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Multimodal imaging-based Alzheimer’s disease classification research

Chen Luo Wang Zhengyong Qing Linbo Chen Honggang He Xiaohai

(College of Electronics and Information Engineering, Sichuan University,Chengdu 610065, China)

Abstract: Alzheimer's disease (AD) is a neurological disorder that primarily affects a person’s brain cells and is the
main form of dementia; due to its irreversible nature, early diagnosis is critical to slowing the progression of the
disease. Structural magnetic resonance imaging (sMRI) and fluorodeoxyglucose positron emission tomography (FDG-
PET) are two imaging techniques that are widely used in neurodegenerative disease research, and combining these two
images to assess the brain state can improve the accuracy of the results. In this paper, we propose a multimodal fusion
framework based on Vision Transformer, which extracts features from unimodal images through a self-attentive vision
transformer, and at the same time focuses on the similarity of the features of the two images by using an interactive
attentional fusion network, which strengthens the independent characterization ability of each modality, and also
improves the interactivity of the two modalities. At the same time., a deep confidence network is used to reduce the
redundancy of the extracted features and improve the complementary information of different modalities, and finally an
integrated classifier is used to make AD classification results. The ADNI dataset is selected and the classification
performance of the proposed network is evaluated, and the accuracy, sensitivity and specificity reach 94. 65%, 93.24%
and 95. 62% , respectively, and the proposed method achieves superior results in the AD classification task compared to
current fusion methods.

Keywords: Alzheimer's disease; multimodal imaging;deep learning; multimodal classification
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KW ER T, #2050 4F,AD BE M E TR A E] 1. 15
o R R 8 W R I B JR 2% W BRORE &8 6 H 2L R
TN AT AD 2 W7, A R T B A 800 I #f 45

B 2 AR T AR S U i P s R R A ) TR BAR
Hb P, 25 R ®% 2L PR A 1% (structural magnetic resonance
imaging, sMRD 5 IF H, T & & Wi )2 1% (positron emission
computed tomography. PET) B DL B2 Wi s It W il B
HEIRE . sMRI AT UARGF b it A AD J35 119 i 41 2138 4
Kloppel 25 R Z 84 B9 sMRT B 5% A 5K I K B 2% BE
&, It H Z 45 mE AL (support vector machine, SVM) 5E
BT X AD MR, PET A7 LW 4 85 25 41X 0 i 22
ft. Ou % HHL PET FEURFEAE , 38 i 32 58 ] )9 X 51 fik B
X HEE A AD, X T BN IR AE L I B YRR A B
T A A RE S AL L 7 22 RS Y AR A R AT L S B
NBGEE 4 H AT 5E, B, PR B T 2R K% E AWM
AD Wi R O — R e, makny — AR R,
I FH 22 455 285 10 A A5 500 A ) 85 R L SRR S B L A B A
MRCR T,

WAV Z 50 R TIRBE 2 S W 5 ik i 2 s &
AROBU R PR AT O O 12 WY, B B & W %
(convolutional neural network, CNN) 7 AD 2 W 1 il 5
TE S T4 AW B 3R B0, £ BG4 5 4008 LA 1 2 00
T, AL RS AR B, K 2 B0 A R GO R
7 R RS SRR IR SN AT IS RS . SRR RN,
BT CNN Ry RE M, R A G 2 £ R AR RS Z W 1 4
JRIZE . T 5 A G e 2 T ARRAE 22 ] 9 38 L TR AS g
SPHAZEEEE . 5 CNN M, Transformer 38 i &
JIAILTE T LA 42 2 5 58 7 22 48 AR AE rh i R AR AR OC &R .
T T T RRAE A BB, AR T S AN () 485 285 Y B 43 AT T e
MR 2R JF BARBUW AR EE & A TEM A S = E . X
il A5 AR X A A D ML A R0 A 2T 2 1A BOHE Y O Ab
maM,

UTAR SR TS5 id 45 & sMRI Al PET S48 10 TR i 2% >
FEHED T AD 2B AR, HXTZREME =B TR
7 0 SR Lo A5 foff P 2 U8 TR B 1 22 T 2% & MIRI I
PET $#H—4E45AE . Lin %48 ) 3D wl a8 Az i %t o 19 4%
(generating adversarial networks, GAND 3 5K #b 5t 2 # i
IFEH sMRI R PET # 4 938 36 2% 17 0 gl & £ 47 AD 2
Wi, Song %" iE if ¥ MRI K i 55 FDG-PET (4 &
i ks Hodi A BDCNN BEAT 432, Liu 500 2 ) — 2
RAES 095 2 IR BE 3DCNN 2 2 Jay i B R 45 1E L I 45 &
2DCNN X} 5 J2 F E SEAT Al & . Feng 57" 454 3D CNN
A LSTM. X MRI Fl FDG-PET #4617 W 01 il 45 ok R4 7
AD Wi, Huang % 1T 3DVGG (1 7 1 e 159 il
A7 . Narazani % 76 #F 58 3 T 3DCNN 1§ MRI Al
PET & kG KB, X LB 1Y Z B8 Al & BER 12 K
PEBE M AR T B T PET MR,
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Transformer 7 BEIT 2 ARAE 55 W iz R4 H 24
B ARIEAT AD 2 W7 b B BR L Li %0 25 A4 CNN Al
Transformer EHIEFT 2B BE2E EMRRL A . Zhang %0 2
H— s 3 3D ResNet HE 22, F AT & 1 HLHI7E MRI Al
PET %4 ] Bl & 2 9B . Gao Z R I 2818 Mul-T, i
H1 DenseNet 173 [i] {3 5 77 $2 B 4= J=) 1 =) 5B FRAF , 1538 o 85
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G AT 582 K Transformer 1EZ B3 P i 77,
FEER A RIAEE R PR T — AR E R BRI 2
HEB I e 4 B A BOR AN LT

SR TR T B I ) R AR SO T — R T RS
AR AD 5305k, BRI AR R AL R T — AN
Vision Transformer 22 i 55 4F 86 & W 26200, [ 3 2 S48
el — RV A, RSB 2k AR
ML g 57 $E L sMRI Fl FDG-PET S 4% B9 457 4F . 5 fin 75 4>
MO G B . RN AL BEEZ G M a, &I
PR EE G B P AHCHE, T EA RS .
P T 32 B B 0 DG A AR I 1 1k A R L L A5 3
1755 A AR T REFEAE TUARE B M 7 55 A DG AR AIE L A SCfiff
FHIR B {5 M4 (deep belief network, DBN) i@ 3 JC Wi B
3 75 S FRAE BEAT #E— 25 DAk, 3 5 OGS R AR 9 R AL RE T
(7] i 9 20 AN 0 B ) R AR T 4 e A B AR 0 2 A 18 B 40
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Fig. 1 General framework diagram of the network
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Fig. 2 Self-attention vision transformer
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Yper = X ppr + PE ppr (6
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Hr, sMRI BZS 1A Q 5 yper LK FIE V #EA4TIAL
SEUTE DR AR S Z R ZHEER . B Quu &
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Qurr = Linearq (Y ygr) (@)

Kypr sVppr = Linear gy (¥ ppr) (8)

SRIG X sMRI LA 1 A5 1) 7] i Q i IR ] 02 K gy 30
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I JH % 86 13 725 Sy A ER X PET A (98 647 M ECE £
BElaAmmtaD.

O virr—per = AMRI—PET—S”/HM.I * Veer

an

o 14 -

Interactive attention fusion network

I3 — 5 BRI AT L O pprosir » SRS HE AT
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AP S Y X, o FRE AR BE B AR P 4% AT — 20
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RIS N )2 N . X R 2 AR R R A 2 AN T
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2.1 ADNI##5%

BAT IR 9% 16 3R 95 401 22 52 1% 2 31 R (Alzheimer's disease
neuroimaging initiative, ADND & —™ i 2 4~ 5T HL#4 3L
M&5MRB 2.0 G ETH , B 728 /R 26 3%
(AD) MR FE W #E &, 1% B H T 2004 48 1E X3 30, 15 3
T 55 [ [ S T BT T (NTAD B3 [ [ 5728 9 B 24 1R 55
PEY T REAT ST (NTBIB) S5 LA (9 5% B A S 45 . il i Wi 4k
ML BB AR AW AR S IR AN S HE , D
P23t AD 3512 B AP HE R ST . A WFSE N ADNI Hh ik
7 HABRK FDG-PET #1 T1 IALHY sMRI 52 4% £ (1
ZIHE .

2.2 HE&EXS

Sy B 1E HCHE W 6 L AS BT 5T AE B A I SR A | e AR
AR, L2l E N AL i AT R 4y . A TR IR & FHRAASR
THRRAE B 18 23 A0 — B0 FEASLE AR I8 4 ) 2 i PR 3R 4 45
AL S IT WAETR Sy iR T Y I K R AL S
i 5 & #OIR 28 K A & 38 (mini-mental state examination,
MMSE) #l it JR % 7% PF € & £ (clinical dementia rating,
CDR) , iX P IUITAl T H 2 1l JR B2 2R 3E 4T AD 12 I i iy 8
BRI . R EEARENSIHEREME 1 R, R
A E 449 2 Z W EFEA, HoP AR IE % (cognitively
normal, CNOREA Sy 233 {4, AD BEA g 216 i, % 1 w51
T AE R MMSE il CDR B 43 15 1 8L, Hoh 5 5 48 S 3
1B, 45 5 N ARl 22

R1 HEEFRITER

Table 1 Dataset statistics

GRS 28 51 FEAS & / f k% MMSE CDR
45 CN 164 73.36(5. 36) 27.97(2.07) 0.02¢0. 16)
LN

AD 150 74.80(6. 67) 21.50(2. 34) 0.79€0.19)

CN 34 76.44(6.78) 27.96(1.17) 0.04(0. 18)
BrE

AD 33 75.83(7.51) 22.67(3.52) 0. 98(0. 24)
. CN 35 74.02(5. 86) 28.66(1.38) 0.03¢0.11)
iR 4R

AD 33 74.65(6.75) 21.31(3.30) 0.82(0.17)
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AL 20 BRI R ¥ B 1 52 A8 550 HR Y A B A
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1 DICOM SCHF #5485 NIFTI 4% =X, DU#E JE 2253875 2) fw
ERIE M IERAZ T AR 5E TR 3) B i 5 25 [H AR
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TE [R] — 25 8] HP X R A ) 0 i 350 65 440, 5 e S5 38 A5 o 255 ) A5

AT f5e AR B Y/ AINER PR 2R ) B A5 B4 5 i 4% v 580 14 7T 5
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Fig. 5

ol

6 WA BLETJE 19 FDG-PET %1%
Fig. 6 FDG-PET images before and after preprocessing
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HEA
3.2 iFMIERR

ACRET AD/CN 24K % . 0 TP AL A
R i R UE 6 2R Caccuracy, ACC) | 8% (sensibility,
SEN) 55244 (specificity, SPE) 14 PEAH6 5 .

B TP +TN .
ACC*TP+TN+FP +FN><1OM (15
.. TP .
SEN = TP LFN % 100% (16)
— TN 0
SPE = TN FFP X 100% an

i TP 7R IE 5 P31 BH P 995 1] 9 45 it FP g 52 340 B
FEAS g BH MBS B0, TN 8 o o 1) 52 B PR REAS O 505 FN
T8 I S AR SR B8 1 U 0 BE S ), BN U A2 YR .
2 T ITAk AR 8L A TE B TR A5 28 AR T R R Ay 25k
1o SRR SRR B TR T A S B AR A A P s D R
FA) L 8] 5 28 v 1 R O 2 Tl 12 AU AR . R S P A
RS TR FE BT A S o oA AR I 4 v o 0 00 1) L A1) 5 R S R
SRS AT REPE RN Sy A TE T AR T Y 4 S PE R L AR
SCRE 5 FEUETR A BT R AR
3.3 XWERRSM

AT B R AR SR T TR A SO RN R AR 5
JBT A RSN L SE 5, PFAk 8 A5 0 35 E 5 0R L R
PERRR S BAARBE S PR R 2 s, RSB
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B T S BT 5T ADNI B PR 1 R [7] 4 1 gt
ST B 4R L R T 32 0 R e A o 25 S R AR S AR R
XHANATF o HL 32308 TR AE 7R 3 4 22 5, SO BF 5% (U TT Jé
KEOH 4 B, A8 3¢ MRI 8% sMRI 314, PET 0%
FDG-PET $¥1%.

K2 TEADEFENLERIL

Table 2 Comparison of results of different

categorization methods %
AD/CN
XF T Kot
ACC SEN  SPE
BOKM™ MRI+PET 90.60 90.50 90.70
MiSePyNet"" MRI+PET 93.13 90.32 95.49
Mul-T™* MRI+PET  94.40 93.00 95.50

MRI+PET 90.10 90.85 89.21
MRI+PET 86.36 83.33 88.78
MRI+PET 92.28 90.38 94.37
MRI+PET 91.67 93.33 86.66
MRI+PET 94.65 93.24 95.62

Multi-Modality™”’
FSBi-LSTM™
3D-Class™™
MMTEN™"

Ours

% 2 PRI DU A SCHR I O R A R e T A
X 2. BOKM™ 4@ i T —Fl 3k F A% 414 i B & AD
T MCI ZESEAR G M 2or k. S50 BERE
B EM L T ER A T MR — iy AR G R
B o R )R X T AN [ 25 B A B4 T 1 N
IZT5 AT DL ST 0 6 A ) ) 040 A5 A R R R A
X T R T F IR R RRE 3 S S EOREE R .
FEF IR 2 S R, R L RS AN AL AD &
W RNy H AR T A AR H R, RS
B R 2 B0 B AE BARHON AT R A sAE R AT 2R
PATE WA G . WEEENE, BT CNN B R, 5 4
FilG ] RE 2 B R OR RS 22 (8] 11 4 Jm) 28 6L, i 3 il 5 G
Z AR AR Z ) 22 B, R AN RE TR 4 FILH 2R ASE AL

MiSePyNet" " J5 1 AT 43 fife 45 AL 04 SEVAEL L Ay 43~ 00 1]
HBE AT 43 B B9 CNNL Y F1 %5 (8] NN, 3 i T iy 4 4b
S BB IE A 25 R e L RE R R O R I TR & & R 2S
{58, BLAh, AW IEER DL 22 ROBE W 4% Sy R 4 . LU 428 R
[7) £ A5 Ak I 4 B A7 B A e PRl DA T 3 5 0 ) R A BT, AR
AR T Z2ABRZEME RS RT, fm 1A R %R
IKREJT RN T RS R R B e IR B R T R il
ARFNGIR AL 8 I A 2 3] 4 fuf Ab 38 R 34 458 5 S 400 ] v
B SCHR B . N R AT R AN [) S 70 9 23 ()4 U A
TRV LA 5 b DA s S 00 18] v B BRURE DG RRAE L kS T K ME B
THe. H RGBS A 2 3R TR T R,
BRI AL P =2 [ 19 A 6 P T B 2 F BOT AR RRAE 5% i 1153

Mul-T™ 973 H £ %% 51 5 24 55T R 4% (multi-level
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guidance generative adversarial network, MLG-GAN) 1%
B AR H 5 43 500 FF AN S8 B AR A ORI i 43 25 . 1
CEE R MLG-GAN 2k A g Bl 2 308 . 3F Lok AR &K .
FERES M ZREENTER. BT IRFEH LB TS
RARZHN BRI T —AFRAEG A B34 52k # A B b5
FEUZ I AR LA SE BURE I A . 1) 58 B 10 Z RS BR, 3
BT —FHTEIGIZHI Mul-T B4, & AR LL2S
A 4R AR ERARAE 38 7T L3 3o B AR A 1 R ML A — B
RS E 53 — Fh A5 25 A9 Vi A AR EL AR FH RN A OG 1 kA A,
R Mul-T 9 45 38 1o 185 455 25 3 2 AL i of 2 A A% 28 2 T
AH AR R 6P {3k o (265 A58 25 8 Oy vk 02 TR BB AE T A
15 MBI 4R B AL, R R AR 22 R R K I L
T (B4n, MRI 5 PET MG Y U4 5 B AN RRAE 22 R R .
R [r A B 22 TR A I 2 P 56 2R AT A b2 R O ik T AR A
P00 0 A2 A, B VT BB T O B 05 B R AR TR A
Multi-Modality™! J5 k2 1 T — i A1) 25 B2 4 25 00 2%
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TR RIE R A . AN, AR AR AR B
5 42w B AR BASHIE 9T i A B SRR
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ADNI ¥ 48 E 8 0FE T 7 k. A 2% 3DCNN 5 FSBi-
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B B4 I TR R 5 R AL 1 Z2 2 YRR 2 B H 4 T R
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W o %07 35 A0 P A IR S TR R ol 2R (AR S AR B, R T
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0 BTG PR BCHE 1 UK . 7R 2 A ER AL A R, 3D
CNN I e 245 PO R A 285 0 R A0E ok B8 R 4 U R AE IR 2
M2 H B AR 3D CNN RE S4B A 8] L A9 o 449 A, {2
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e Transformer, A 3 4 sMRI 1 PET 4448 . 24849
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A T7 1 LA D TUA RS, A T 48 T2 Wi 1 e

25 LTIl AR SO B 1 vk B A A AR IR S AR P
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BXF AD 20 254 %5 1 BTk . A SCHE T 1 2 BSR4
WA ITEAG T Z S5 A 5 sl i sMRI 5 FDG-
PET #4009 3 8300 . SLIRZE RN ER 3 iR, JB/R T 4%
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Table 3 Comparative experiments between unimodal

and multimodal %
AD/CN ACC SEN SPE
sMRI 91.56 88. 37 90. 70
FDG-PET 92. 28 91. 38 89. 52
Multi-modality 94. 65 93. 24 95. 62

1 22 B 25 B4 B ME B 2R Dy 94, 65 %6, (L% A sMRI
B A FDG-PET 4%, B 7109 HE8 K 47 318 91.56 %
92, 28% . SLEEE S UL SRS BRI E SR T T
BRI 732 B8 7 48 B D7 R IR B SR T X R R B AR ES |
M BB R A BT A T AR R AT L SE IR G
YSAE T A SCHE I 2SR AE AD 2R L,

FEARSCHE 1 AD 40 8 HE 8 R o H 1 R ) 5 AR
Ok L — S B RRAE 3 T A8 B R A
KEHOR I sMRI %1% fl FDG-PET S48 1 45 & 5+ 1F, 5
[y B f F DBN, ‘& 3 3o TG Wi B 2 ) 3% 2 45 BT fin b 42 19 5
iE AT 458 MRI 1 FDG-PET S84 TR RAFRE 1. R
TRAUEAR SCH B R B T M A At R 4 R T
IV 2 HELKE) 11 I i ST 8 5

o, Yo, w0 B0 A R T 0N AR R,
Y eractiee FE7NSEHIE T ST A W45 . DBN JE R {5 &M 4,
Stacking 7~ 8 B2 A L B0 45 5L 0T LR B A —
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Table 4 Results of ablation experiments on network

architectures %

AD/CN ACC SEN SPE
Y., +DBN-+Stacking 90.56 90.31 90.20
Y peracrive T DBN+ Stacking 91.67 92.55 86.64
Ysur T Y ieracioe 1T Stacking 94.21 92.47 94.82
Ysur + Yivearie TDBN-+Stacking 94.65 93.24  95. 62

X AD 43225 R

N 4 AT, SEE A5 R T AR W T A8 LR R Al A M
Y v TE BTSSP B O 1 L A EE T Bk
A ST B T AR Y e BB T AT R4 R
F sMRI #l FDG-PET 2 [A] B9 T #M 5 B 2 5 4 251 fig.
[ - DBN £ R BE R A il T ) B EE A B TR,
FLAE A% 1 98 A R B RRAE A BE & FR e 1. i — 4R TH 4
KR, ILAh, A MIRIZE AD/CN RBIE % T 8 54,
F WA 5T 5 B S AR SR A A A3

AT SRR A SO 1Y B o AR A RO L AN TR
SHRASTE AD/CN PRG54 i M fe , A R iz 1 TR [F
SRR L SE R ZE RN 5 iR . IR LG HLAS T
4324 SVM.RF . XGBoost . #1 £: F 4 43 25 8% MLP, DL J 3%
TFHEMA 1 Stacking ik,

RS TEDEBMUEIRER

Table 5 Comparative experimental results of

different classifiers %
R R AD/CN
A LIS
ACC SEN SPE
SVM 88. 28 87. 38 85. 37
RF 87. 04 85. 10 88.53
XGBoost 90. 61 89. 45 90. 46
MLP 84.11 84. 80 90. 38
Stackingl (SVM+ RF+
N 93.51 92.69 95.02
XGBoost—3Z & [7]19)

Stacking2 (SVM+ RF+
XGBoost=>MLP)

94.65 93.24 95. 62

TERA— 3 2K BB 52 v, SVM M RE 7850 254F 55 Pk
BB i, ACC 43 53k 8] T 88.28% F 87.04%, T
MLP (1% 38 30 AR X &A%, & 78 2 BRAE 55 I 8 K, ACC
84.11% ., MHELZ T . BN 53 25 8% XGBoost , 16 Jf $28 £ 3% Jr
I HA —EH L ACC T E 90.61% ., 454 =FfHa—4
KB A R RS — 2 T MLP 7 @i
et X Ry EA B ERS X ERERE -,
FESEI2E S Jr ik AR B ST A T W Rl Stacking 7 %,
Stackingl ¥ Z A~ At 43 2 45 10 H 1 B A 2 5 10 SR AT

.« 18

LYK, Stacking? BV 2 2 RAPUE N )G —)2 . L5
455K, Stacking J7 L BERS A UK A R 4 38 1L 3
Hrp Stacking2 i85 3] T e AEPERE LT T A B —4r 2545 Al
HAER ., X—HELE R LN, BT Stacking AY 5 WL
22 JT IR AR S TR A FIH 24> 40 28 70 1 AN Re 1 L i o A5 A
HIZ AL EE J7 o o JG 208 MLP 1E S 5 443 25 25 I L g g ik
— AR T2 RE . B, FE AR ST i & B Stacking
(SVM+RF + XGBoost—=MLP) 1E 5 243 H 5 5

4 # it

il e i B A N IE HEL T S A T 2 T AR R T T R
A2 Wi Bl 7% 1 O B A% O7 300 AR SCER I T — Rl T
sMRI #l FDG-PET 57 % Z #45 fil & B8 1 T AD 19
R [ BN S RE = WA Ko S B =Wl L 8
BRSSP 2 o €/ E G = WA R aE S RN
— RS T SRR YRR AL, AT 5T 42 1 A4 38 VR B O RS
W25 £ 11 T 2B Z [ AR, B 7R3 3 B AT R0
SEMIE bR OGI . SEER 45 R AR T AR SCIR I Y T ik B A
—E PR MEMEF . 2 A LU T M H
WAFFEA R Z b, ASCHAFMA T sMRI Fl FDG-PET #
B R BE LG 3 2R A O B 15 B, L ROk (Y AT 5T 2 ik
— 85 A HAB B R AR R AR KU R 32T AD By 7r K5 K
Z ) AD BA TR M HR A i R R e e
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