强整体的泛化能力。
最后元分类器层以第一层基分类器的预测结果作为

输入,在这一层中,本研究选用了 MLP作为元分类器,它
具备更强的非线性学习能力,适合处理复杂的特征交互信

息。进一步学习预测特征间的关系,从而得到最终的分类

概率。

2 数据集构建

2.1 ADNI数据集

  阿尔茨海默病神经影像学计划(Alzheimer's
 

disease
 

neuroimaging
 

initiative,
 

ADNI)是一个由多个研究机构共

同参与的大型多中心合作项目,旨在加速阿尔茨海默病

(AD)相关研究的进展。该项目于2004年正式启动,得到

了美国国立衰老研究所(NIA)和美国国立生物医学成像与

生物工程研究所(NIBIB)等机构的资助和支持。通过收集

和共享多模态神经影像、生物标志物、认知评估等数据,以
促进AD早期诊断和疾病进展研究。本研究从ADNI中选

择了具有配对FDG-PET和T1加权的sMRI影像数据的

受试者。

2.2 数据集划分

  为防止数据泄露,本研究在构建训练集、验证集和测

试集时,以受试者为单位进行划分。为了确保各子集在统

计特征上的分布一致,样本在年龄、性别及临床量表评分等

多个参数维度上实现了均衡划分。所采用的临床量表包括

简易 精 神 状 态 检 查 量 表(mini-mental
 

state
 

examination,

MMSE)和临床痴呆评定量表(clinical
 

dementia
 

rating,

CDR),这两项评估工具是临床医生进行 AD诊断时的重

要依据。划分后数据集的统计信息如表1所示。该数据

集共包含449名受试者样本,其中认知正常(cognitively
 

normal,CN)样本为233例,AD样本为216例。表1中列

出了年龄、MMSE和CDR的分布情况,其中括号外为均

值,括号内为标准差。

表1 数据集统计情况

Table
 

1 Dataset
 

statistics
数据集 类别 样本量/例 年龄/岁 MMSE CDR

训练集
CN 164 73.36(5.36) 27.97(2.07) 0.02(0.16)

AD 150 74.80(6.67) 21.50(2.34) 0.79(0.19)

验证集
CN 34 76.44(6.78) 27.96(1.17) 0.04(0.18)

AD 33 75.83(7.51) 22.67(3.52) 0.98(0.24)

测试集
CN 35 74.02(5.86) 28.66(1.38) 0.03(0.11)

AD 33 74.65(6.75) 21.31(3.30) 0.82(0.17)

2.3 数据预处理

  由于成像设备的不同以及个体间的生理差异,不同受

试者的神经影像可能存在多种不同,因此需要进行一系列

预处理步骤以提高数据的一致性和可比性。本研究采用

了clinica软件平台进行预处理[29],该平台整合了多种神经

影像处理工具。具体预处理流程包括:1)格式转换:将原

始DICOM 文件转换为 NIFTI格式,以便后续分析;2)偏
差校正:纠正影像中的非均匀信号强度;3)配准与空间标

准化:采用刚性和非刚性配准方法,使不同受试者的影像

在同一空间中对应相同的解剖结构,并映射到标准空间模

板;4)颅骨剥离:去除颅骨等非脑组织,提高影像质量;

5)灰度值归一化:调整影像灰度值,使其在不同受试者间

保持一致。以上步骤共同构成了影像数据的预处理流程。
可最大程度减少外部因素对影像的影响,提高数据的可靠

性和分析的准确性。如图5、6所示。

3 实验与结果分析

3.1 实验设置

  本研究模型的训练在配备24
 

GB显存的 GeForce
 

RTX
 

3090
 

GPU上进行,实验平台基于Python
 

3.10.6编
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图5 预处理前后的sMRI影像

Fig.5 sMRI
 

images
 

before
 

and
 

after
 

preprocessing

图6 预处理前后的FDG-PET影像

Fig.6 FDG-PET
 

images
 

before
 

and
 

after
 

preprocessing

程语言,采用PyTorch
 

1.12.1深度学习框架,操作系统为

Ubuntu
 

20.04,CUDA版本为11.3。训练过程中,优化器

选择Adam,初始学习率设置为5×10-4,并通过余弦退火

策略进行动态调整,震荡周期设定为50轮,总训练轮数为

150轮。
为计算模型预测结果与真实标签之间的误差,本文选

用交叉熵损失函数,其数学表达形式如式(14)所示。

H(p,q)= -∑
x

(p(x)logq(x)+

(1-p(x))log(1-q(x))) (14)
式中:p 表示模型期望输出概率,q 表示模型实际输出

概率。

3.2 评价指标

  本文聚焦于AD/CN二分类任务,为了评估模型的有

效性,使用准确率(accuracy,
 

ACC)、敏感性(sensibility,

SEN)、特异性(specificity,
 

SPE)
 

作为评估指标。

ACC =
TP+TN

TP+TN +FP+FN ×100% (15)

SEN =
TP

TP+FN ×100% (16)

SPE =
TN

TN +FP×100% (17)

式中:TP表示正确识别阳性病例的数量,FP映误判阴性

样本为阳性的情况,TN指准确判定阴性样本的数量,FN
指的是模型未能正确识别阳性病例,即漏诊的误判。准确

率用于评估模型在正确识别各类患者方面的整体分类能

力。敏感性反映模型在所有实际患病个体中成功识别出

的比例,较高的敏感性意味着漏诊风险较低。特异性衡量

模型在所有实际未患病个体中准确识别的比例,特异性越

高,误诊的可能性越小。为全面评估模型的分类性能,本
文将分类准确率作为主要评价指标。

3.3 实验结果及分析

  为了验证本文提出方法的有效性和准确度,本研究开

展了有关多模态的对比实验,评估指标涵盖准确率、灵敏

性及特异性,具体数据结果详如表2所示。需特别说明的

是,所有参照研究均基于ADNI数据库选取不同子集构建

独立数据集,由于受试者筛选标准差异及原始算法代码未

对外公开,且受试者群体存在部分差异,故本研究仅开展

大致对比分析。本文 MRI代表sMRI影像,PET 代表

FDG-PET影像。

表2 不同分类方法的结果对比

Table
 

2 Comparison
 

of
 

results
 

of
 

different
 

categorization
 

methods
 

%

对比方法 数据
AD/CN

ACC SEN SPE
BOKM[30] MRI+PET 90.60 90.50 90.70
MiSePyNet[31] MRI+PET 93.13 90.32 95.49
Mul-T[23] MRI+PET 94.40 93.00 95.50

Multi-Modality[32] MRI+PET 90.10 90.85 89.21
FSBi-LSTM[19] MRI+PET 86.36 83.33 88.78
3D-Class[16] MRI+PET 92.28 90.38 94.37
MMTFN[24] MRI+PET 91.67 93.33 86.66
Ours MRI+PET 94.65 93.24 95.62

  从表2中可以看出,本文提出的方法准确率高于其他

对比方法。BOKM[30]提出了一种基于核组合的新型 AD
和 MCI多模态数据融合和分类方法。与传统的直接特征

连接方法相比,该方法提供了一种统一的方式来组合异构

数据,特别是对于不同类型的数据无法直接连接的情况。
该方法可以灵活的对不同的数据模态使用不同的权重。
这类方法依赖于手工制作的特征,通常会导致次优结果。
基于深度学习的模型,尤其是卷积神经网络在自动AD诊

断和预测方面取得了令人瞩目的表现。在处理多模态信

息时,大多数方法在图像级别执行早期融合或在特征级别

执行后期融合。需要注意的是,由于CNN的局部性,早期

融合可能会丢失不同模态之间的全局交互,而后期融合缺

乏中间特征之间的交互,因此不能充分利用多模态信息。

MiSePyNet[31]方法遵循分解卷积的思想,为每个视图

部署可分离的CNN、切片和空间CNN。这种设计的好处

是,能够联合考虑轴向、冠状和矢状视图而不会丢失空间

信息。此外,每个视图都以多尺度网络为特征,以捕捉不

同的变化并扩大感受野的范围,从而增强判别特征图。模

型采用了多个卷积层和多尺度网络设计,提高了模型的表

达能力,但增加了模型的复杂性。设计中考虑了轴向、冠
状和矢状视图,但并没有提到如何处理和选择这些视图中

的关键信息。不同视图可能包含不同类型的空间信息,模
型需要有效地从这些视图中提取相关特征,避免无效信息

干扰。而且,尽管多视图联合学习提高了模型的鲁棒性,
但不同视图之间的相关性可能会导致冗余特征,影响计算

效率。

Mul-T[23]方法用多级引导生成对抗网络(multi-level
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guidance
 

generative
 

adversarial
 

network,MLG-GAN)和多

模态变换器分别用于不完整图像生成和疾病分类。首先,
文章提出用 MLG-GAN来生成缺失数据,并以来自体素、
特征和任务的多级信息为指导。除了体素级监督和任务

级约束之外,还提出了一个特征级自回归分支来嵌入目标

图像的特征以实现精确生成。利用完整的多模态图像,文
章提出了一种用于疾病诊断的 Mul-T网络,它不仅可以结

合全局和局部特征,还可以通过跨模态注意机制对从一种

模态到另一种模态的潜在相互作用和相关性进行建模。
尽管 Mul-T网络通过跨模态注意机制来建模模态之间的

相互作用和相关性,但这种跨模态建模方法是否能在所有

任务和数据集上都有效,尤其是在模态间差异较大的情况

下(例如,MRI与PET图像的成像原理和特征差异较大)。
不同模态数据之间的非线性关系可能比当前方法所能捕

捉的更加复杂,因此可能导致某些信息的丢失或误判。

Multi-Modality[32]方法提出了一种利用卷积神经网络

来整合海马区 MRI和FDG-PET图像中包含的所有多模

态信息,用于AD的诊断。与传统的机器学习算法不同,该
方法不需要手动提取特征,而是利用3D图像处理CNN来

学习用于AD诊断或预处理后的特征。然而在特征提取过

程中采用了相对简单的CNN架构,未能充分表征脑影像

中固有的特征复杂性。此外,其生成影像在信息的真实性

与丰富度方面也不及本研究所使用的真实影像。

FSBi-LSTM[19]方法设计了一个新颖的深度学习框架。
具体来说,利用了3DCNN和全堆叠双向长短期记忆网络

的优点。首先,设计了一个3DCNN架构来从MRI和PET
中获取深度特征表示。然后将FSBi-LSTM应用于深度特

征图中的隐藏空间信息,以进一步提高其性能。最后,在

ADNI数据集上验证了方法。但是将3DCNN 与 FSBi-
LSTM结合的设计相对复杂。3DCNN 负责从 MRI和

PET图像中提取空间特征,而FSBi-LSTM 用于处理序列

数据的时间依赖性,模型架构的多层次和多模块组合可能

会增加训练过程中的调参难度,并容易导致过拟合或梯度

消失等问题。

3D-Class[16]方法利用多模态互补信息,首先采用可逆

生成对抗网络模型来重建缺失数据。然后使用一种具有

多模态输入的3D卷积神经网络分类模型来执行 AD诊

断。该方法使用合成数据来弥补缺失的模态信息,虽然可

以提高诊断准确性,但过度依赖合成数据可能会使模型失

去对真实临床数据的敏感性。在多模态图像融合时,3D
 

CNN可能会将两种模态的特征过度压缩,尤其是在深层

网络中。虽然3D
 

CNN能够提取空间上的高维特征,但如

果没有合适的融合机制,它可能会丢失一些关键信息。例

如,在PET图像和 MRI图像的融合中,可能会出现两种模

态的信息无法完全有效地互补的情况,影响最终的分类

效果。

MMTFN[24]提出了一种基于Transformer的多模态多

尺度自注意力融合方法 MMTFN,用于阿尔茨海默病(AD)
诊断,该方法利用多个大脑图像扫描和多层 Transformer
进行AD分析。MMTFN整合了来自多个模态在不同阶

段和层次的细粒度特征,以解决当前多模态融合方法的局

限性。MMTFN充分利用了每个模态在不同尺度上的特

征图信息,在图像数据融合中构建了不同尺度之间的联合

表示。其中,3D多尺度残差块通过多种尺寸的膨胀卷积

提取多尺度的细粒度表示。多尺度融合网络使用在不同

尺度和不同模态下提取的细粒度特征表示,并构建了不同

特征之间的依赖关系。
上述多种融合方法存在一些不足,而本文的框架基于

视觉Transformer,有效整合sMRI和PET数据。该架构

具有自注意力视觉变换器和一种新颖的交互注意力融合

模块,协同融合sMRI和PET数据,同时引入多模态归一

化方法以减少冗余依赖,从而提升诊断性能。
综上所述,本文所提出的方法能够有效提取脑影像中

的病理特征,并充分融合sMRI与FDG-PET两种模态间

的互补信息,从而AD分类的性能。为进一步分析不同模

态对AD分类任务的贡献,本文基于构建的多模态影像数

据集,分别评估了多模态输入与单独使用sMRI或FDG-
PET数据时的分类效果。实验结果如表3所示,展示了各

方案在分类性能上的差异与优势。

表3 单模态和多模态的对比实验

Table
 

3 Comparative
 

experiments
 

between
 

unimodal
 

and
 

multimodal %

AD/CN ACC SEN SPE
sMRI 91.56 88.37 90.70
FDG-PET 92.28 91.38 89.52
Multi-modality 94.65 93.24 95.62

  使用多模态数据的准确率为94.65%,仅输入sMRI
数据或者FDG-PET数据,它们的准确率分别为91.56%
和92.28%。实验结果说明多模态数据的融合不仅提升了

模型的分类能力,提出的方法还增强了对不同影像模态互

补信息的利用,有助于更全面地了解疾病特征,实验结果

验证了本文提出的多模态方法在
 

AD
 

诊断中的优势。
在本文提出的 AD分类框架中有自注意力视觉变换

器,用来专注每一个模态的特征,还使用交互注意力融合

模块来提取sMRI影像和FDG-PET影像的结合特征,后
阶段使用DBN,它通过无监督学习逐层提取更加抽象的特

征,从而增强
 

MRI
 

和
 

FDG-PET影像特征的表征能力。为

了验证本文提出的特征提取子网络的有效性,表4展现了

网络架构的消融实验结果。
其中,YSelf 表示前文提到的自注意力视觉变换器,

YInteractive 表示交互注意力融合网络,DBN是深度信念网络,

Stacking表示集成分类器,数据结果可以展现出每一部分
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  表4 网络架构的消融实验结果

Table
 

4 Results
 

of
 

ablation
 

experiments
 

on
 

network
 

architectures %

AD/CN ACC SEN SPE
YSelf +DBN+Stacking

 

90.56 90.31 90.20
YInteractive +DBN+Stacking

 

91.67 92.55 86.64
YSelf +YInteractive +Stacking

 

94.21 92.47 94.82
YSelf +YInteractive +DBN+Stacking 94.65 93.24 95.62

对AD分类结果的影响。
从表4可知,实验结果充分证明了交互注意力融合网

络YInteractive 在多模态信息交互中的关键作用,相比于单独

使用独立自注意力视觉变换器,YInteractive 能够更有效地利

用sMRI和FDG-PET之间的互补信息,提高分类性能。
同时,DBN在深度特征融合方面的重要性也得到了验证,
其能够增强不同模态特征的联合表示能力,进一步提升分

类效果。此外,完整模型在AD/CN识别任务上表现最佳,
表明本研究提出的总体架构具有优势。

为了验证本文提出的集成分类器的有效性,比较不同

分类器在AD/CN识别任务中的性能,本研究设计了不同

分类器的对比实验,结果如表5所示。包括传统机器学习

分类器SVM、RF、XGBoost、神经网络分类器MLP,以及基

于集成学习的Stacking方法。

表5 不同分类器对比实验结果

Table
 

5 Comparative
 

experimental
 

results
 

of
 

different
 

classifiers %

分类器种类
AD/CN

ACC SEN SPE
SVM 88.28 87.38 85.37
RF 87.04 85.10 88.53

XGBoost 90.61 89.45 90.46
MLP 84.11 84.80 90.38

Stacking1(SVM+RF+
XGBoost→逻辑回归) 93.51 92.69 95.02

Stacking2(SVM+RF+
XGBoost→MLP)

94.65 93.24 95.62

  在单一分类器的实验中,SVM和RF在分类任务中性

能较 为 接 近,ACC 分 别 达 到 了88.28%和87.04%,而

MLP的表现相对较低,它在实际任务中波动大,ACC为

84.11%。相比之下,单个分类器XGBoost,在捕捉数据方

面具有一定优势,ACC
 

提升至90.61%。结合三种单一分

类器的优势组成集成分类器的第一层,鉴于 MLP在建模

非线性关系方面具有显著优势,尝试将它放在最后一层,
在集成学习方法中,本研究测试了两种Stacking方案,

Stacking1将多个基础分类器的输出输入逻辑回归进行最

终决策,Stacking2即使用多层感知机作为最后一层。实验

结果表明,Stacking方法能够有效整合不同分类器的优势,
其中Stacking2达到了最佳性能,优于所有单一分类器和

其他集成方法。这一实验结果表明,基于Stacking的集成

学习方法能够充分利用多个分类器的互补特性,提高模型

的泛化能力,尤其是使用 MLP作为最终分类器时,能够进

一步提升分类性能。因此,在本研究中最终选择Stacking
(SVM+RF+XGBoost→MLP)作为最终分类模型。

4 结  论

  磁共振成像和正电子发射断层扫描都是广泛用于早

期诊断阿尔茨海默病的成像方式。本文提出了一种基于
 

sMRI
 

和
 

FDG-PET的新型多模态融合模型,用于
 

AD
 

的

早期诊断。通过自注意力视觉变换器和交互注意力融合

网络,有效地学习多模态数据。自注意力视觉变换器从单

一模态中提取不同的特征,本研究提出的交互注意力融合

网络专注于多模态之间的相似性,旨在捕捉它们在疾病特

定依赖性上的关联。实验结果表明,本文提出的方法具有

一定的研究价值和创新性。在一定程度上取得了成效,但
也存在不足之处。本文只利用了sMRI和FDG-PET影

像,未能融合更多模态或其他关键信息,未来的研究会进

一步结合其他类型的非影像数据来提升AD的分类精度。
考虑到AD具有潜伏性,而且是长期渐进发展的疾病,病理

特征会伴随时间产生变化,因此获取患者在不同疾病阶段

的数据再进行全面分析,可能会为模型的进一步优化提供

新的视角,帮助研究人员更全面地了解其发展过程。鉴于

上述情况将在未来开展更多的研究对 AD疾病分类做

出贡献。
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