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摘 要:针对现有算法在滚动轴承表面缺陷检测时检测精度较低,模型参数量大,实时性较差等问题,提出一种改进

YOLOv10n的滚动轴承表面缺陷检测算法。在主干网络上,利用GhostConv、MSMHSA模块和CGLU模块对C2f重

新设计,构建CGMC2f模块,增强模型的特征提取能力,降低模型的参数量;在SPPF中,结合 GroupConv、Residual-
Conv和Fusion-Conv对SPPF-LSKA模块进行设计,构建新的GRFSPPF-LSKA模块,有效解决了信息丢失问题,提
升模型的多尺度特征提取和融合能力;在 Neck网络上,结合BIFPN的多尺度特征加权融合、MAF-YOLO网络和

EMCAD模块,构建EMBS-FPN网络,提高模型的检测精度,降低了模型的参数量,使模型轻量化;借鉴Focal-loss思

想,优化CIoU损失函数为Focaler-CIoU,加快模型的收敛速度。实验结果表明,改进后的YOLOv10n的mAP达到了

92.6%,相较于原模型提高了2.7%,参数量降低了0.45
 

M,计算量降低了0.6
 

GFLOPs,更好的满足滚动轴承表面缺

陷实时性检测要求。
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Abstract:Aiming
 

at
 

the
 

problems
 

of
 

low
 

detection
 

accuracy,
 

large
 

model
 

parameters,
 

and
 

poor
 

real-time
 

performance
 

of
 

existing
 

algorithms
 

in
 

surface
 

defect
 

detection
 

of
 

rolling
 

bearings,
 

an
 

improved
 

YOLOv10n
 

rolling
 

bearing
 

surface
 

defect
 

detection
 

algorithm
 

is
 

proposed.
 

On
 

the
 

backbone
 

network,
 

redesign
 

C2f
 

using
 

GhostConv,
 

MSMHSA
 

module,
 

and
 

CGLU
 

module,
 

construct
 

CGMC2f
 

module
 

to
 

enhance
 

the
 

model's
 

feature
 

extraction
 

capability
 

and
 

reduce
 

the
 

model's
 

parameter
 

count;
 

in
 

SPPF,
 

the
 

SPPF-LSKA
 

module
 

is
 

designed
 

by
 

combining
 

GroupConv,
 

Residual-Conv,
 

and
 

Fusion-Conv
 

modules
 

to
 

construct
 

a
 

new
 

GRFSPPF-LSKA
 

module,
 

effectively
 

solving
 

the
 

problem
 

of
 

information
 

loss
 

and
 

improving
 

the
 

model's
 

multi-scale
 

feature
 

extraction
 

and
 

fusion
 

capabilities;
 

on
 

the
 

Neck
 

network,
 

combining
 

the
 

multi-scale
 

feature
 

weighted
 

fusion
 

of
 

BIFPN,
 

MAF-YOLO
 

network,
 

and
 

EMCAD
 

module,
 

an
 

EMBS-FPN
 

network
 

is
 

constructed
 

to
 

improve
 

the
 

detection
 

accuracy
 

of
 

the
 

model,
 

reduce
 

the
 

number
 

of
 

model
 

parameters,
 

and
 

make
 

the
 

model
 

lightweight;
 

drawing
 

on
 

the
 

Focal-loss
 

approach,
 

optimize
 

the
 

CIoU
 

loss
 

function
 

to
 

Focaler-CIoU
 

to
 

accelerate
 

the
 

convergence
 

speed
 

of
 

the
 

model.
 

The
 

experimental
 

results
 

showed
 

that
 

the
 

improved
 

YOLOv10n
 

achieved
 

a
 

mAP
 

of
 

92.6%,
 

an
 

increase
 

of
 

2.7%
 

compared
 

to
 

the
 

original
 

model,
 

a
 

reduction
 

of
 

0.45
 

M
 

in
 

parameter
 

count,
 

and
 

a
 

decrease
 

of
 

0.6
 

GFLOPs
 

in
 

computational
 

complexity,
 

better
 

meeting
 

the
 

real-time
 

detection
 

requirements
 

of
 

rolling
 

bearing
 

surface
 

defects.
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0 引  言

  滚动轴承作为机械设备中减小摩擦的重要零部件,在
实际生产过程中,由于工艺、材料和环境等多方面的影响,

其表面容易出现划痕、凹槽、擦伤等缺陷,这些缺陷不仅会

削弱滚动轴承的性能和使用寿命,还会对整个机械设备造

成严重损害。随着国家大力推进重点领域设备的高质量发

展,对滚动轴承等基础机械零部件的质量要求变得格外严

·402·



 

王海群
 

等:基于改进YOLOv10n的滚动轴承表面缺陷检测 第23期

格,因此,滚动轴承表面缺陷检测研究具有重要意义。谢凌

峰等[1]将轴承缺陷图像进行灰度化预处理,再利用阈值分

割、颗粒分析和轮廓分析对轴承缺陷进行识别。马忠平[2]

提出了一种基于机器视觉的轴承环形表面缺陷检测方法,
该方法解决了传统检测方法成本高、误检、漏检率高的问

题,但针对缺陷分类还有待完善。与传统检测算法相比,深
度学习技术应用到滚动轴承缺陷检测领域显著提高了检测

性能。目前,深度学习目标检测算法主要分为两阶段目标

检测算法和单阶段目标检测算法,两阶段目标检测算法主

要有Fast
 

R-CNN[3]、Faster
 

R-CNN[4]、R-CNN[5]等;单阶

段目标检测算法主要有 YOLO[6]系列和SSD[7]等。石炜

等[8]利用ZF
 

Net卷积神经网络模型对列车轴承表面缺陷

图像进行检测,并与传统的Canny算法进行比较,实验结

果表明,Faster
 

R-CNN算法大幅提高了检测精度。吴飞

等[9]设计轻量化双瓶颈结构模块 DBM,强化特征提取能

力,降低模型的复杂度;在主干网络中引入 WTConv作为

下采样因子,增强模型对纹理和噪声的抗干扰能力;设计

Alpha-MPDIOU联合损失函数,利用幂变换机制提高边界

框的定位精度;采用辅助头训练策略,加快模型的收敛速

度,提高了模型的检测精度。姚景丽等[10]提出一种改进

YOLOv8的轻量级轴承缺陷检测算法 YOLO-SSW,降低

模型参 数 量 的 同 时,提 高 了 模 型 的 检 测 精 度。通 过 在

YOLOv8主干网络上引入3-D注意力机制SimAM,增强

算法的特征提取能力;在颈部网络上嵌入C2f-SCConv模

块,减少冗余参数,起到轻量化作用;并在颈部网络中添加

小目标检测层,提高模型对小目标的检测能力;最后引入

WIoU损失函数,加快网络的收敛速度。
上述研究成果虽用不同方法提高了轴承表面缺陷的检测

性能,但在实际应用中仍存在挑战,不能很好的满足实时性检

测要求。追求高检测精度时模型的参数量和计算量增多,这
对资源受限设备的平稳运行不利;此外,光照不均、轴承表面反

光会导致缺陷特征不明显,使缺陷成像不清晰;轴承堆叠致使

缺陷被遮挡,缺陷无法被识别,都会提高误检、漏检的概率。为

了更好的满足实时性检测需求,算法仍需不断优化,本文旨在

降低模型参数冗余的同时提高对滚动轴承表面缺陷检测的检

测精度,因此,提出一种改进YOLOv10n算法模型。

1 YOLOv10n目标检测算法

  YOLOv10[11]作为目前应用于目标检测任务中的新算

法,提出一致的双重分配策略,消除YOLO系列的非极大

值抑制 训 练 依 赖。YOLOv10按 模 型 尺 度 不 同 共 分 为

YOLOv10n、YOLOv10s、YOLOv10m、YOLOv10b、YOLOv10l、

YOLOv10x六种模型。为提高滚动轴承表面缺陷的检测

精度,更好的满足实时性检测要求,本研究选择轻量化更好

的YOLOv10n网络模型作为主体网络。YOLOv10n的网

络结构如图1所示。

图1 YOLOv10n网络结构

Fig.1 YOLOv10n
 

network
 

structure
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  YOLOv10n网络主要由主干网络、颈部网络、检测

头三部分组成,主干网络在 YOLOv8的基础上添加了

空 间 与 通 道 解 耦 下 采 样 SCDown(spatial
 

channel
 

downsample)、C2fCIB和部分自注意力PSA(partial
 

self-
attention)三种新的模块。SCDown模块通过点卷积调

整通道维度,再通过深度卷积进行空间下采样,实现空

间通 道 解 耦 下 采 样;C2fCIB 模 块 中 的 CIB(compact
 

inverted
 

bottleneck)结构采用了高效的深度卷积进行空

间特征混合,使用点卷积进行通道特征混合操作;PSA
模块是一种高效的部分自注意力机制,通过逐步细化空

间注意力来提高模型的特征提取能力。颈部网络保留

了FPN和PANet结构,用于汇聚不同尺度的特征,实现

特征融合。检测头部分引入双重标签分配,采用一对一

Head和一对多 Head同时训练,提高模型的学习能力和

检测的准确性。

2 改进YOLOv10n目标检测算法

  为了提升滚动轴承表面缺陷检测精度,使模型更加轻

量化,本文提出一种改进YOLOv10n的目标检测算法。改

进后的YOLOv10n网络结构如图2所示。

图2 改进后的YOLOv10n网络结构

Fig.2 Improved
 

YOLOv10n
 

network
 

structure

  主干网络中,采用多尺度多头自注意力(multi-scale
 

multi-head
 

self-attention,MSMHSA)[12]模块、卷积门控线

性单元(convolutional
 

gated
 

linear
 

unit,CGLU)[13]和Ghost
卷积(GhostConv)对C2f进行改进,构建CGMC2f模块,具
有轻量化效果,增强模型的特征提取能力;在SPPF中引入

大核 分 离 卷 积 注 意 力 机 制 (large
 

separable
 

kernel
 

attention,LSKA)[14],并结合分组卷积(GroupConv)、残差

连接模块(Residual-Conv)和特征融合模块(Fusion-conv),
构建新的GRFSPPF-LSKA模块,减少信息丢失,提升模型

的多尺度特征提取和融合能力;在颈部网络中设计全新的

高效多 分 支 特 征 金 字 塔 网 络(efficient
 

multi-branch
 

&
 

scale
 

FPN,EMBS-FPN),进一步增强模型的多尺度特征提

取和融合能力,提高模型检测精度;借鉴Focal-loss思想,
优化CIoU损失函数为Focaler-CIoU,增强边界框损失的

拟合能力,加快模型的收敛速度。
2.1 CGMC2f模块

  为增强滚动轴承表面缺陷检测模型的特征提取能力,

在主干网络中设计CGMC2f模块,采用卷积门控线性单元

(CGLU)和Ghost卷积对 MSMHSA模块进行二次改进,
并将全新的GhostMSMHSA_CGLU模块引入到C2f模块

中。其中 GhostMSMHSA 模块结构如图3所示,CGLU
模块结构如图4所示。

MSMHSA模块是一种结合了多尺度特征提取和多头

自注意力机制(multi-head
 

self-attention,MHSA)的模块,与
传统多头自注意力(MHSA)机制不同的是,MSMHSA模块

可以使用不同的卷积核(如3×3、5×5)或空洞率提取不同

感受野的特征,并将多头自注意力机制的多个头分配到不

同尺度的特征上,让不同注意力头关注不同尺度的特征,增
强模型对多尺度信息的融合能力,平衡全局和局部信息的

捕捉,但也会导致其在多尺度处理时出现重复的卷积操作,
在特征拼接与融合时进一步增加通道维度,进而增加计算

量和参数量,因此,将 MSMHSA模块中的传统卷积替换为

成GhostConv模块,以减少其计算量和参数量。
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图3 GhostMSMHSA模块

Fig.3 GhostMSMHSA
 

module

图4 CGLU模块

Fig.4 CGLU
 

module

如图3所示,输入特征首先经过一个AvgPool层进行

下采样,然后通过一个C/4×1×1的GhostConv层,此时

的通道数减少为原来的1/4,从而降低了计算复杂度;在

GhostConv层之后接ReLU6激活函数和另一个C/4×1×1
的GhostConv层,这两次GhostConv操作共同作用于减少

后的通道数上,生成更少的基础特征图,并通过线性变换

生成更多的“幽灵”特征图,这样避免了直接使用大量参数

来生成所有特征图,从而大大减少了参数量。

GhostMSMHSA_CGLU 模块 结 合 了 MSMHSA 模

块、CGLU线性单元模块和 Ghost卷积,旨在同时利用自

注意力机制强大的特征建模能力、Ghost卷积的轻量化操

作和门控机制对特征的动态调整能力,降低模型的计算量

和参数量,增强模型在处理复杂数据是的特征表达和提取

能力,其网络结构图如图5(a)所示。

图5 GhostMSMHSA_CGLU和CGMC2f模块结构图

Fig.5 GhostMSMHSA_CGLU
 

and
 

CGMC2f
 

module
 

structure
 

diagram

先输入特征图,通过 GhostMSMHSA模块捕捉不同

尺度 的 特 征 信 息,然 后 由 批 量 归 一 化 BN (Batch
 

Normalization)模块和drop_path模块对捕捉到的特征信

息进行归一化和正则化处理,再通过残差连接,将处理后

的特征信息和原始特征信息相加,这有助于在特征增强的

过程中保持原始信息的完整性,避免在深度网络中出现梯

度消失或信息丢失的问题,使得模型能够更好地学习到滚

动轴承表面缺陷的特征,由CGLU模块动态调整信息位

置,增强模型对重要特征的表达,并将特征信息进一步正

则化,最后将两次正则化处理的特征信息一起输出到下一

环节。
采用CGMC2f模块,通过C2f和 GhostMSMHSA的

结合,模块能够在轻量化的基础上,有效的融合不同尺度

的特征信息,使模型能更好的适应滚动轴承表面不同大小

和形状的缺陷,提高检测的准确性;再由CGLU模块引入

门控机制可以自适应的调整特征的位置,根据不同的输入

特征动态的选择重要的信息进行保留和增强,这使得模块

能更好地处理复杂的特征模式,提高模型的特征提取能

力,CGMC2f模块的网络结构图如图5(b)所示。

CGMC2f模块的具体计算公式:

R =Convn+1(SiLU(Convn(Yn-1))) (1)

Fc2f =Convfinal([X1;R]) (2)

Fsi =Conv(Fc2f,Ksi) (3)

Oh =softmax
QhKT

h

dk  ×Linearv([Fs1,Fs2,…,Fsm])

(4)

FMSMHSA =Linearout([O1,O2,…,OH]) (5)

Foutput =ConvA(FMSMHSA)☉σ(ConvB(FMSMHSA)) (6)
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Y =Fshallow =GhostConv(X) (7)

Ffusion =Conv([Y]) (8)

Foutput = [Ffusion[:
C
2
]+Fshallow;Ffusion[

C
2
:]] (9)

其中,SiLU 是激活函数,Yn-1是第n-1次卷积操作,

R 是残差特征,X1是输入特征张量,Ksi 是不同大小的卷积

核,Fsi 是不同尺度的特征图,Qh、Kh 分别是查询(Q)、键
(K)的的第h 个头,dk 是键的维度,H 是头的数量,σ 是

Sigmoid函数,☉表示逐元素相乘。

2.2 GRFSPPF_LSKA模块

  为增强滚动轴承表面缺陷检测模型对多尺度特征的

提取和融合能力,在空间金字塔池化模块(SPPF)上引入

LSKA注意力机制,并对SPPF_LSKA 模块进行二次改

进,改进后的 GRFSPPF_LSKA 模块结构图如图6(a)
所示。

在SPPF模块进行池化操作之前,添加一个1×1卷积

层,对输入的特征图进行降维,减少后续池化和拼接操作

的计 算 量;在 拼 接 同 尺 度 的 池 化 结 果 后,使 用 了

GroupConv将输入通道和输出通道分别分成两组进行卷

积,降低模型的复杂度和计算量。

I-LSKA网络结构图如图6(b)所示,使用一个3×3卷

积层对输入特征图进行初步的特征提取和通道数调整,降
低模型的参数量;引入轻量级注意力机制,即使用全局平

均池化层(avg-Pool)将特征图的空间维度压缩为1×1,得
到每个通道的全局信息。然后通过全连接层对全局信息

进行非线性变换。该全连接层包含两个1×1卷积层,中
间使用ReLU激活函数增加非线性,最后使用Sigmoid函

数将输出值映射到[0,1]区间,得到每个通道的注意力权

重,增强模型的特征提取能力。

图6 GRFSPPF_LSKA模块和I-LSKA模块结构图

Fig.6 Structure
 

diagram
 

of
 

GRFSPPF_LSKA
 

module
 

and
 

I-LSKA
 

module

在原SPPF-LSKA模块中,经过多次最大池化和分组

卷积后,特征图已包含丰富的多尺度信息,其维度和信息

量会发生较大变化,导致反向传播过程中梯度不稳定,可
能在深层网络中面临梯度消失或爆炸的问题,且对不同尺

度的特征图,缺乏有效的融合机制,导致模型对不同尺度

轴承缺陷目标的检测能力受限。引入 Residual-Conv模

块,其结构图如图7所示,通过多层卷积和跳跃连接,可以

进一步增强滚动轴承表面缺陷图像特征的表达能力,同时

也可以有效解决模型训练过程中出现的梯度消失或梯度

爆炸问题。

图7 Residual-Conv结构

Fig.7 Residual-Conv
 

structure
 

引入Fusion-Conv模块,其结构图如图8所示,通过将

来自不同路径或不同尺度的特征图进行高效融合,提高了

模型对不同尺度滚动轴承缺陷目标的检测能力,进一步增

强了多尺度特征的表达和融合能力。

图8 Fusion-Conv结构

Fig.8 Fusion-Conv
 

structure
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GRFSPPF_LSKA模块具体公式:

Pi =MaxPool(X,ki,si) (10)

Xsppf =Concat(X,P1,P2,…,Pn) (11)

Xsppf_out =Conv(Xsppf,Wsppf)+bsppf (12)

Xlska_out =Xsppf_out☉A (13)

R =Conv1×1(X,Wr)+br (14)

Xconcat_final =Concat(Xlska_out,R) (15)

Y =Conv(Xconcat_final,Wfusion)+bfusion (16)
其中,Pi 是池化后的特征图,ki 是池化核大小,si 是步

长,Concat是通道维度上的拼接操作,Wsppf 是一个卷积

层,bsppf 是偏置项,A 是注意力图,☉ 是逐元素相乘操作,

Wr 是卷积核,br 是偏置项,R 是残差分支的特征图,Wfusion

是融合卷积层,bfusion 是偏置项。

2.3 EMBS-FPN网络

  输入滚动轴承表面缺陷图像,经过Backbone网络输

出C2、C3、C4、C5多个不同尺度的特征图,并对每个特征

图进行多尺度卷积(MSCB)操作,生成更丰富的特征图,然
后由自上而下的路径,将最高层的特征图(D5),通过3×3

卷积操作进一步平滑特征图,生成新的特征图P5;将D5特

征图通过高效上采样模块(EUCB)上采样到与D4特征图

相同的分辨率,再将上采样后的D5特征图与D4特征图进

行逐元素相加,并对相加后的特征图进行卷积操作,生成

新的特征图P4;将P4上采样到与D3特征图相同的分辨

率,再将上采样后的P4特征图与D3特征图进行逐元素相

加,并进行卷积操作,生成新的特征图P3;将P3上采样到

与D2特征图相同的分辨率,再将上采样后的P3特征图与

D2特征图进行逐元素相加,并进行卷积操作,生成新的特

征图P2。其中P2、P3、P4、P5每个尺度通过多分支架构分

成4个并行分支,分支一进行普通卷积操作,增强特征的

抽象能力;分支二进行深度可分离卷积操作,减少计算量;
分支三进行空洞卷积操作,扩大感受野,分支四,进行池化

操 作,提 取 更 宏 观 的 特 征。而 在 每 个 分 支 中,引 入

RepHELAN[15]模块,通过动态大小卷积核实现自适应感

受野,动态调整特征图的分辨率。最后将每个尺度的多个

分支特征图通过加权融合的方式进行聚合,生成最终的多

尺度特征图像。EMBS-FPN网络结构如图9所示。

图9 EMBS-FPN网络结构

Fig.9 EMBS-FPN
 

network
 

structure

  EUCB[16]模块使用高效上卷积模块来逐步上采样当

前阶段的特征图,以匹配下一个连接层中特征图的维度和

分辨率。EUCB模块结构图如图10(a)所示。

EUCB模块具体公式:

EUCB(x)=C1×1 ReLU BN(DWC(Up(x)))    
(17)

先使用比例因子为2的上采样 Up(·)来放大特征图,
再通过3×3的深度卷积 DWC(·),然 后 是 BN(·)和

ReLU(·)激活函数增强放大特征图,最后使用1×1卷积

C1×1(·)来减少通道数以匹配下一个阶段。

MSCB[16]模块是引入的高效多尺度卷积模块,用以增

强级联扩展路径生成的特征,MSCB 模 块 的 结 构 图 如

图10(b)所示。

MSCB模块的具体公式:

MSCB(x)=BN(PWC2(CS(MSDC(R6(BN(PWC1(x)))))))
(18)

MSCB在多尺度上进行深度卷积,并使用通道随机排

序来跨组对通道进行随机排序。具体来讲,先使用逐点

(1×1)卷积层PWC1(·);然后是批量归一化层BN(·)和

ReLU激活层R6(·)扩展通道数;再使用多尺度深度卷积

MSDC(·)来捕获多尺度和多分辨率背景;由于深度卷积忽

略了通道之间的关系,因此使用通道随机操作来合并通道

之间的关系,接下来,使用另一个逐点卷积PWC2(·)后跟

一个批量化归一层BN来转换回原始的通道数。其中,多
尺度深度卷积模块(MSDC)的结构图如图10(c)所示。

MSDC[16]模块的具体公式为:

MSDC(x)=∑ks∈KSDWCBks(x) (19)

DWCBks(x)=R6(BN(DWCks(x))) (20)

x =x+DWCBks(x) (21)

DWCks(·)是内核大小为ks 的深度卷积;BN(·)和

R6(·)分别是批量归一化和ReLU6激活函数。此外,使用

递归更新的输入x,与之前的DWCBks(·)残差连接,以实

现更好的正则化。

RepHELAN模块作为EMBS-FPN网络中的全局异
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图10 EMBS-FPN各模块结构

Fig.10 Structure
 

of
 

EMBS-FPN
 

modules

构核选择机制,利用动态大小的卷积核来实现自适应感受

野,更有效的提取不同尺度的特征。RepHELAN模块结

构图如图11左侧所示。

图11 RepHELAN和倒置瓶颈结构

Fig.11 RepHELAN
 

and
 

inverted
 

bottleneck
 

structure
 

输入信息会经过1×1卷积和Split操作,分成两个分

支。一个分支保留原始信息,直接执行合并操作;另一个

分支,通过N 个倒置瓶颈单元进行处理,由于高效特征聚

合的机制,通过每个Inverted
 

Bottleneck的分支和输出被

保留并最终连接在一起。倒置瓶颈的具体结构如图11右

侧结构所示,其中输入依次通过1×1卷积扩大通道数,然
后是k×k

 

RepHDWConv操作,最后是1×1点卷积以缩

小通道数并补偿DWConv可能造成的信息丢失。

2.4 Focaler-CIoU边界损失函数

  为了加快模型的收敛速度,提高边界框的定位精度,
解决训练样本不平衡问题,采用Focaler-CIoU损失函数作

为本文的损失函数,其通过调整正负样本的权重,提高了

模型识别稀有目标类别的能力,使模型更加关注难以分类

的正样本,并减少相对容易分类的负样本的权重。使用线

性间隔映射方法重构IoU,这有助于提高边缘回归,其公式

如下:

IoUfocaler =

0, IoU <d
IoU-d
u-d

, d≪IoU ≪u

1, IoU >u

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

(22)

式中:IoUFocaler 是重构的Focaler-IoU;IoU 是传统的交并

比;[d,u]是[0,1],通过调整d 和u 的值,可以使IoUFocale

更加关注滚动轴承表面缺陷检测的回归样本。其损失定

义如下:

LFocaler-IoU =1-IoUfocaler (23)
将Focaler-IoU损失应用于CIoU边界框回归损失函

数的具体公式如下:

LFocaler-CIoU =LCIoU +IoU-IoUFocaler (24)

3 实验结果与分析

3.1 实验环境及参数设置

  使用Ubuntu
 

20.04系统作为实验的操作系统。深度学

习框架为PyTorch
 

2.1.0;Python版本为3.10;CUDA版本为

12.1;GPU采用NVIDIA
 

GeForce
 

R-TX4090,显存为24
 

GB;

CPU为15vCPU
 

Intel(R)Xe-on(R)Platinum
 

8474c。输入的图

片尺寸为640×640,epochs设置为200,batch-size设置为32,

IOU阈值设置为0.7,初始学习率设为0.01。

3.2 数据集介绍

  数据集在目标检测和识别中起着至关重要的作用,它
在很大程度上影响着算法的检测效果。本文使用从工业

现场采集的真实滚动轴承表面缺陷图像作为数据集,共

2
 

000张图像,根据其表面特征将缺陷分为擦伤、划痕和凹

槽3种常见的类型,然后通过调整图像亮度和增加高斯白

噪声对数据集进行扩充,扩充后的数据集共5
 

824张图像,
并按照7∶1的比例分成5

 

106张训练集和718张验证集,其
中,训练集中擦伤缺陷共1

 

866张图像,划痕缺陷共1
 

750
张图像,凹槽缺陷共1

 

490张图像。

3.3 评价指标

  本实验采用召回率(recall,R)、准确率(precision,P)、
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均值 平 均 精 度(mean
 

average
 

precision,mAP)、参 数 量

(parameters,Params)和 计 算 量 (giga
 

floating
 

point
 

operations
 

per
 

second,GFLOPs)作为算法检测精度的评价

指标,评价指标公式如式(25)~(27)所示。

P =
TP

TP +FP
(25)

R =
TP

TP +FN
(26)

mAP =
∑

n

i=1
AP(i)

n
(27)

其中,准确率P 表示模型在实际检测任务中,正确检测

到的样本数量占总正确样本数的比例;召回率R 表示正确检

测到的正样本数量占总正样本数的比例;均值平均精度mAP
表示所有类别的平均检测精度的平均值;TP 表示正确预测的

缺陷图像数量;FP 表示将非缺陷图像错误预测成缺陷图像的

数量;FN 表示将缺陷图像预测成非缺陷图像的数量。

3.4 消融实验

  为了验证各个改进点的有效性,本研究以YOLOv10n
模型为基线,依次引入改进后的模块进行消融实验。实验

结果如表1所示,其中“√”表示采用对应的改进模块。

表1 消融实验

Table
 

1 Ablation
 

experiment

实验 CGMC2f
GRFSPPF-
LSKA

EMBSFPN
Focaler-
CIoU

P/

%
R/

%
mAP@0.5/

%
Params/

M
GFLOPs/

G
基线 86.0 83.3 89.9 2.26 6.5
1 √ 87.2 83.9 90.6 2.21 6.4
2 √ 88.8 84.3 90.6 2.30 6.6
3 √ 88.0 85.1 91.4 1.85 5.9
4 √ 87.0 82.6 90.0 2.26 6.5
5 √ √ 88.0 83.7 91.0 2.24 6.4
6 √ √ √ 89.2 85.7 91.8 1.81 5.9
7 √ √ √ √ 90.0 87.7 92.6 1.81 5.9

  由表1的前4组实验结果可知,单独引入对应的改进

模 块 较 基 线 相 比 均 有 不 同 程 度 的 提 升。与 基 线

YOLOv10n相 比,将 二 次 改 进 后 的 GhostMSMHSA_

CGLU模块引 入 到 C2f模 块 后,模 型 的 均 值 平 均 精 度

(mAP)提 升 了 0.7%,模 型 的 参 数 量 减 少 了 0.05M,

GFLOPs降低了0.1G;在SPPF模块中引入LSKA注意

力机 制,并 对 SPPF_LSKA 模 块 进 行 二 次 改 进,即

GRFSPPF_LSKA模块,虽然模型的参数量增加了0.04M,但
模型的mAP提升了0.7%;采用EMBS-FPN网络,模型的

mAP提升了1.5%,模型的参数量降低0.41M,GFLOPs
降低了0.6G;采用Focaler-CIoU边界损失函数,在不增

加模型计算成本的基础上,mAP提升了0.1%;其中,单
独引入EMBSFPN网络相较与其他单独模块提升最优。
通过后3组实验依次叠加改进改进策略来验证4种改进

模块 组 合 后 对 算 法 检 测 性 能 的 影 响,实 验 5 在 原

YOLOv10n模型中同时引入CGMC2f模块和GRFSPPF-
LSKA模块,模型的 mAP提升了1.1%,参数量减少了

0.02M,GFLOPs降低了0.1G;实验6在实验5的基础

上引入EMBSFPN网络,无论相较于实验5还是单独引

入EMBSFPN网络,模型的 mAP都得到了提升,参数量

和GFLOPs均减少,较基线的mAP提高了1.9%,参数量

减少了0.45M,GFLOPs降低了0.6G;当综合以上4种

改进方案后,模型的 mAP提高了2.7%,参数量减少了

0.45M,GFLOPs降低了0.6G,有效降低了模型的参数

量和计算成本,使模型更加轻量化,同时提高了模型的检

测精度,综上所述,实验7的综合检测性能最佳,验证各

个改进方案的有效性。

3.5 SPPF模块对比实验

  为了探究在SPPF中引入不同注意力机制对模型检测

性能的影响,本文在SPPF中分别引入CAA[17]、ELA[18]、
EMA[19](exponential

 

moving
 

aver-age)、MLCA(multi-
level

 

channel
 

attention)、MPCA (multipath
 

coordinate
 

attention)、SE[20](squeeze-and-excitation)、LSKA 以及使

用的二次改进后的LSKA注意力机制进行对比实验,实验

结果如表2所示。
其中,引入CAA注意力机制相较于原SPPF模块,模

型的均值平均精度(mAP)降低了1.9%,参数量增加了

0.54M,GFLOPs提高了0.5G;引入ELA注意力机制,模
型的mAP提高了0.6%,参数量增加了1.84M,GFLOPs
提高了0.2G,相较于原SPPF模块,虽然检测精度提升,但
模型的参数量大幅增加,计算量GFLOPs也有所增大,因
此不适用于资源受限的边缘设备部署;引入EMA注意力

机制,mAP提高了0.1%,参数量增加了0.04M,GFLOPs
提高 了0.3G;引 入 MLCA 注 意 力 机 制,mAP降 低 了

0.5%,计算量和参数量都没有变化;引入 MPCA注意力机

制,mAP提高了0.4%,参数量增加了1.31M,GFLOPs提
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  表2 SPPF模块对比实验

Table
 

2 SPPF
 

module
 

comparison
 

experiment
模块 P/% R/% mAP@0.5/% Params/M GFLOPs/G
SPPF 86.0 83.3 89.9 2.26 6.5
+CAA 87.9 80.8 88.0 2.80 7.0
+ELA 87.6 84.6 90.5 4.10 6.7
+EMA 88.6 82.5 90.0 2.30 6.8
+MLCA 87.5 82.1 89.4 2.26 6.5
+MPCA 88.6 82.4 90.3 3.57 6.6
+SE 88.2 80.9 89.0 2.30 6.5
+LSKA 88.3 82.4 90.5 2.53 6.7

GRFSPPF_LSKA 88.8 84.3 90.6 2.30 6.6

高了0.1G,虽然检测精度有所提升,但参数量的大幅增

加,使模型的适用环境受到限制,如:不适合部署在资源受

限的边缘设备上;引入SE注意力机制,模型的 mAP降低

了0.9%,参数量增大了0.04M,GFLOPs没有变化;引入

LSKA注意力机制,模型的 mAP提高了0.6%,参数量增

加了0.27M,GFLOPs提升了0.2G,而采用GRFSPPF_

LSKA模块,模型的 mAP提高了0.7%,参数量仅增加

0.04M,GFLOPs也仅提高了0.1G,相较于其他几个模

块,该模块在提高模型检测精度的同时,参数量和计算量

增加的最少,因此,采用二次改进后的 GRFSPPF_LSKA
模块能更有效的提升模型的多尺度特征提取和融合能力,
从而提高模型的检测精度。

3.6 FPN网络对比实验

  为了探究不同的FPN网络对模型检测性能的影响,
本文 分 别 引 入 CGRFPN(context-guided

 

spatial
 

feature
 

reconstruction
 

FPN)、FreqFPN、GFPN[21]、MAFPN 以及

使用的EMBSFPN网络作为YOLOv10n的颈部网络进行

对比实验,实验结果如表3所示。

表3 FPN网络对比试验

Table
 

3 FPN
 

network
 

comparison
 

test

FPN网络 P/% R/% mAP@0.5/% Params/M GFLOPs/G
YOLOv10n 86.0 83.3 89.9 2.26 6.5
CGRFPN 87.5 82.4 89.2 2.82 6.7
GFPN 89.9 83.3 91.2 3.18 8.2
MAFPN 88.6 84.4 90.7 3.05 7.9
FreqFPN 88.3 84.0 90.3 2.12 6.2
EMBSFPN 88.0 85.1 91.4 1.85 5.9

  其中,引入CGRFPN网络作为YOLOv10n的颈部网

络,相 较 于 原 模 型 的 颈 部 网 络,模 型 的 均 值 平 均 精 度

(mAP)降低了0.7%,参数量增加了0.56M,GFLOPs提

升了0.2G;引入GFPN网络,模型的mAP提高了1.3%,
参数 量 增 加 了 0.92M,GFLOPs提 高 了 1.7G,引 入

MAFPN网络,模型的 mAP提高了0.8%,参数量增加了

0.79M,GFLOPs提高了1.4G,虽然引入 GFPN网络和

MAFPN网络,都使模型的检测精度有所提高,但其参数

量和计算量也大幅增加,不符合模型的实时性检测需求;
引入FreqFPN网络,模型的mAP提高了0.4%,参数量降

低了0.14M,GFLOPs降低了0.3G;而采用EMBSFPN
网络,mAP提高了1.5%,参数量降低了0.41M,GFLOPs
降低了0.6G,相较于其他几个FPN网络,该FPN网络不

仅提高了模型的检测精度,而且降低模型的参数量和计算

量,使模型更加轻量化,因此,采用EMBSFPN网络作为原

模型的颈部网络,可以在提高模型检测精度的同时,更好

的满足模型实时性检测要求。

3.7 主流算法对比实验

  为了进一步验证本文改进后的算法在滚动轴承表面缺

陷检测中的有效性和先进性,将改进后的算法同其他几种

主流 算 法 进 行 对 比 实 验,包 括 SSD、Faster
 

R-CNN、

YOLOv5n、YOLOv5s、YOLOv7-tiny、YOLOv8n、YOLOv10n、
文献[9]以及文献[10]。实验结果如表4所示。

改进后的算法,与 SSD 算法相比较,mAP提 高 了

1.8%,参数量降低了22.87M,计算量(GFLOPs)降低了

337.87G;与Faster
 

R-CNN算法相比,mAP提高了5%,
参数量 降 低 了 39.32M,GFLOPs降 低 了 200.8G;与

YOLOv5n算法相比,mAP提高了3.7%,参数量增加了
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  表4 主流算法对比实验

Table
 

4 Comparison
 

experiments
 

of
 

mainstream
 

algorithms

模型
R/

%
mAP@0.5/

%
Params/

M
GFLOPs/

G
SSD 94.4 90.8 24.68 343.77

Faster
 

R-CNN 90.7 87.6 41.13 206.7
YOLOv5n 82.8 88.9 1.76 4.1
YOLOv5s 82.2 88.9 7.01 15.8
YOLOv7-tiny 81.1 89.5 6.02 13.2
YOLOv8n 82.9 90.0 3.01 8.1
YOLOv10n 83.3 89.9 2.26 6.5
文献[9] 83.7 89.7 2.60 7.4
文献[10] 87.5 91.5 2.70 11.8
Ours 86.0 92.6 1.81 5.9

0.05M,GFLOPs提高了1.8G;与 YOLOv5s算法相比,

mAP提高了3.7%,参数量降低了5.2M,GFLOPs降低

了9.9G;与YOLOv7-tiny算法相比,mAP提高了3.1%,
参数量降低了4.21M,GFLOPs降低了7.3G;与YOLOv8n算

法相比,mAP提高了2.6%,参数量降低了1.2M,GFLOPs
降低了2.2G;与YOLOv10n算法相比,mAP提高了2.7%,
参数量降低了0.45M,GFLOPs降低了0.6G;具备检测精

度高和模型轻量化的特点,与文献[9]中提出的改进算法相

比,mAP提高了2.9%,参数量降低了0.79M,GFLOPs降

低了1.5G;与文献[10]中提出的改进算法相比,mAP提高

了1.1%,参数量降低了0.89M,GFLOPs降低了5.9G。通

过对这些主流算法的对比试验,验证了本文改进后算法在

滚动轴承表面缺陷检测中的先进性和有效性。

3.8 可视化分析

  为了更清晰的展示改进后算法的检测效果,将其与原

YOLOv10n算法在现有数据集上进行检测,使用不同颜色

的锚框区分不同缺陷的类别,可视化结果如图12所示。

图12 改进前后算法检测效果对比

Fig.12 Comparison
 

of
 

algorithm
 

detection
 

performance
 

before
 

and
 

after
 

improvement

  通 过 对 比 改 进 前 后 的 检 测 效 果 图 可 以 看 出,原

YOLOv10n算法在检测凹槽、擦伤、划痕缺陷时出现误检、
漏检和检测精度偏低的问题;而改进后的算法在对各个缺

陷进行检测时,提高了模型的检测精度,减少了误检和漏

检情况的发生。对比结果表明,改进后的算法在滚动轴承

表明缺陷检测中具有更好的检测效果。

4 结  论

  针对在滚动轴承表面缺陷检测时出现的误检、漏检,
模型参数量和计算量大的问题,本文提出了一种改进

YOLOv10n的滚动轴承表面缺陷检测算法。在主干网络

中,构建CGMC2f模块,使模型更加轻量化的同时,增强模

型的特征提取能力;在SPPF模块中引入LSKA注意力机

制,并 对 SPPF-LSKA 模 块 进 行 二 次 改 进,构 建 新 的

GRFSPPF-LSKA模块,增大感受野,有效增强了模型对多

尺度特征的提取和融合能力,减少信息丢失问题;在颈部

网络中,设计了EMBSFPN网络,进一步增强模型对不同

尺度特征的提取和融合能力,并对多尺度特征进行自适应

加权融合,提高了模型的检测精度;引入Focaler-CIoU边

界损失函数,提高边界框的定位精度,加快模型的收敛

速度。
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