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摘 要:针对直驱式波浪能转换装置在复杂海况下面临的功率捕获效率低、动态响应慢以及抗干扰能力弱等问题,本
文提出了一种神经网络与模型预测结合的控制算法,通过高精度波浪激振力预测模型增强系统鲁棒性,并结合多目标
约束下的滚动优化算法,使装置在不规则波况下的发电功率最大化。首先构建具有时空特征解耦能力的三阶段融合
预测模型,其对不规则波浪激振力预测的均方误差和平均绝对误差较传统模型分别降低39.96%和63.39%,时序拟
合度达98.9%。随后将该预测模型嵌入滚动优化框架,高精度的不规则波浪激振力预测为控制提供前馈扰动补偿,
使电机电流与功率最大化时的电流契合,从而实现发电功率最大化的目标。实验表明改进后的模型预测控制在波高
0.3~0.6

 

m和周期3~6
 

s的JS与PM两种不规则波况下,相比于传统的自回归积分滑动平均模型方法实现显著突
破:平均功率提升50%~141%,累计能量增长38%~189%,验证了所提方法在提升直驱式波浪能转换综合性能与动
态鲁棒性方面的显著优势。
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Abstract:To
 

address
 

the
 

issues
 

of
 

low
 

power
 

capture
 

efficiency,
 

slow
 

dynamic
 

response,
 

and
 

weak
 

interference
 

resistance
 

faced
 

by
 

direct-drive
 

wave
 

energy
 

conversion
 

devices
 

in
 

complex
 

sea
 

conditions,
 

this
 

paper
 

proposes
 

a
 

control
 

algorithm
 

that
 

combines
 

neural
 

networks
 

with
 

model
 

prediction.
 

By
 

enhancing
 

system
 

robustness
 

through
 

a
 

high-
precision

 

wave
 

excitation
 

force
 

prediction
 

model
 

and
 

combining
 

it
 

with
 

a
 

rolling
 

optimization
 

algorithm
 

under
 

multi-
objective

 

constraints,
 

the
 

device
 

achieves
 

maximum
 

power
 

generation
 

under
 

irregular
 

wave
 

conditions.
 

First,
 

a
 

three-
stage

 

fusion
 

prediction
 

model
 

with
 

spatio-temporal
 

feature
 

decoupling
 

capability
 

is
 

constructed.
 

Compared
 

to
 

traditional
 

models,
 

this
 

model
 

reduces
 

the
 

mean
 

squared
 

error
 

and
 

mean
 

absolute
 

error
 

of
 

irregular
 

wave
 

excitation
 

force
 

prediction
 

by
 

39.96%
 

and
 

63.39%,
 

respectively,
 

with
 

a
 

temporal
 

fitting
 

accuracy
 

of
 

98.9%.
 

The
 

prediction
 

model
 

is
 

then
 

embedded
 

into
 

a
 

rolling
 

optimization
 

framework,
 

where
 

high-precision
 

irregular
 

wave
 

excitation
 

force
 

predictions
 

provide
 

feedforward
 

disturbance
 

compensation
 

for
 

control,
 

aligning
 

motor
 

current
 

with
 

the
 

current
 

at
 

maximum
 

power,
 

thereby
 

achieving
 

the
 

goal
 

of
 

maximizing
 

power
 

generation.
 

Experiments
 

demonstrate
 

that
 

the
 

improved
 

model
 

predictive
 

control
 

achieves
 

significant
 

breakthroughs
 

compared
 

to
 

the
 

traditional
 

autoregressive
 

integral
 

moving
 

average
 

model
 

method
 

under
 

two
 

irregular
 

wave
 

conditions
 

(JS
 

and
 

PM)
 

with
 

wave
 

heights
 

of
 

0.3~0.6
 

m
 

and
 

periods
 

of
 

3~6
 

s:
 

average
 

power
 

increases
 

by
 

50%~141%,
 

and
 

cumulative
 

energy
 

increases
 

by
 

38%~189%,
 

validating
 

the
 

significant
 

advantages
 

of
 

the
 

proposed
 

method
 

in
 

enhancing
 

the
 

comprehensive
 

performance
 

and
 

dynamic
 

robustness
 

of
 

direct-drive
 

wave
 

energy
 

conversion
 

systems.
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0 引  言

  化石燃料因其能量密度高,开采技术成熟而被广泛使

用。然而,其燃烧释放的温室气体导致了环境污染与气候

失衡等问题,加速了清洁能源技术的发展。各类清洁能源

中,海洋能因其储量丰富且开发潜力巨大备受关注,其中波
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浪能因兼具全球分布广泛、能量密度高等特性更是成为研

究重点[1]。直驱式波浪能转换装置采用直线电机实现波浪

能的直接转换,省去了机械传动等中间环节,因此能量转换

效率提高了25%~31%[2]。在该系统中直线电机既作为

能量转换器,又可通过控制策略实现根据波浪条件的主动

控制,使得浮体能够在不同海况下与波浪运动相互匹配,在
低速驱动状态下仍能获得较高的功率密度[3-4]。

研究者最早采取的控制方式是电阻控制方法,即通过

在发电机的三相输出直接连接三相电阻负载,或是依靠整

流在直流母线上挂载电阻[5],通过改变电阻以改变装置特

性,但是这种控制方式无法将电能进一步传输,应用受限。
随着电机控制技术的进步,众多研究工作者提出使用模型

预测控制[6](model
 

predictive
 

control,
 

MPC)实现波浪发电

的功率最大化目标。其核心思想是通过预测未来一段时间

的装置状态信息,建立波浪激振力预测序列与能量转化数

学模型,求解最大化提取波浪能的最优化问题[7]。基于对

直驱式波浪能转换装置的模型预测控制,能够实现在不规

则波况下波浪能转换的最大化,并且可以将浮子位移、速
度、电流等约束条件考虑在内[8]。但是模型预测控制存在

求解复杂度高、求解速度慢、精度要求高等缺陷。
为了解决上述缺陷,众多学者在模型预测控制方向进

行了深入的研究。Li等[9]基于二次规划的求解方法,通过

构造成本函数并使成本函数成凸性,进而求得了波浪捕获

的最优条件。Wang等[10]给出了一种基于滑模控制的改进

模型预测控制的控制方法,滑模控制器被用来补偿模型失

配问题以提升控制的精度。Liu等[11]则通过引入自适应权

调整机制,进一步优化了模型预测控制在非线性波浪激励

下的控制精度。梁惠溉等[12]使用矩匹配模型降阶算法,从
频域出发获得的降阶系统可以用更少的计算量与计算时间

达到更好的控制效果。张登攀等[13]通过短期预测并结合

插值法提升了预测的精度。
波浪能转换系统的控制精度常常受制于波高与周期的

时空不确定性,采用传统预测模型的模型预测控制在非稳

态、非线性海况下存在显著局限性。为此,智能算法与模型

预测控制的融合优化成为了近些年的研究焦点。Zou等[14]

使用了基于径向基的神经网络的预测模型结合了遗传算

法,并通过改进后的算法对一种新型的振荡波浪转换系统

进行了优化,其可以根据海浪调整形状,使得发电量提升

18%~25%。而Pirhooshyaran等[15]针对波浪参数中的特

征缺 失 问 题,提 出 了 基 于 双 向 长 短 期 记 忆 网 络 (bi-
directional

 

long
 

short
 

term
 

memory,BiLSTM)的序列到序

列预测模型,通过集成贝叶斯超参数优化与弹性网络正则

化,获得了更好的预测效果,在复合海况下降低波高预测的

平均误差58.4%。针对传统最大功率点跟踪算法的局部

收敛缺陷,王欣峰等[16]构建了改进黑翅鸢算法与扰动观测

法的复合控制策略。该方案通过引入莱维飞行机制扩大搜

索空间,并设计了一种基于贪婪策略的反向学习策略来提

升搜索多样性。为进一步提升复杂工况适应性。曾宁坤

等[17]开发了基于深度强化学习的模型预测控制在线优化框

架,并结合闭锁控制使能量吸收效率提升了60%~80%。
尽管神经网络和智能算法显著地提升了波浪能转换系

统的控制性能,但当前研究仍存在局限:既有研究依赖固定

尺度分配权重,在长序列时序数据中存在特征聚焦性偏差,
当面对长时间序列中平均误差增加58.2%;当前波浪激振

力预测模型多采用单一模态网络架构,单一门控循环单元

(gated
 

recurrent
 

unit,GRU)或 卷 积 神 经 网 络

(convolutional
 

neural
 

networks,CNN)模型在面对风浪和

涌浪的复合海况下,预测误差达到15%~30%。针对波浪

能转换系统存在的问题,本文旨在设计一种基于神经网络

预测的模型预测控制系统。通过构建多模态结合的深度学

习算法,降低异常特征权重比例,克服不同波况下的特征捕

获缺陷,并搭建适配深度学习的模型预测控制仿真模型,在
不同波况下进行分析对比。

1 直驱式波浪能转换装置的建模

1.1 波浪能转换装置的水动力模型

  本文研究的直驱式波浪能发电装置如图1所示,水动

力系统由浮子、连杆和永磁直线电机组成。为了简化分析,
将连杆考虑成刚性连杆,同时忽略对竖直方向的浮子运动

影响较小的水平方向的波浪作用力。

图1 直驱式波浪能发电装置

Fig.1 Direct
 

drive
 

wave
 

energy
 

power
 

generation
 

device

根据牛顿第二定律可知直驱式波浪能发电装置在竖直

方向下运动方程为:

Fe(t)+Fr(t)+Fh(t)+FPTO(t)=mtotz̈(t) (1)

式中:mtot 是发电装置的总重量,z̈是加速度,Fe、Fr、Fh 和

FPTO 分别为浮子的入射波激振力、辐射力、静水浮力和永

磁直线电机的反作用力。通过将静水压力和重力的表面积

分相加,即可得到静水浮力,如下:
Fh(t)= -ρgSbuogξ(t) (2)
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式中:Sbuoy 是浮子的底面积。静水力系数为Xh=ρgSbuoy。
波浪激振力Fe(t)则可以表示为脉冲响应函数he(t)和波

面方程η(t)的卷积:

Fe(t)=∫
+∞

-∞
he(t-τ)η(τ)dτ (3)

对于不规则波来说,波浪激振力可以视为多个不同频

率的激振力叠加所形成如下:

Fe(t)=∑
N

i=1
He(ωi)A(ωi)sin(ωit+φi+εi) (4)

式中:􀰙He(ωi)􀰙为频率响应幅值,φi 是波浪激振力频率

的相位,εi 是第i个规则波的随机相位,并且在[0,2π]的区

间内随机分布。波浪辐射力Fr(t)如下:

Fr(t)= -m∞ξ″(t)-∫
t

0
hr(t-τ)ξ'(τ)dτ (5)

式中:m∞为无限频率下的附加质量,而hr(t)则是辐射脉

冲的响应函数。

1.2 永磁直线电机的数学模型

  永磁直线电机作为直驱式波浪能发电装置的核心执行

机构,其动态 特 性 具 有 显 著 的 非 线 性 和 强 电 磁 耦 合 特

征[18]。为建立适用于控制分析的数学模型,本文作如下合

理假设:1)气隙磁场呈理想正弦分布;2)忽略端部效应与齿

槽定位力;3)铁芯损耗与机械摩擦损耗可忽略不计。基于

动子磁场定向原理,通过Park变换将三相静止坐标系转换

为旋转dq坐标系,推导得到电压平衡方程:

ud =RSid +Ld
did

dt -
πv
τLqiq

uq =RSiq +Lq
diq

dt+
πv
τLdid

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

(6)

式中:Rs 为电机绕组内阻,Ld 和Lq 是d 轴和q 轴的电感,

v是电机动子的运行速度,τ是电机极距,id、iq 和ud、uq 分

别为dq两轴的电流和电压。电磁推力方程如下:

FPTO =
3π
2τ
[ψfiq +(Ld -Lq)idiq] (7)

式中:ψf 为永磁体磁链,该方程揭示了可以通过调节id、iq

实现推力控制的基本机理[19],当采用id=0的矢量控制策

略时,电磁推力FPTO 与交轴电流iq 满足线性关系,此特性

使模型预测控制可通过滚动优化iq 序列实现推力精确

跟踪。

2 基于CBiGRU-Attention的波浪能发电装置模

型预测控制

  在模型预测控制框架中,波浪激振力的高精度预测是

直驱式波浪能发电装置功率最大化的关键。为此,本研究

所构建的卷积双向门控单元(convolutional
 

bi-directional
 

gated
 

recurrent
 

unit,CBiGRU)预测模型被深度嵌入至模

型预测控制的滚动优化环节,如图2所示。其主要分为控

制部分和结构部分,控制部分根据采集到的上一时刻的波

浪和发电装置运动数据参数,计算得到上一时刻的波浪辐

射力Fr(t-1),静水力Fh(t-1)以及波浪激振力Fe(t-
1),并将其输入波浪激振力预测模型,并预测出当前时刻的

波浪激振力,接着基于获得的激振力预测值。根据发电功

率最大化策略,获取波浪发电系统的最优控制量,并转换为

q轴电流,紧接着获取永磁直线发电机动子位置角和三相

电流,并根据最优q 轴电流进行输入。结构部分则是根据

永磁直线电机的数学模型进行搭建的。

图2 基于CBiGRU-Attention的模型预测控制框架图

Fig.2 Model
 

prediction
 

control
 

framework
 

diagram
 

based
 

on
 

CBiGRU-Attention
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2.1 三通道注意力机制

  注意力机制通过模拟生物认知系统中对关键信息的

聚焦特性,实现了对时序数据中动态特征的差异化建模。
针对波浪激振力预测中存在的长序列依赖、多特征耦合及

极端波况干扰等问题,本文创新性提出可变形高效全局注

意力机制(deformable
 

efficient
 

global
 

attention,
 

DEGA),
其通过空间-通道-全局三重注意力协同框架,突破了传统

注意力模型在复杂时序任务中的权重分配瓶颈,其基本结

构如图3所示。注意力机制的设计受到可变形卷积网

络[20]与多模态注意力机制[21]的启发,通过动态偏移量学

习和特征重组策略,实现了对时空特征的精准预测。

图3 DEGA注意力机制结构

Fig.3 DEGA
 

attention
 

mechanism
 

structure

1)
 

空间注意力模块

传统门控循环单元因梯度衰减问题,对超过50个时

间步的长序列波浪参数特征提取效率下降。为此,引入了

空间注意模块,旨在捕获时间维度中的关键动态特征。为

了解决波参数的长序列特征难以识别的问题,该模块采用

了特征聚合策略。首先,全局平均池化沿时间轴提取统计

特征:

Gt =
1
T∑

T

i=1
Xi (8)

式中:X∈RT×C 表示输入特征,其中T 表示时间步。然后

构建功能增强层,由一维卷积和门控机制组成,其中卷积

核采用因果设计以避免未来信息泄露,门控单元通过逐点

卷积实现通道维度调制:

αs =σ Conv1Dk=3,d=2 Gt    (9)
式中:σ表示Sigmoid激活函数,k表示卷积核的大小,而d

是膨胀率。通过使用扩张的卷积,可以扩展接收场,从而

有效捕获空间特征。膨胀率的设置可根据波浪频率分布

动态调整,通过多尺度感受野捕获突变波频特征。最终输

出权重为特征缩放动态校准:

X'=X 􀱋As (10)

式中:AS∈RT×1。这种设计显著增强了模型对波频突然变

化的敏感性,其理论优势在海洋空间模型中验证[22]。

2)
 

通道注意力模块

波浪激振力的预测需要面对包括波浪周期,有效波高

等多种参数。本文为了增强模型面对不同特征时对于各

个相对参数的提取能力,量化多源波浪参数的贡献差异,
本模块 引 入 通 道 注 意 力 机 制,基 于 压 缩-激 励 网 络[23]

(squeeze-and-excitation
 

networks,SENet)的压缩-激励结

构实现,其核心是通过学习特征通道的全局依赖关系动态

调整权重。首先通过全局特征压缩,使时空维度压缩获取

通道级统计量:

zc =
1
T∑

T

t=1
xt,c (11)

式中:T 为时间步长。接着使用非线性激励构建包含瓶颈

层的全连接网络学习通道间非线性关系:

αc =σ W2δ W1z    (12)

式中:W1∈RC/r×C、W2∈RC×C/r 为可学习参数,δ 为ReLU
激活函数。实验表明,该结构可抑制冗余特征干扰[24]。

3)
 

全局注意力模块

在时序数据处理中,长序列的重要性识别与时空特征

交互建模具有同等关键价值。针对传统注意力机制在局

部时空依赖建模中存在采样缺陷的问题,本模块创新性集

成可变形卷积与自适应偏移量学习:通过双维度动态偏移

机制,实现有效波高、波浪周期与发电功率间复杂时序关

系的精准捕捉。其中偏移量预测是通过轻量化卷积网络

生成时空维度动态偏移场:

Δp =foffset X  (13)
式中:foffset 为双层卷积网络,该网络采用深度可分离卷积

结构,参数量减少的同时保持偏移预测精度,Δp∈RT×C×2

包含时间和特征维度的偏移量。与传统卷积核不同,本模

块采用可变形卷积对生成的偏移量进行动态特征提取,公
式如下:

Xdef =∑
k
wk·X p+Δpk  (14)

式中:wk 为可学习卷积核权重。该操作使模型能自适应

聚焦于异常波况下的关键局部模式。
通过允许卷积核在时间轴与特征轴上弹性调整采样

位置,该机制能够精准定位对发电激振力产生关键影响的

波高-周期特征组合。当遭遇极端海洋条件或设备异常工

况时,该架构可自发增强对异常时间步的注意力权重,同
时通过特征维度的偏移调节实现关键参数组合的强化表

征。基于前两步生成的动态偏移量与局部响应特征,通过
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多尺度可变形卷积与注意力加权实现特征融合,公式

如下:

αg =DW(Softmax(Wattn·Xdef)☉Xdef) (15)
式中:DW 代表可变形卷积。通过权重矩阵Wattn 对特征加

权,可以更好地突出时间上的重要信息,在面对极端天气

下,减小异常的波高与周期对激振力预测的影响。

4)
 

DEGA协同机制

DELA模块通过级联空间、通道与局部注意力输出,
构建三重注意力协同框架:

Y =LayerNorm αs☉αc☉αg·X  (16)
式中:☉表示逐元素乘法。DEGA通过动态权重分配解决

了传统方法在长序列任务中的过平滑问题,通过可变形卷

积增强局部细节捕捉,并且空间-通道注意力维护全局上下

文一致性,在极端事件中通过动态偏移机制使模型在异常

参数时仍保持稳定特征提取能力。

2.2 卷积神经网络

  卷积神经网络[25]是一种能够对数据特征进行提取的

前馈神经网络,通过局部感受野与权值共享机制,能有效

提取波浪参数的局部空间相关性。其主要是由输入层、卷
积层、池化层和残差层组成,其中卷积层用于实现输入与

权重之间的卷积运算,本模块采用深度可分离卷积构建特

征金字塔,在降低计算复杂度的同时增强多尺度特征表达

能力[26]。

2.3 双向门控循环单元

  门控循环单元是循环神经网络的一个变体,针对波浪

激振力的非稳态特性,可采用双向门控循环单元构建时序

依赖模型。双向架构可同步捕获历史与未来波浪激励的

隐含动力学特征[27],门控循环单元结构如图4所示。

图4 门控循环单元结构

Fig.4 Structure
 

of
 

gated
 

cycle
 

unit

图4中,xt 为t时刻的输入,ht-1 为上一时刻的隐藏

状态,ht 为传递到下一时刻的隐藏状态,h
~

t 是候选隐藏状

态,rt 和zt 分别为重置门和更新门。
在时间序列预测任务中,充分考虑时序数据的正向和

反向信息规律对于提高预测精度至关重要。预测模型基

于双向门控单元,核心是通过3个正向门控单元和3个反

向门控单元来构建模型。与标准门控单元仅通过单向顺

序传递不同,双向门控单元前向分支提取历史序列特征,
反向分支逆向学习未来潜在模式,二者隐藏状态经级联融

合后输入全连接层,从而展现出更为优越的性能。其具体

结构如图5所示。

图5 BiGRU结构

Fig.5 BiGRU
 

structure

2.4 模型预测控制

  针对直驱式波浪能发电装置的非线性动力学特性,本
节基于状态空间建模方法构建了直驱式波浪能发电装置

的模型预测控制框架,并将CBiGRU-Attention嵌入其中。
以最大化发电功率为目标,考虑附加阻尼与升沉速度的动

力学耦合特性,将系统动力学方程式(1)重构为线性时不

变状态空间表达式:

d
dtx
(t)=Ax(t)+Bu(t)+Ew(t)

y=Cx(t)+Du(t) (17)

式中:x(t)、u(t)、w(t)和y分别如下:

x(t)= z· z F'r∫
t

-∞
F'r FPTO  

T

(18)

u(t)= F
·

PTO  (19)

w(t)= [Fe] (20)

y= [ξ(t) ξ'(t)]T (21)
在预测区间内PMLG从波浪中获取的平均电磁功率

P 可以表示为:

P(t)= -
1
T∫

T

0
Fem(t)ξ'(t)dt=

-
1

NPTS1∫
NPTS1

0
Fem(t)ξ'(t)dt (22)

式中:T 为预测区间的长度,Np 为预测步长。永磁同步电

机输出功率为电机的电磁功率和电枢绕组铜耗的差值。
当结合式(7)并且电机为标贴式永磁电机时,有Ld=Lq,
最后经过零阶保持器离散化后PMLG的平均输出功率为:

P2(t)= -
Mtot

Np
∑
Np

i=1
u(t)ξi(t)+

2MtotRsτ2

3π2ψ2
f

u(t)2􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁

(23)
因此,PMLG汇入直流母线的成本函数可以写为:

J(k)=
1
2y

➝(k)TQy➝(k)+
1
2u

➝(k)TRu➝(k) (24)

·731·



 第48卷 电 子 测 量 技 术

其为标准的二次规划形式,可以利用 MATLAB工具

箱中的二次规划求解器进行求解。
基于流体动力学方程求解历史波浪辐射力、静水力及

激振力,通过CBiGRU-Attention预测模型实时估计当前

激励力,结合模型预测控制框架构建有限时域滚动优化目

标函数求解最优q轴电流,并借助磁场定向控制实现机电

能量闭环调控,精准匹配波浪激励动态特性与发电机电磁

响应,实现发电功率最大化的目标。该集成化设计使得模

型预测控制框架兼具数据驱动模型的非线性表征能力与

物理模型的动态约束性,从而在单一控制本体中实现从波

浪激励预测到发电功率最大化的闭环。

3 仿真实验

  为了验证上述控制方法的效果,依照图2中的直驱式

波浪能发电装置结构框图搭建了直驱式波浪发电系统的

仿真模型。

3.1 CBiGRU-Attention模型对波浪激振力预测效果的

验证

  为了验证CBiGRU-Attention模型对于目标数据预测

的准确性,采用波浪能预测领域常用的评价指标对波浪能

预测效果进行检验,包括:平均百分比误差(mean
 

absolute
 

percentage
 

error,MAPE),均方误差(mean
 

square
 

error,

MSE),平均绝对误差(mean
 

absolute
 

error,MAE)和决定

系数(r-square,R2)。本实验是在 Windows11平台上进

行,计算机配置:NVIDIA
 

GeForce
 

GTX
 

4070Ti、处理器为

Intel(R)
 

Core(TM)
 

i5-9300HF
 

CPU@2.40
 

GHz,内存为

32G训练数据则是通过 MATLAB仿真软件对基础波浪

能转换系统进行不规则波激励下生成的。实验参数如表1
所示。

表1 CBiGRU-Attention模型的预测实验参数设置

Table
 

1 Prediction
 

experimental
 

parameter
 

settings
 

of
 

CBiGRU-Attention
 

model

参数名 参数值

训练集比例 60%
验证集比例 30%
测试集比例 10%
批处理大小 128
输入长度 4
输出长度 1
训练次数 100

初始化方法 正交初始化
正则化策略 Dropout

学习率 0.001
权重衰减 0.000

 

1
优化器 Adamw

学习率衰减函数 Cosine
损失函数 MSE

  为评估模型改进效果,本文通过消融实验验证波浪激

振力预测性能,包括LSTM、GRU、BiGRU及CBiGRU结

果如图6所示,结果如表2所示。

图6 CBiGRU对于波浪激振力预测的消融实验图

Fig.6 Ablation
 

experimental
 

diagram
 

of
 

CBiGRU
 

for
 

wave
 

excitation
 

force
 

prediction

表2 CBiGRU对于波浪激振力预测的消融实验结果

Table
 

2 Ablation
 

experimental
 

results
 

of
 

CBiGRU
 

for
 

wave
 

excitation
 

force
 

prediction

模型

名称

MSE/

kW
MAPE/

%
MAE/

kW
R2/

%
计算

时间

LSTM 5.63×107 76.94 153 80.2 0.032

GRU 5.31×107 33.13 112 81.3 0.024

BiGRU 4.45×107 70.49 133 84.4 0.039

CBiGRU 3.88×107 54.67 124 86.4 0.049

CBiGRUA 3.06×107 14.12 41 98.9 0.063

  由表2可知,CBiGRU在4个评估指标上表现出了显

著的优势。其中 MSE为3.06×107
 

kW,较基准模型GRU
的 MSE降低了39.96%,波浪激振力预测误差显著减少。

MAE为41.45kW,较GRU的112.10kW 降低63.02%,
相对误差更小预测结果更加接近真实值。CBiGRU的R2

值达到86.4%,较基准模型提升5.1%,表明其具有最优拟

合性能,消融实验结果表明,双向结构与卷积模块的引入

提升了原始门控循环单元对于波浪激振力预测准确度。
同时,为了验证本文提出的注意力机制的有效性,选取波

浪预 测 领 域 常 用 的 SE、Triplet
 

Attention 和 CBAM
(convolutional

 

block
 

attention
 

module)作为对比基线。其

误差结果如表3所示,预测结果如图7所示。
由表3可知本文提出的DEGA在4个不同注意力机

制中拥有最低的 MSE,相比于第二低的 CBAM 降低了

63.5%。而DEGA的 MAE相比于CBAM也有43.5%的

降低,R2也有1.8%的提升,同时虽然增加了计算时间,但
仍然满足实时性要求,证明DEGA相比于波浪预测领域常

用的注意力机制有较大提升。

·831·



 

张宇翔
 

等:基于CBiGRU-Attention的波浪能转换装置模型预测控制 第23期

图7 不同注意力机制的波浪激振力预测对比实验图

Fig.7 Comparative
 

experimental
 

diagram
 

of
 

wave
 

excitation
 

force
 

prediction
 

of
 

different
 

attention
 

mechanisms

表3 不同注意力机制的波浪激振力预测实验结果

Table
 

3 Experimental
 

results
 

of
 

wave
 

excitation
 

force
 

prediction
 

with
 

different
 

attention
 

mechanisms

模型

名称

MSE/

kW
MAPE/

%
MAE/

kW
R2/

%
计算

时间

SE 3.18×107 55.24 112 88.8 0.055
Triplet 1.41×107 69.46 98 95.1 0.068
CBAM 8.39×107 33.28 73 97.1 0.059
DEGA 3.06×107 14.12 41 98.9 0.063

3.2 基于CBiGRU-Attention的模型预测控制仿真实验

  模型预测控制的精度至关重要。更高的预测精度能

显著提升发电系统的动态响应能力,从而在复杂波况下实

现更高的发电功率。为了验证所提的CBiGRU-Attention
预测模型精度的提升能否提升波浪能发电效率,对自回归

积分 滑 动 平 均 模 型 (autoregressive
 

integrated
 

moving
 

average
 

model,ARIMA)和基于CBiGRU-Attention的波

浪激振力预测模型分别进行了仿真实验,在 MATLAB的

Simulink中进行仿真验证,其中仿真参数如表4所示。
为验证基于神经网络的模型预测控制策略对波浪能

发电功率的增强效应,本研究沿中国近海由北至南选取两

个特征海况区域开展数值仿真验证。

1)
 

波高为0.3m周期为3
 

s时对比实验

首阶段以渤海湾西部海域为研究对象[28],该海域受辽

东半岛与山东半岛地形遮蔽效应影响,呈现有限风区特

性,有效波高分布范围为0.3~0.5m,优势波周期集中于

3~5s。设定有效波高为0.3m、波周期为3s为基准工况

进行仿真测试,所得输出特性如图8所示,关键性能指标

均值汇总于表5。
由表5可知,基于CBiGRU-Attention的模型预测控

制相比于基于ARIMA的模型预测控制的平均位移提升了

39.31%,平均速度提升了36.67%,平均功率提升了140.9%,

  表4 MATLAB仿真参数

Table
 

4 MATLAB
 

simulation
 

parameter

参数名 参数值

MATLAB/Simulink版本 R2024a
仿真时间 400

 

s
波浪种类 不规则波

求解器 ode45
波谱 JS波

波浪种子 3.3
浮子半径 5

 

m
浮子高度 1.5

 

m
控制开始时间 25

 

s
步长 0.02
重力 9.806

 

65
到达最大波高时间 25

 

s

累计能量提升189.9%,控制效果显著提升。

2)
 

波高为0.6m周期为6
 

s时对比实验

为了验证在不同海况下基于CBiGRU-Attention的模

型预测控制的效果,选取中国东部的舟山群岛海域[29],该
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图8 当有效波高0.3
 

m,周期为3
 

s时两种模型

预测控制对比图

Fig.8 Comparison
 

of
 

two
 

models
 

when
 

the
 

effective
 

wave
 

height
 

is
 

0.3
 

m
 

and
 

the
 

period
 

is
 

3
 

s

表5 当有效波高0.3
 

m,周期为3
 

s时两种模型

预测控制的对比

Table
 

5 Comparison
 

of
 

two
 

models'
 

prediction
 

controls
 

when
 

the
 

effective
 

wave
 

height
 

is
 

0.3
 

m
 

and
 

the
 

period
 

is
 

3
 

s
模型 ARIMA CBiGRU-Attention

平均位移/m 0.064 0.089
平均速度/(m·s-1) 0.137 0.188

平均功率/kW 0.973 2.344
累计能量/kJ 153.8 445.8

海域涵盖不规则波与多向散射波的复合工况,可有效检验

模型鲁棒性,由于岛礁形成的半遮蔽环境,常见波高为

0.5~0.8m,并且周期在5~7s,将波高修改为0.6m,周
期设 定 为 6s,在 此 条 件 下 验 证 基 于 ARIMA 和 基 于

CBiGRU-Attention的模型预测控制的效果,输出结果如

图9所示,各项指标均值如表6所示。

图9 当有效波高0.6
 

m,周期为6
 

s时两种模型

预测控制对比图

Fig.9 Comparison
 

of
 

two
 

models
 

when
 

the
 

effective
 

wave
 

height
 

is
 

0.6
 

m
 

and
 

the
 

period
 

is
 

6
 

s

  由表6可知,在有效波高0.6m,周期为6s的波况下,

基于 CBiGRU-Attention 的 模 型 预 测 控 制 相 比 于 基 于

ARIMA的模型预测控制的平均位移提升了10.9%,平均

速度提升了19%,平均功率提升了50.3%,累计能量提升

38.9%。由结果可知在低能流密度的平缓波浪条件下,

CBiGRU-Attention模型依然维持较高的控制效能,其多目

标优化能力较传统方法具有明显鲁棒性优势。
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表6 当有效波高0.6
 

m,周期为6
 

s时两种模型

预测控制的对比

Table
 

6 Comparison
 

of
 

two
 

models'
 

prediction
 

controls
 

when
 

the
 

effective
 

wave
 

height
 

is
 

0.6
 

m
 

and
 

the
 

period
 

is
 

6
 

s
模型 ARIMA CBiGRU-Attention

平均位移/m 0.121 0.134
平均速度/(m·s-1) 0.140 0.167

平均功率/kW 1.577 2.372
累计能量/kJ 298.41 414.38

3)
 

波浪类型为PM波时对比实验

为了验证本控制算法在面对不同类型的随机波时的

效果,本节将联合北海波浪谱(jonswap,JS)修改为皮尔逊-
莫斯 科 维 茨 谱 (pierson-moskowitz,PM),并 在 波 高 为

0.3m周期为3s时进行仿真分析,结果如图10所示,各项

指标如表7所示。
由表7可知,当波型为PM波时有效波高0.3m,周期

为3s时的波况下,基于CBiGRU-Attention的模型预测控

制相比于基于 ARIMA的模型预测控制的平均位移提升

  

图10 当波型为PM波时有效波高0.3
 

m,周期

为3
 

s时两种模型预测控制对比图

Fig.10 Comparison
 

of
 

two
 

models
 

when
 

the
 

waveform
 

is
 

PM
 

wave,
 

the
 

effective
 

wave
 

height
 

is
 

0.3
 

m
 

and
 

the
 

period
 

is
 

3
 

s

表7 当波型为PM波时有效波高0.3
 

m,周期为3
 

s时

两种模型预测控制的对比

Table
 

7 Comparison
 

of
 

the
 

prediction
 

control
 

of
 

the
 

two
 

models
 

when
 

the
 

waveform
 

is
 

PM
 

wave,
 

the
 

effective
 

wave
 

height
 

is
 

0.3
 

m
 

and
 

the
 

period
 

is
 

3
 

s

模型 ARIMA CBiGRU-Attention
平均位移/m 0.094 0.067

平均速度/(m·s-1) 0.150 0.205
平均功率/kW 0.879 2.001
累计能量/kJ 136.6 385.1

了41%,平均速度提升了36%,平均功率提升了128%,累
计能量提升182%。由结果可知在PM 波下,本文提出的

控制方法仍然有较好的效果,验证了其面对不同环境下的

泛化能力。

4 结  论

  本研究针对传统注意力模型在波浪信号处理中存在

的局部依赖建模不足、频谱突变响应滞后等问题,提出

CBiGRU-Attention三级协同预测架构。该模型通过空间-
时序-注意力递进式特征解耦实现高精度预测:卷积神经网

络动态捕捉波浪场几何形变特征,结合残差网络提升计算

效率,使异常波况下的局部特征响应强度提升;双向门控

循环单元通过双向架构可同步捕获历史与未来波浪激励

的隐含动力学特征;动态可变形注意力机制通过三阶协同
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架构实现:动态偏移量生成网络捕捉波浪频谱的时变特征

组合,使峰值误差降低63.5%;可变形卷积核增强异常波

况下的几何形变适应能力使 MAE降低43.5%;跨模态注

意力权重分配策略突破传统单模态建模局限。实验表明,

DEGA在JS波谱下的R2 达98.9%,较Triplet注意力提

升17.6%,为后续控制优化奠定高精度预测基础。
将CBiGRU-Attention预测模型嵌入模型预测控制框

架后,通过实时预测的波浪激振力实现动态电流匹配,降
低直驱发电机机电系统响应延迟。通过多目标约束下的

滚动优化算法实现发电功率最大化的目标。仿真结果表

明,该框架在波高0.3
 

m,周期为3
 

s时的JS波下发电功率

提升最明显达到140%,同时在PM波下进行了仿真实验,
发电功率同样提升达到128%。本研究对直驱式波浪能转

换装置的功率最大化控制进行了研究,提供了一种融合神

经网络与动态模型预测控制的协同优化思路,通过构建

CBiGRU-Attention多模态耦合预测模型与闭环自适应控

制框架,为复杂海况下波浪能发电功率最大化奠定了理论

和技术基础。
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