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改进金豺算法的多目标约束问题研究
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摘 要:针对金豺优化算法在求解有约束优化问题时面临的种群质量差、收敛速度慢和易陷入局部极值等问题,提出

一种基于多策略的金豺优化算法。首先,为了增加群体的多样性和改善初始解的品质,使用了混沌精英初始化策略来

产生精英群体;然后引入能量调节机制,对全局搜索和局部优化进行协调;最后,针对群体中的个体差异,设计了一种

融合突变的方法以防止出现局部极值问题。通过标准测试函数的比较试验,证明了改进后的算法具有较好的收敛性

能和较快的收敛速度。此外,在CEC2021测试函数和压力容器设计优化问题上进行实验,通过收敛性分析、鲁棒性检

测和 Wilcoxon秩和统计的验证进一步证明了改进的金豺优化算法在单目标约束和多目标约束问题中的有效性和实

用性。
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Abstract:A
 

multi-strategy
 

based
 

golden
 

jackal
 

optimization
 

algorithm
 

is
 

proposed
 

to
 

address
 

the
 

problems
 

of
 

poor
 

population
 

quality,
 

slow
 

convergence
 

speed
 

and
 

easy
 

to
 

fall
 

into
 

local
 

extremes
 

faced
 

by
 

the
 

golden
 

jackal
 

optimization
 

algorithm
 

in
 

solving
 

constrained
 

optimization
 

problems.
 

First,
 

in
 

order
 

to
 

increase
 

the
 

diversity
 

of
 

the
 

population
 

and
 

improve
 

the
 

quality
 

of
 

the
 

initial
 

solution,
 

a
 

chaotic
 

elite
 

collaborative
 

initialization
 

strategy
 

is
 

used
 

to
 

generate
 

an
 

elite
 

population;
 

then,
 

an
 

energy
 

regulation
 

mechanism
 

is
 

introduced
 

to
 

coordinate
 

the
 

global
 

search
 

and
 

local
 

optimization;
 

finally,
 

a
 

fusion
 

mutation
 

method
 

is
 

designed
 

for
 

the
 

individual
 

differences
 

in
 

the
 

population
 

in
 

order
 

to
 

prevent
 

the
 

problem
 

of
 

local
 

extremes.
 

The
 

improved
 

algorithm
 

is
 

proved
 

to
 

have
 

better
 

convergence
 

performance
 

and
 

faster
 

convergence
 

speed
 

through
 

the
 

comparison
 

test
 

of
 

standard
 

test
 

functions.
 

In
 

addition,
 

experiments
 

on
 

the
 

CEC2021
 

test
 

function
 

and
 

the
 

pressure
 

vessel
 

design
 

optimization
 

problem
 

further
 

demonstrate
 

the
 

effectiveness
 

and
 

practicality
 

of
 

the
 

improved
 

golden
 

jackal
 

optimization
 

algorithm
 

in
 

single-objective
 

constraints
 

and
 

multi-objective
 

constraints
 

problems
 

through
 

convergence
 

analysis,
 

robustness
 

test,
 

and
 

validation
 

of
 

Wilcoxon's
 

rank
 

sum
 

statistics.
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0 引  言

  在工程领域,优化问题广泛存在于各种复杂系统中,如
工程设计、机器学习、资源分配等。传统的优化方法,如梯

度下降法、线性规划等,在处理高维、非线性、多目标等复杂

优化问题时,往往面临收敛速度慢、易陷入局部最优等问

题。研究者们逐渐转向元启发式优化算法,如粒子群优化

算法(particle
 

swarm
 

optimization,PSO)[1];灰狼优化算法

(grey
 

wolf
 

optimizer,GWO)[2];鲸 鱼 优 化 算 法 (whale
 

optimization
 

algorithm,WOA)[3]。这些优化算法通过模拟

自然界的生物行为或物理现象,能够在全局搜索和局部优

化之间取得良好的平衡。
金豺优化算法(golden

 

jackal
 

optimization,GJO)[4]是
一种模拟金豺协作捕猎行为的种群智能优化算法,因其简

单易实现而在解决复杂问题时具有广阔的应用前景,如癌

症生物标志物分类[5]和配电网优化[6]等。尽管GJO已被

广泛应用于多个领域,但其仍存在易陷入局部最优、种群多

样性差和收敛速度慢等问题。Wang等[7]采用类似克隆的
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策略进行种群更新,并在选择阶段采用模拟退火方法,但由

于过度依赖于最优解,算法容易陷入局部极值,针对这一问

题,本文提出自适应t-差分融合变异策略利用种群个体差

异进行位置更新,避免过度依赖最优解。Mohapatra等[8]

提出基于对立面学习增强金豺优化算法(opposition-based
 

learning
 

golden
 

jackal
 

optimization,OGJO),通过基于对立

面学习策略帮助算法摆脱局部最优值,但OBL过度干扰局

部搜索,可能导致探索与开发的失衡,为此本文使用一种分

阶段混合逃逸能量调控机制来协调算法的全局探索与局部

开发过程。Wang等[9]提出一种基于多策略混合的金豺算

法(multi-strategy
 

hybrid
 

based
 

golden
 

jackal
 

algorithm,

LGJO),首先使用混沌映射策略来初始化种群生成初始解,
其次提出一种基于余弦变化的动态惯量权重以及基于高斯

突变的位置更新策略,利用最优个体来提高种群多样性,然
而单一混沌映射容易造成重复个体生成风险和维度适应性

不足,因此本文利用Logistic映射对群体进行初始化后,再
通过纵横交叉机制与透镜成像逆向学习策略结合形成混合

精英策略优化种群多样性与质量。Yang等[10]提出基于

Rosenbrock直接旋转策略的改进的金豺优化算法,使算法

的局部搜索能力显著提升,但在解决高维度复杂问题时,算
法个体适应度值低,易达到局部极值,本文一方面通过在搜

索阶段通过调控机制利用柯西分布进行扰动以及自适应t
分布扰动以此来跳出局部最优;另一方面通过混沌精英初

始化策略提高种群质量与多样性,避免提前陷入局部最优。
通过对已有研究中还存在的问题针对性改进,本文提

出了一种基于多策略改进的金豺优化算法(multi-strategy
 

improved
 

golden
 

jackal
 

optimization,MSIGJO)。

1 金豺优化算法

1.1 初始化种群

  金豺在捕猎时,第一步就是寻找猎物。在初始化时,将
在搜索空间中随机产生候选解,使其分布均匀:

Y0=Ymin+rand(Ymax-Ymin) (1)
式中:Y0 为猎物初始种群的位置;rand 是[0,1]的随机数;

Ymax 是解的上界,Ymin 为下界。
首先构建初始矩阵,并将猎物解作为初始解存储其中:

Prey =

Y1,1 Y1,2 … Y1,d

Y2,1 Y2,2 … Y2,d

︙ ︙ ︙

Yn,1 Yn,2 … Yn,d

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

(2)

式中:n表示猎物种群规模;d 表示问题纬度。
计算每一个目标函数值并存入矩阵FOA:

FOA =

f(Y1,1;Y1,2;…;Y1,d)

f(Y2,1;Y2,2;…;Y2,d)
︙

f(Yn,1;Yn,2;…;Yn,d)

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

(3)

式中:FOA 表示目标函数值矩阵;f表示目标函数。将最优

目标函数值记为雄性金豺YM(t),第二优的目标函数值记

为雌性金豺YFM t  ,将它们组成新的金豺对进行追踪或

抓捕阶段求解。

1.2 追踪阶段

  金豺在其领地内搜索猎物,并逐步向猎物靠近。金豺

与猎物之间的相对位置计算方法如式(4)、(5)所示。

Y1(t)=YM(t)-E·|YM(t)-rl×Prey(t)| (4)

Y2(t)=YFM(t)-E·|YFM(t)-rl×Prey(t)| (5)
式中:Prey(t)表示猎物位置向量;rl表示基于Levy分布

的任意向量;t是迭代数;YM t  是雄金豺的初始位置分

布,YFM t  是雌金豺初始位置分布;Y1(t)、Y2(t)分别是

位置更新后的雄雌金豺的位置分布。rl是莱维飞行函数,
其公式如(6)所示。

rl=0.05×LF(y) (6)

LF(y)=0.01× μ×σ

|v
1
β
|

(7)

σ=
Γ(1+β)×sin(

πβ
2
)

Γ(1+β2
)×β×2

β-1
2  

1/β

(8)

式中:μ、v是[0,1]内均匀分布的随机值;β是设置为1.5的

常数。在金豺优化算法中,猎物的逃脱能量作为关键参数,
决定雄雌个体的搜索与捕获策略,其计算公式如(9)~(11)
所示。

E =E1×E0 (9)

E0 =2r-1 (10)

E1 =c1(1-
t
T
) (11)

其中,E1表示猎物能量的下降过程,在逃脱过程中,猎
物的能量值呈线性递减,由初始值1.5逐步降至0;E0表示

初始能量值;r表示[0,1]内的随机值;T 为最大迭代数,

c1 =1.5。
通过式(12)计算金豺位置平均值来更新位置:

Y(t+1)=
Y1(t)+Y2(t)

2
(12)

1.3 抓捕阶段

  在捕猎过程中,猎物的逃脱能量随豺狼的攻击而逐渐

递减。豺狼对会先基于前期探测信息对猎物实施包围,待
包围完成后,再发起最终攻击。在抓捕阶段,金豺的位置更

新计算公式如式(13)、(14)所示。

Y1t  =YM t  -E×|rl×YM t  -Prey(t)| (13)

Y2(t)=YFM(t)-E×|rl×YFM(t)-Prey(t)|
(14)

1.4 探索与开发的转换

  在GJO算法设计中,猎物逃脱能量是调控雄雌金豺追

踪和捕猎策略的关键参数。猎物的逃脱能量E 随着迭代

次数的增加而显著降低。当|E|>1时,金豺进行全局搜

·901·



 第48卷 电 子 测 量 技 术

索,寻找猎物的位置;当|E|<1时,金豺在局部进行开发,
进行围攻猎物。

2 改进的金豺优化算法

2.1 混沌精英初始化策略

  研究表明,初始种群的质量显著影响算法的求解精度

与收 敛 速 率[11]。为 提 升 初 始 解 质 量,MSIGJO 结 合

Logistic混沌映射与混合精英策略进行种群初始化:通过

Logistic映射生成具有遍历性的混沌序列,同时利用混合

精英策略产生多样性解,二者协同构建初始种群。这一机

制既提供了优质的初始解,又通过增强全局探索能力,弥补

了基础GJO算法在初始化阶段的局限性。

1)Logistic映射初始化种群

混沌映射作为一种非线性系统的复杂动力学方法,其
产生的混沌变量具有遍历性、伪随机性、初值敏感性和非周

期性等特性[12],通过遍历性在解空间均匀采样,避免早熟

收敛。在优化算法领域,混沌映射常被用于替代传统伪随

机数生成机制,通过产生[0,1]区间内的非周期序列来改善

搜索过程。MSIGJO算法采用Logistic混沌映射生成具有

遍历特性的混沌序列[13],通过非线性变换将混沌变量映射

至解空间维度,并对种群个体施加混沌扰动。Logistic混

沌映射定义为:

xi+1 =axi(1-xi) (15)
式中:a为常数,a=4。

2)混合精英策略

混合精英策略将透镜成像反向学习(LOBL)与纵横交

叉机制相结合。该方法旨在通过透镜成像生成多样化候选

解,并利用交叉算子促进个体间信息交换,从而实现探索与

开发的平衡。
透镜成像反向学习(LOBL)是一种受到光学透镜成像

原理启发的反向学习策略[14],用于全局优化问题中增强种

群多样性和提高搜索效率。传统的反向学习方法通常简单

地计算一个解相对于搜索空间中心的反向位置,而透镜成

像反向学习则引入了一个缩放因子,该因子通过透镜成像

模型调整“像”的位置与尺度。对于种群中的每个候选解

xi,利用LOBL策略生成新的候选解x'i:

x'i=
lb+ub
2 +

lb+ub
2k -

xi

k
(16)

式中:lb和ub分别为搜索空间的下界和上界,k为缩放因

子,其定义为:

k= 1+
t
T  

10

(17)

式中:t表示当前迭代次数,T 为最大迭代次数。生成后对

x'i进行边界控制,保证:

x'i=min(max(x'i,lb),ub) (18)
在LOBL更新之后,采用纵横交叉策略进一步增强解

的多样性并重组信息[15]。该过程分为两个部分:

横向交叉是对于i=1,2,…,N (其中N 为候选解的

数量),利用相邻个体进行交叉更新:
对于奇数索引的个体,更新公式如式(19)所示。

x'i(j)=rxi(j)+(1-r)xi+1(j)+c(xi(j)-xi+1(j))
(19)

对于偶数索引的个体,更新公式如式(20)所示。

x'i(j)=rxi-1(j)+(1-r)xi(j)+c(xi-1(j)-xi(j))
(20)

式中:j表示维度索引,r是服从均匀分布[0,1]的随机数,

c=2×rand()-1为服从区间[-1,1]的系数。更新后同

样进行边界控制。
纵向交叉是在横向交叉的基础上,对每个候选解的各

个维度进行纵向交叉。对每个维度j,随机选取该解中的

两个维度d1 和d2 根据式(21)进行更新:

x'i(j)=r1xi(d1)+(1-r1)xi(d2) (21)
式中:r1 同样为[0,1]均匀分布的随机数。该机制有助于

在个体内部不同维度之间交换信息,进一步提高解的多样

性。在经过LOBL和交叉操作后,计算新候选解x'i的适应

度f(x'i)。 精英更新规则如式(22)、(23)所示。
如果f(x'i)<f(MaleJackal),则更新精英解:

MaleJackal=x'i (22)
否则若f(MaleJackal)<f(x'i)<f(FemaleJackal),

则更新次优解:

FemaleJackal=x'i (23)

2.2 分阶段混合逃逸能量调控机制

  在GJO算法中,逃逸能量E 作为核心控制参数,由确

定性分量和随机分量构成。然而,随机分量的波动导致E
呈现非平稳变化,影响算法在全局探索与局部开发间的平

稳转换。为此,MSIGJO提出分阶段混合调控机制:初期采

用较大扰动结合柯西分布[16]增强探索能力;后期运用余弦

退火与高斯扰动[17]优化局部搜索;同时引入L􀆧vy扰动提

升逃逸能力。该机制使逃逸能量随迭代次数自适应调整,
确保各阶段具有最优搜索步长,既避免早熟收敛又提高搜

索效率。在迭代的早期阶段,为了充分探索搜索空间,采用

较大的扰动如式(24)所示。

E1=1.5·e
-2·

t
T (24)

E0~Cauchy(0,1) (25)
式中:扰动项E0 采用柯西分布生成,这种设置确保了在初

期阶段,逃逸能量较大,从而使个体有更大概率跳出局部最

优区域。当迭代进入中后期,搜索重心转向局部开发,此时

需要降低扰动幅度以实现细致搜索。调控公式如式(26)
所示。

E1=0.8·0.5· 1+cosπ·
t
T    (26)

E0 ~ (0,0.52) (27)
式中:扰动项E0采用高斯分布生成,这样在后期,逃逸

能量逐步减小,有助于算法精细开发和快速收敛。
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为进一步增强个体跳出局部最优的能力,在计算最终

逃逸能量时,还引入L􀆧vy扰动。最终逃逸能量E 的计算

公式为:

E =E1·E0+LF· 1-
t
T  (28)

式中:LF· 1-
t
T  保证了L􀆧vy扰动在迭代初期贡献较

大,随着迭代进程逐渐减弱。

2.3 自适应t-差分融合变异

  在标准GJO算法中,最终解通过雄雌金豺个体位置的

平均值获得,然而这种处理方式未能充分考虑种群个体适

应度差异所表征的捕猎能力异质性,导致搜索精度和收敛

速度受限。为此,MSIGJO根据算法各阶段求解的特点,引
入了自适应t-差分融合变异策略:基于自适应t分布的长

尾特性实施扰动,能够帮助算法跳出局部最优,增强算法的

探索能力[18];而差分变异则会利用全局最优和随机个体的

信息,通过计算个体间的差异,能够捕捉种群中分布的信

息,从而引导搜索向更优区域前进,进一步提高搜索效率。
针对金豺优化算法不同阶段的搜索特性,提出一种基

于适应度分级的混合变异策略:首先计算种群平均适应度

值作为分类阈值,将个体划分为两类:对于适应度低于平均

值的个体,采用自适应t分布扰动以增强全局探索能力;对
于适应度高于平均值的个体,则实施差分变异操作以提升

局部开发效率。每次变异后,通过精英保留策略比较新旧

个体的适应度,择优保留至下一代种群中。该机制有效平

衡了算法在不同进化阶段的探索与开发需求。自适应t分

布扰动变异公式为:

freen=e
4 t

T  2

(29)

x'i=xi+trnd(freen)·xi (30)
式中:freen 为自适应t分布的自由度参数,trnd(freen)
表示自由度为freen的t分布随机变量。否则从种群中随

机选取一个个体a(且a≠i),同时利用全局最优个体xM

的信息,对当前个体xi 进行差分变异更新:

x'i=r·(xM -xi)-r'·(xa -xi) (31)
式中:r和r'均为服从均匀分布U(0,1)中产生的随机数。

2.4 MSIGJO算法的流程

  MSIGJO算法的流程图如图1所示。算法流程包括

8个步骤:

1)用Logistic映射生成金豺种群位置,设定种群规模

n、维度d、最大迭代次数T;

2)计算个体适应度,选取最优雄豺、雌豺个体;

3)通过混合精英策略更新种群和雌、雄豺;

4)根据式(24)~(28)计算逃脱能量E;

5)如􀰙E 􀰙>1,使用式(4)、(5)、(12)更新位置;反之

使用式(13)、(14)、(12)更新位置;

6)对低于平均适应度的个体实施t分布扰动,高于平

均的个体执行差分变异;

7)对比扰动前后个体,保留更优解更新种群;

8)达到迭代次数则输出最优解,否则返回步骤3)
迭代。

图1 MSIGJO算法流程

Fig.1 Algorithm
 

flow
 

chart
 

of
 

MSIGJO

3 实验结果与分析

  为了充分验证 MSIGJO算法在解决优化问题方面的

有效性,分别将 MSIGJO与粒子群优化算法(PSO)、灰狼

优化算法(GWO)、鲸鱼优化算法(WOA)、基本金豺优化算

法(GJO)和改进的金豺优化算法OGJO、LGJO在基准测试

函数和CEC2021测试函数上进行对比验证。所有算法均

在具有16
 

GB运行内存和64位系统的 Windows11平台上

运行,且使用 Matlab2024a进行实验。

3.1 参数设置与测试函数说明

  为确保实验结果的可靠性与可比性,本研究采用严格的

参数控制方案:所有对比算法均按照表1所示的统一参数标

准进行初始化;MSIGJO算法的运行参数与其他算法保持完

全一致,均设置种群规模N=30、最大迭代次数T=1
 

000,每
个算法均执行20次独立重复实验以消除随机性影响。
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表1 参数设置

Table
 

1 Parameter
 

settings
算法 参数

MSIGJO a=4;
 

c1 =1.5

LGJO c1 =1.5

OGJO c1 =1.5

GJO c1 =1.5

PSO c1 =c2 =2;Vmax =1

WOA b=1

GWO a∈
 

[0,2]

  本研究采用13个特征各异的基准测试函数进行算法

性能评估,具体包括两类典型函数集:单峰函数组(F1~
F7),这类函数具有唯一的全局最优解,能够有效评估算法

的收敛速度与求解精度;多峰函数组(F8~F13),这类函数

包含多个局部极值点和一个全局最优解,可全面测试算法

跳出局部最优和平衡全局探索与局部开发的能力。所有测

试函数的数学表达式、搜索范围及理论最优值等详细信息

如表2所示。

3.2 收敛精度分析

  为验证 MSIGJO算法的优化性能,本研究将其与多种

经典优化算法进行了对比实验,结果如表3所示。在单峰

  
表2 基准测试函数

Table
 

2 Benchmark
 

test
 

function
函数 名称 纬度 范围 最优值

F1 Sphere 30 [-100,100] 0
F2 Schwefel

 

2.22 30 [-10,10] 0
F3 Schwefel

 

1.2 30 [-100,100] 0
F4 Schwefel

 

2.21 30 [-100,100] 0
F5 Rosenbrock 30 [-30,30] 0
F6 Step 30 [-100,100] 0
F7 Quartic

 

with
 

noise 30 [-1.28,1.28] 0
F8 Schwefel

 

2.26 30 [-500,500] -12,569.5
F9 Rastrigin 30 [-5.12,5.12] 0
F10 Ackley 30 [-32,32] 0
F11 Griewank 30 [-600,600] 0
F12 Penalized1 30 [-50,50] 0
F13 Penalized2 30 [-50,50] 0

函数测试集中,MSIGJO表现出显著优势,在F1~F4函数

优化中,该算法均能精确收敛至理论最优解,且求解速率

更快以及标准差波动范围更小。在F6、F7中,MSIGJO性

能明显优于其他对比算法,且在F5中与LGJO最优值相

差不大。在F8、F9和F11函数优化中,该算法均能够精确

收敛至理论最优解;且在F10、F12与F13函数中,所有对

比的算法中 MSIGJO算法各项数据均排第一。由此可见,

MSIGJO算法从收敛精度,稳定性到平衡全局搜索与局部

开发的能力都是非常出色的。
为更直观评估算法性能,图2展示了关键收敛曲线对

比结果:在单峰函数F1~F4测试中,MSIGJO仅需约100
次迭代即收敛至理论最优值,这可能因为混沌精英初始化

策略通过Logistic混沌映射提升种群多样性以及混合精英

策略提供优质初始解,从而使算法收敛精度与速度得到较

大提升;而从图2中可以看到 MSIGJO算法的初次迭代都

非常优秀,说明混合精英策略所提供初始解具有很高的质

量。从F7、F8和F10函数收敛曲线可以看出 MSIGJO算

法寻优精度远远高于其他函数,说明 MSIGJO算法采用的

分阶段混合逃逸能量调控机制通过动态调整搜索策略,实
现了全局探索与局部开发的优化平衡。从F6、F12和F13
函数收敛曲线可以看出,MSIGJO算法多次跳出局部最优

且收敛精度与速度更快,说明将自适应t-差分融合变异用

于改进位置更新有助于算法跳出局部最优并且能够提高

寻求最优解的概率。本实验通过对比 MSIGJO算法与多

种经典优化算法在单峰和多峰测试函数上的表现,验证了

其具有高质量的初始解,优秀的收敛速度与精度以及跳出

局部最优的能力。

3.3 CEC2021测试函数

  为全面评估 MSIGJO算法处理单目标约束问题的性

能,本研究采用CEC2021基准测试函数集进行验证。该测

试集包含10个具有维度可扩展特性的复杂函数,专注于

单目标有约束优化问题,这类问题在工程、经济、科学等领

域广泛存在。各算法依据表1的参数进行配置,本研究在

20维空间下对MSIGJO算法与对比算法进行了系统测试,
实验结果如表4所示。为更清晰地展示算法性能差异,
图3选取了典型测试函数的收敛曲线对比图。
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表3 基准测试函数优化结果对比

Table
 

3 Comparison
 

of
 

optimization
 

results
 

for
 

benchmarking
 

functions

函数 指标 GJO PSO WOA GWO LGJO OGJO MSIGJO
最优值 1.71×10-114 3.04×10-6 9.37×10-159 4.37×10-60 1.17×10-136 1.09×10-124 0

F1 平均值 2.08×10-114 2.35×10-4 1.98×10-149 6.67×10-59 3.62×10-135 2.33×10-119 0
标准差 5.32×10-115 3.28×10-4 2.81×10-149 8.82×10-59 3.96×10-135 3.30×10-119 0
最优值 8.00×10-67 1.01×10-4 4.18×10-105 5.60×10-35 3.07×10-92 1.23×10-70 0

F2 平均值 8.02×10-67 2.39×10-4 1.49×10-102 7.98×10-35 1.54×10-89 1,26×10-70 0
标准差 2.74×10-69 1.95×10-4 2.10×10-102 3.37×10-35 2.18×10-89 3.45×10-72 0
最优值 1.84×10-44 5.79×102 1.19×104 2.04×10-15 1.29×10-44 8.47×10-49 0

F3 平均值 3.17×10-42 5.81×102 1.58×104 7.70×10-15 2.48×10-41 1.50×10-46 0
标准差 4.46×10-42 2.48 5.58×103 8.00×10-15 3.51×10-41 2.10×10-46 0
最优值 2.35×10-35 2.87 2.43 1.52×10-15 1.37×10-41 4.75×10-35 0

F4 平均值 1.10×10-34 4.17 1.17×10 3.73×10-15 6.60×10-38 6.55×10-33 0
标准差 1.23×10-34 1.83 1.31×10 3.12×10-15 9.33×10-38 9.20×10-33 0
最优值 2.71×10 8.40×10 2.69×10 2.70×10 2.62×10 2.80×10 2.62×10

F5 平均值 2.72×10 8.52×10 2.69×10 2.70×10 2.67×10 2.80×10 2.70×10
标准差 1.74×10-2 1.57 5.72×10-2 1.20 6.50×10-1 3.56×10-2 3.36×10-3

最优值 2.68 1.87×10-4 2.45×10-2 2.47×10-1 1.24 1.76 1.18×10-6

F6 平均值 2.83 2.24×10-4 2.99×10-2 3.70×10-1 1.87 2.25 6.04×10-6

标准差 2.26×10-1 5.15×10-5 7.65×10-3 1.73×10-1 8.83×10-1 6.91×10-1 6.88×10-6

最优值 4.16×10-4 2.97×10-2 3.43×10-4 4.15×10-4 1.25×10-4 4.25×10-5 1.49×10-6

F7 平均值 4.89×10-4 3.10×10-2 1.92×10-3 5.18×10-4 2.12×10-4 1.21×10-4 1.91×10-6

标准差 1.02×10-4 1.93×10-3 2.23×10-3 1.45×10-4 1.24×10-4 1.11×10-4 6.01×10-6

最优值 -6.57×103 -9.31×103 -1.15×104 -7.35×103 -1.25×104 -7.33×103 -1.26×104

F8 平均值 -4.79×103 -7.76×103 -1.03×104 -6.80×103 -9.56×103 -5.56×103 -1.26×104

标准差 2.51×103 2.38×102 1.80×103 7.68×102 3.45×102 3.68×10 2.35×10-1

最优值 0 4.38×10 0 0 0 0 0

F9 平均值 0 5.58×10 5.60×10-15 5.68×10-14 0 0 0
标准差 0 1.69×10 1.79×10-14 8.04×10-14 0 0 0
最优值 4.00×10-15 3.63×10-4 4.44×10-16 1.46×10-14 3.99×10-15 4.00×10-15 4.44×10-16

F10 平均值 4.32×10-15 1.10×10-2 3.28×10-15 1.78×10-14 3.99×10-15 4.35×10-15 4.44×10-16

标准差 1.12×10-15 1.56×10-2 2.24×10-15 4.86×10-15 0 1.12×10-15 0
最优值 0 3.31×10-5 0 0 0 0 0

F11 平均值 0 1.33×10-2 0 3.26×10-3 0 0 0
标准差 0 1.56×10-2 0 5.25×10-3 0 0 0
最优值 1.40×10-1 7.50×10-5 6.28×10-4 1.27×10-2 2.86×10-2 7.71×10-2 7.64×10-8

F12 平均值 2.61×10-1 3.11×10-2 8.26×10-3 2.42×10-2 8.10×10-2 1.63×10-2 4.63×10-7

标准差 1.79×10-1 6.99×10-2 6.11×10-3 1.43×10-2 3.81×10-2 7.04×10-2 5.47×10-7

最优值 1.24 1.59×10-5 8.47×10-2 3.01×10-1 3.40×10-1 1.24 2.22×10-7

F13 平均值 1.57 2.71×10-3 2.40×10-1 5.94×10-1 9.55×10-1 1.49 4.06×10-6

标准差 2.02×10-1 5.13×10-3 1.58×10-1 2.16×10-1 3.33×10-1 1.29×10-1 2.69×10-6
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图2 收敛曲线对比图

Fig.2 Convergence
 

curve
 

of
 

the
 

algorithm

表4 CEC2021测试函数优化结果

Table
 

4 CEC2021
 

test
 

function
 

optimization
 

results
函数 指标 GJO PSO WOA GWO LGJO OGJO MSIGJO

最优值 1.11×10-161 3.44×10-7 3.78×10-179 6.87×10-87 1.29×10-229 2.53×10-174 0
F1 平均值 4.08×10-157 1.00×103 1.41×10-168 5.73×10-85 1.40×10-229 3.46×10-166 0

标准差 1.28×10-156 3.16×103 0 1.19×10-84 0 0 0
最优值 0 1.22×102 0 0 0 0 0

F2 平均值 0 5.07×102 5.45×10-13 9.33×10-1 0 0 0
标准差 0 3.50×102 8.78×10-13 2.55 0 0 0
最优值 0 3.97 0 0 0 0 0

F3 平均值 0 2.19×10 0 7.34×10 0 0 0
标准差 0 1.24×10 0 3.78×10 0 0 0
最优值 0 1.47 0 0 0 0 0

F4 平均值 0 2.14 2.35×10-1 6.55×10-2 0 0 0
标准差 0 3.75×10-1 4.81×10-1 1.99×10-1 0 0 0
最优值 1.14×10-240 2.41 4.12×10-165 1.87×10-36 0 1.13×10-234 0

F5 平均值 2.09×10-200 3.94×102 4.56×10-138 1.45 2.01×10-309 1.78×10-192 0
标准差 0 3.53×102 1.44×10-137 4.17 0 0 0
最优值 8.52×10-5 4.59 5.06×10-4 2.31×10-2 1.11×10-4 2.14×10-4 0
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表4(续)

Table
 

4
 

(continued)

函数 指标 GJO PSO WOA GWO LGJO OGJO MSIGJO
F6 平均值 4.88×10-2 6.81×10 3.14×10-1 9.73×10-1 1.68×10-2 1.87×10-1 0

标准差 1.12×10-2 6.36×10 7.93×10-1 1.72 4.44×10-2 4.23×10-1 0
最优值 1.09×10-4 1.81 7.62×10-3 1.57×10-2 4.80×10-5 2.78×10-5 2.22×10-16

F7 平均值 2.96×10-2 2.99×102 5.34×10-2 7.63×10-2 7.22×10-3 5.06×10-3 8.88×10-17

标准差 2.24×10-2 3.51×102 4.72×10-2 1.01×10-1 1.08×10-2 7.73×10-3 1.17×10-16

最优值 0 3.32×10 0 0 0 0 0
F8 平均值 0 6.25×10 0 0 0 0 0

标准差 0 2.01×10 0 0 0 0 0
最优值 8.88×10-15 2.35×10-6 1.84×10-176 8.88×10-15 3.39×10-230 8.88×10-15 0

F9 平均值 8.88×10-15 6.85×10-6 7.99×10-15 1.15×10-14 3.55×10-15 8.88×10-15 9.34×10-316

标准差 0 4.34×10-6 6.55×10-15 4.29×10-15 4.59×10-15 0 0
最优值 9.22×10-4 4.94×10 2.20×10-2 5.77×10 1.29×10-3 7.74×10-4 0

F10 平均值 2.39×10 6.02×10 1.01×10-1 7.64×10 3.95 3.20×10 8.90×10-316

标准差 3.88×10 1.67×10 4.92×10-2 1.24×10 1.25×10 4.17×10 0

图3 CEC2021测试函数收敛曲线

Fig.3 CEC2021
 

test
 

function
 

convergence
 

curve
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  表4的实验数据表明,MSIGJO算法在F1~F6和F8
函数测试中展现出显著的优化性能:不仅所有测试函数的

平均值均收敛至理论最优值,且20次独立运行的标准差

均为0,验证了算法具有优异的收敛稳定性和鲁棒性。F7
虽未取得理想值,但在所有对比算法中排名第一,且稳定

性优越。通过对收敛曲线的对比分析,可以更加直观地体

现 MSIGJO算法的性能优化:在F2、F4、F6函数测试中,
该算法在初次迭代即获得最优解,如图3纵坐标轴上三角

星标记所示;从F9、F10的收敛曲线可以看到 MSIGJO的

寻优范围远远超过其他算法。由图3可以看出:MSIGJO
在所有测试函数中的收敛速度都明显优于其他算法,经过

100次左右迭代均可以取得最优值,说明 MSIGJO算法不

仅可以跳出局部最优进行更大范围的寻优,而且由于初始

生成高质量解,导致收敛精度与速度明显优于其他算法。

基于CEC2021测试集的实验结果表明,MSIGJO算法在单

目标约束优化问题中展现出显著优势,不仅收敛速度更

快、求解精度更高,同时具备更强的跳出局部最优能力,并
在全局探索与局部开发之间实现了更优的平衡,综合性能

显著优于其他对比算法。

3.4 Wilcoxon秩和检验

  为 验 证 MSIGJO 算 法 的 性 能 优 势,本 研 究 采 用

Wilcoxon秩和检验对CEC2021测试集上的优化结果进行统

计分析。P 值的大小可以反映两种算法之间差异的显著

性,一般当P 值<5%时,表示两者存在显著差异。如表5
所示,检验结果表明 MSIGJO算法与对比算法在大多数测

试函数上的性能具有明显差异。这一统计结果不仅证实了

MSIGJO算法在寻优能力上的显著优势,同时也验证了该算

法在求解单目标约束优化问题时的可靠性和有效性。

表5 Wilcoxon秩和检验实验结果

Table
 

5 Wilcoxon
 

rank
 

sum
 

test
 

experimental
 

results

P 值 GJO PSO WOA GWO LGJO OGJO

F1 6.39×10-5 6.39×10-5 6.39×10-5 6.39×10-5 6.39×10-5 6.39×10-5

F2 1 6.34×10-5 3.44×10-2 1.98×10-3 1 1

F3 1 6.39×10-5 1 2.21×10-3 1 3.68×10-1

F4 1 6.39×10-5 1 6.39×10-5 1 1

F5 6.39×10-5 6.39×10-5 6.39×10-5 6.39×10-5 1 5.97×10-3

F6 6.39×10-5 6.39×10-5 6.39×10-5 6.39×10-5 6.39×10-5 6.39×10-5

F7 6.39×10-5 6.39×10-5 6.39×10-5 6.39×10-5 6.39×10-5 6.39×10-5

F8 1 6.39×10-5 1 1 1 1

F9 1.69×10-4 1.73×10-4 1.41×10-4 8.17×10-5 1.73×10-4 1.63×10-4

F10 1.83×10-4 1.83×10-4 1.83×10-4 1.83×10-4 1.83×10-4 1.83×10-4

3.5 压力容器设计优化问题

  压力容器设计优化问题是经典的工程设计多目标优

化问题,由容器厚度Ts、封头厚度Th、内半径R 和圆柱形

长度L 共4个设计变量构成,其目标是在满足一定的约束

条件下优化这4个设计变量来最小化总成本(材料、成型

和焊接的成本),相当于求有约束条件的多目标函数最小

值问题。压力容器设计问题的目标函数为:

Variablex= [Ts,Th,R,L];

minf(x)=0.622
 

4x1x3x4+1.778
 

1x2x2
3+

3.166
 

1x2
1x4+19.84x2

1x3;

s.t.
g1(x)= -x1+0.0193x3≤0;

g2(x)= -x2+0.00954x3≤0;

g3(x)= -πx2
3x4-

4πx3
3

3 +1
 

296
 

000≤0;

g4(x)=x4-240≤0;

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

Variablerange
0≤xi≤100,i=1,2;

10≤xi≤200,i=3,4

(32)

为了验证算法在压力容器设计优化问题中的有效性,
采用 GJO、PSO、WOA、GWO、LGJO、OGJO 及 MSIGJO
等7种优化算法进行对比实验。实验设置如下:算法的参

数设置同表1,种群规模为30,最大迭代次数1
 

000次,每
种算法独立运行20次。实验结果如表6所示,MSIGJO算

法在压力容器总成本优化方面表现最优,最低成本达

6059.71。相较于标准GJO算法,MSIGJO的最优成本和

平均成本分别降低了882.81和1370.65。实验结果表明,

MSIGJO算法在解决压力容器设计优化问题中具有显著

优势,能够获得更优的设计方案,充分验证了该算法在面

对多个目标且有多个约束存在的情况下仍然具有出色的

解决问题的能力,也证明了 MSIGJO算法在实际工程应用

中的有效性。
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表6 压力容器设计的优化结果

Table
 

6 Optimization
 

results
 

of
 

pressure
 

vessel
 

design
算法 Ts Th R L best mean
GJO 18.28 9.10 56.97 51.60 6

 

942.52 7
 

448.25
PSO 13.00 6.78 42.09 176.63 6

 

063.92 6
 

704.49
WOA 15.66 8.10 49.64 101.16 6

 

622.79 9
 

141.63
GWO 12.86 7.36 42.08 176.80 6

 

061.79 6
 

366.44
LGJO 15.88 7.56 51.37 87.93 6

 

455.53 7
 

016.48
OGJO 13.40 6.89 40.32 200.00 6

 

290.35 6
 

780.45
MSIGJO 12.96 7.34 42.08 176.94 6

 

059.71 6
 

077.60

4 结  论

  针对金豺优化算法在求解有约束优化问题时面临的

种群质量差、收敛速度慢和易陷入局部最优等问题,本文

提出一种基于多策略改进的金豺优化算法:采用Logistic
混沌映射和混合精英策略初始化种群,以提高初始解的质

量和多样性;设计分阶段混合逃逸能量调控机制,动态平

衡算法的全局探索与局部开发能力;同时利用自适应t-差
分融合变异根据不同个体间的差异进行选择性位置更新,
以增强算法的随机搜索能力,扩大寻优范围,加快收敛速

度并提升跳出局部最优的能力。为验证 MSIGJO的性能,
选取了13个标准基准测试函数和CEC2021测试函数集进

行实验。实验数据表明,MSIGJO在收敛速度、精度和鲁

棒性等关键性能指标上均展现出显著优势,Wilcoxon秩和

检验进一步验证了其优越性。通过CEC2021测试函数与

压力容器设计优化问题的求解,证明了 MSIGJO在单目标

有约束问题和多目标有约束的优化问题上的性能同样表

现良好。未来研究将聚焦于复杂多目标优化问题及实际

工程案例的拓展应用。
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