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Model predictive control of wave energy conversion based on
CBiGRU-Attention
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(1. College of Automation, Huaiyin Institute of Technology, Huai'an 223003, China;

2. School of Instrumentation Science and Engineering, Southeast University,Nanjing 210096, China)

Abstract: To address the issues of low power capture efficiency, slow dynamic response. and weak interference
resistance faced by direct-drive wave energy conversion devices in complex sea conditions, this paper proposes a control
algorithm that combines neural networks with model prediction. By enhancing system robustness through a high-
precision wave excitation force prediction model and combining it with a rolling optimization algorithm under multi-
objective constraints, the device achieves maximum power generation under irregular wave conditions. First, a three-
stage fusion prediction model with spatio-temporal feature decoupling capability is constructed. Compared to traditional
models, this model reduces the mean squared error and mean absolute error of irregular wave excitation force prediction
by 39.96% and 63.39%, respectively, with a temporal fitting accuracy of 98.9%. The prediction model is then
embedded into a rolling optimization framework, where high-precision irregular wave excitation force predictions
provide feedforward disturbance compensation for control, aligning motor current with the current at maximum power,
thereby achieving the goal of maximizing power generation. Experiments demonstrate that the improved model
predictive control achieves significant breakthroughs compared to the traditional autoregressive integral moving average
model method under two irregular wave conditions (JS and PM) with wave heights of 0. 3~0.6 m and periods of 3~6 s:
average power increases by 50% ~141%, and cumulative energy increases by 38% ~189% , validating the significant
advantages of the proposed method in enhancing the comprehensive performance and dynamic robustness of direct-drive
wave energy conversion systems.

Keywords: direct-drive wave energy conversion system;model predictive control;neural network;irregular wave; three-
stage fusion prediction model

Fl e SR FLAR R A I A I 2 SR P BT PRSP 5

0 =
3| 2 S 5 T L I T T R R R B A% R T R R
A WA DR HG Rl 25 JE 75 L FF SR AR R BT B 200 g R D B i R B LT W 1 R e T e i

Y B 9 :2025-04-28
* FEEWE  MEARPEE AT B LI E (62173159) HEZ 1T A KR =78 W B (HAB202226) L4 & 5448 AR B =0 5w Lo |
(23KJB460005) %% Bl

+ 133 -



948 & 2 F o

T # K

TR BE A S EL A BR A0 A0 T2 L 8 4 2 BE R A AR R T R o A
FrE R K TR Rl A Ak R LR LS B R
REIW B 4, 40 25 T HLANA% 20 55 v [B) 2R 9T, IR Ut R 1 e 46t
WORPEE T 25% ~31%" . X ARG D LA R ALEEIE N
Rt A e, OTT T 4 A SR W S IR 4R TR SR AR Y E 3D
] AR RS AE R R AL T 5 B0RIE S AH B UL AL, 72
MR IR SRS T RE SRR Fe i i th R

WF 5T 3 d5c R I 428 ) Jr 2 BHL 42 1 Oy v, BIV 3
TE A L HIL Y =R 4 3% e =R BHL A7 48, BB IR SR
TRAE LRELR [ 2 r BEL 3 e 7 L D B R
PE B R ARy X TC R B — 2D AR L T2 IR
Wil F LA B R 1 328 25 L Ak 22 B 5% A A 4 L A 7Y
5 I 422 1 ° (model predictive control, MPC)SZ I 1R & HL
R R KA B bR, HA% O B AR R 8 o 5000 R ok — B[R]
42 RS A . ST U TR IR O T T 4 5 R o A A
SEASA SR A S R b B TR TR BE 4 e A b ) L 3 T
IR I T A T 4 2k ) A R 0 425 R, BB A% S IR AE S AL
DN 0 I TR R A e 1 R K AL O BV DL IR T AR L
FE PRI AE 2 R AR P BB e TN L BB 4 o) A A
SRR ST 2% B 1R SR e o R K R R R AR BB

R T R IR R G  AR 22 2 A A R R TR 4 5 1)
TTIRABBFSE . Li 485 5T 0RO R A R ff 7 ik, 8 i
4 36 JAS BRSO (80 B A R R ™ P BT R4S T I TR A 3R
WA . Wang 555 45 T — Bl ik = 0 4547 4 A e il
TR RO 25 o) 1) 1R 7 12 TR A 4 o) 4% B Ol b 2 A Y 2
TE i) S0 DL 4R T A (A BT . L 50 DS 3 1A 3 A
VRIRE B i — 25 D0 Ak T 4855 70 00 45 ) A AR e I TR OB
T ORGE BE . R O A (0 A DG PR R R I A A
SR R B AR B I B 2R e T A D B T R S B A )
IR B TG s AR . R R AR S A A W O O 2
ST T P RS

TR BE e 4 22 G 45 1h RS B2 8 32 o T v 5 R A Y
ik 2 N M SR A% 0 100 00 A5 7R 1 A A 5T 0 % 1 7E JE R
A VAL N A W R, ik R AR AL SRR
RO 7 o R A O TG A T I SR AR B ST AR R, Zou ST
T FF 4% 1m0 B0 b 48 0 45 1% T30 AR B 45 & T st iR
2 W g R IS 0 B 1 X — R B Y iR 9 R B 4 R 5
AT T LAk, FCRT LUOAR 4f8 v TR R B R AR 5 15 k2 4R
18%~25%. i Pirhooshyaran & ™) &t i 1R 2 50 (0 45
fiE e 5 1] A, 4R T T OB ) K g 42 B 4% (bi-
directional long short term memory, BiLSTM) i ¥ %] 3|
F1 TR AR 3 gk 4R L i 3 S A0 Ak v ) 2% T )
Ak BRAR T BT A TR RO L AR 2 A LT B AR I R T Y
SRR 2E 58, 400, BEA A% Gt g5 K Ty R R B 1 1 R
WS e B T R A5 T kR Bk 5 A s
BN A ERRNE 20 Fl i 5 ASRYE ATHLH YR
RS ) IR BT T — R T BT AR AW Y S 1) 2 ) SR W Ok 32

134 -

THER Z Mk, Wit — DRI R R TR E N, & 7
SFUUTER T BT R BE SR AL 2 2T AR R 0 4% ] 7 2 A AR AE
20 045G A HE R R = R IRBCRETE T 6026 ~80%.

JSAE P2 ) 25 R RO 1 B 35 B T T TR RE R e R
G s i P RE B S BT SRS AEAE R BR - B A T 5T 4Rt [
RO 53 B AU FEAC 7 51 I )7 5308 rP A A R A 58 A 1 e 22
204 18T % B [ 5 37 P 445 2 BN 58. 2 06 5 2 B I TR PR
T3 TR A TR 2 R P B — AR I 445 SR A L B — [T AR B AL T
unit, GRU) 2 & Bl # & B %
(convolutional neural networks, CNN) #& #I £ 1] X} X 1R Fl
MR E G T WR2ZE R 15% ~30%, £ X R
B e R GEAFAE 0 [ B, A SC B AR B0 — il 56 T 28 ) 2%
T A R T A R G . WA RS G IR B
ST BEAR W RRAE AR ), SE IRAS [R50 T 08 R AE 476
ARG T HE E A 0 TR B A > 9 5 2R T 0 4 o] 47 ELRE Y, A
ANTF) BT BEAT A3 B X LG

1 ERXEREFHREKERNER

(gated recurrent

1.1

R R BRIk B R A

AR ST 5 9 B K TR RE & AL R B AN 1 i, K 3l
NRGEHIF T GEFF ARG BB L . A T R AT
K T AT PRSP T T () R 220 W 6 88 T 1) 4 9 102 B
SN I K5 1) B SR A

ik BTt

B ELR S TR AR A

Fig. 1 Direct drive wave energy power generation device
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Fig.7 Comparative experimental diagram of wave excitation

force prediction of different attention mechanisms
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Fig. 8 Comparison of two models when the effective

wave height is 0. 3 m and the period is 3 s
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Table 5 Comparison of two models’ prediction controls

when the effective wave height is 0. 3 m and the period is 3 s
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wave height is 0. 6 m and the period is 6 s
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Table 6 Comparison of two models’ prediction controls

when the effective wave height is 0. 6 m and the period is 6 s
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Fig. 10 Comparison of two models when the waveform is PM

wave, the effective wave height is 0. 3 m and the period is 3 s
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Table 7 Comparison of the prediction control of the two

models when the waveform is PM wave, the effective wave

height is 0. 3 m and the period is 3 s
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