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Surface defect detection of rolling bearings based on improved YOLOv10n

Wang Haiqun Chen Xiaoyu Yu Haifeng
(School of Electrical Engineering, North China University of Science and Technology, Tangshan 063200, China)

Abstract: Aiming at the problems of low detection accuracy, large model parameters, and poor real-time performance
of existing algorithms in surface defect detection of rolling bearings, an improved YOLOv10n rolling bearing surface
defect detection algorithm is proposed. On the backbone network, redesign C2f using GhostConv, MSMHSA module.
and CGLU module, construct CGMC2{ module to enhance the model s feature extraction capability and reduce the
model’s parameter count; in SPPF, the SPPF-LSKA module is designed by combining GroupConv, Residual-Conv,
and Fusion-Conv modules to construct a new GRFSPPF-LSKA module, effectively solving the problem of information
loss and improving the model’s multi-scale feature extraction and fusion capabilities; on the Neck network, combining
the multi-scale feature weighted fusion of BIFPN, MAF-YOLO network, and EMCAD module, an EMBS-FPN
network is constructed to improve the detection accuracy of the model, reduce the number of model parameters, and
make the model lightweight; drawing on the Focal-loss approach, optimize the CloU loss function to Focaler-CloU to
accelerate the convergence speed of the model. The experimental results showed that the improved YOLOv10n
achieved a mAP of 92. 6% , an increase of 2. 7% compared to the original model, a reduction of 0.45 M in parameter
count, and a decrease of 0. 6 GFLOPs in computational complexity, better meeting the real-time detection requirements
of rolling bearing surface defects.
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SRAS SRR R A, Hol o A AR AR A E L RS T
FERHE G R B AR S0 1Y B 7 o A A5 2 B 0 O T M L 43 36
M IEREAS , I A X 25 5 A3 R M REA A, T4k
P ) R B 5 vk TR A To U 3 A B 42 = i 2k w1, LA 5X
mr

J 0, IoU < d
IOU/"‘“l” _ IOU*d , d << IOU << u (22)
u—d
‘ 1, IoU > u
K ToU™™ & 5 # B Focaler-1oU; loU & 1% 4t BY 22 Jf:

Fosld su 15200, 10,8 33 8% o Rl w (4, 0T DLE ToU™ "
BN O 1 VR 2l il 7K 2 T R B A I ) TR A AR AR, A R
SANF

L roator—ror = 1 — ToU"™ (23)

4 Focaler-ToU #t 2 i F F CloU 1 A A4E (8] 5 451 2% R
By BARA KT .

L towtor—crov = Lery + ToU — ToU™

3 XBERSHN

3.1 LBRBERSHIEE

ffiF§ Ubuntu 20. 04 REGAE R TR MIRIER G, WE
SJHEZE N PyTorch 2. 1. 03 Python BAS Jy 3. 10; CUDA RiAS Jy
12. 1;GPU & ] NVIDIA GeForce R-TX4090, 17N 24 GB;
CPU # 15vCPU Intel(R) Xe-on(R) Platinum 8474c, i A&
JRSER 640 X 640, epochs % & i 200, batch-size 1% & Jy 32,
10U [{EiE R 0. 7, ¥R Hi% R 0. 01,
3.2 HIEENE

AR BRI AR s h iR g EXERENEM, B
TEAR KRR b5 i 25 B8 1k (0 R I A0SR . AR SO A Tl
IR 4R 1 L S R B Tl i 2% T B B TSR S B 4 L At
2 000 Tk RIG, AR 45 JH 2 T RR AF 45 Sk B 43k 382 40 . Jal 9 A [
R 3 bR UL, SR ) 3 2 R A AR R R v T e
WP X EAE SR HEAT YR VS BB AR AL 5 824 TRIEIA,
FHH I 7 LA LB 4 B 5 106 SR UINZREAE RN 718 sk uE4E L H
oL AR R e 4 1 866 SRR, RITE BB 1 750
kG MR B G 3L 1 490 TRES .,
3.3 iFMiER

A SZ G 2R A 913K (recall, R) L 2 (precision, P) |

24)
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Y (H F # ¥5 B (mean average precision, mAP) ., & ¥ &
(parameters, Params) Fil i1 & & (giga floating point
operations per second, GFLOPs) F 5 1 46 0K B 1924y
AR PPN R AR A L (25) ~ 2D PR .

Hor iR R PR AR AE SRR AR AT 55 L TR A AG I
FURREAKC G L SRR AR He 5 49 81 % R SRR IE#f AR
DNEN B IEARAS KO o S IEARAS SO LU0 B BIRS E mAP
PRI ) (P S RGIDRS E (9 -F- 22 (6L TP 37 TE A T 1)

p__Tr (25) BB GBI s FP 327 | Sl L5 i T ol e o P45 1)
Tr+Fp Bde s FN 3R 4 e A T s sl s R 0 i
R T (26) 3.4 HBLZIE
Tr+Fy S T B TE 4% A G A 9 K AT L YOLOvI0n
EAPm B Ry FE e AR WG I A Bt 5 I R AT T Al S a8 . S0 46
mAP — L 2D SRR 1 PR Hodhe 7 RIR SR X R Y AR
n
1 HBIE
Table 1 Ablation experiment
S CGMCE GRFSPPF- EMBSEPN Focaler- P/ R/ mAP@0.5/ Params/ GFLOPs/
LSKA % % % M G
FHe 2k 86. 0 83.3 89.9 2.26 6.5
1 J 87.2  83.9 90. 6 2.21 6.4
2 J 88.8  84.3 90. 6 2. 30 6.6
3 J 88.0  85.1 91.4 1. 85 5.9
4 87.0  82.6 90. 0 2.26 6.5
5 N/ NG 88.0 83.7 91.0 2.24 6.4
6 J NG N/ 89. 2 85.7 91.8 1.81 5.9
7 J J J 9.0  87.7 92.6 1.81 5.9

HER 1 (HT 4 2050 56 45 S AT 0, Bl 5] A KT B A B i
B ELA ML AEARBEENRT. 5L
YOLOv10n #H Ho, # = ¥ e #F J5§ 1% GhostMSMHSA _
CGLU e 5| A 3| C2f £ HJ5, 8B 0y 3 {5 F 35 8% B
(mAP) 7T 0.7%, BAE W S B 2> T 0.05 M,
GFLOPs &% T 0.1 G; 7E SPPF #Bt F5| A LSKA 1 &
T ML, IF X SPPF _ LSKA #& B gk 47 — ¥k ot #k, B
GRFSPPF_LSKA 8, BARBERI S E RGN T 0. 04 ML {H
BERA mAP 42T T 0. 796 ;R ] EMBS-FPN [ 4% , B (1)
mAP 27+ T 1. 5% B8 1) S B BEAL 0. 41 M, GFLOPs
FE% T 0.6 G; K Focaler-CloU i1 5t 45t 2% R %, 76 A 1
T 3 A R SR L mAP R T T 0. 1% Hirp, B
M5 A EMBSFPN R £ #H 35 5 H Al 5 ph 45 e 58 7 /R 4R .
AT S 3 2H 2K YR B 0 Bl i 0 SR I SR IR IE 4 Fh B
B 2 & J5 % Bk R DU M BE A 52 I, SE B 5 AE TR
YOLOv10n ## r [a] i 5] A CGMC2f #t Fil GRFSPPF-
LSKA B, A mAP AT 1. 1%. SHEW D T
0.02 M,GFLOPs FEIE T 0.1 G; 5286 6 765280 5 By S hl
51 A EMBSFPN M 4%, T it AB 8 T 5 5 5 i /& g h 5]
A EMBSFPN M 4%, 5 5 () mAP #4528 T # 7, 25 &
A GFLOPs ¥/ BRI mAP #2585 T 1. 9% . 34U
WA T 0.45 M,GFLOPs F#(R T 0.6 G 445G LL L 4 Fp
W FEE B mAPRET 2.7T%. 3 HE W T

0.45 M,GFLOPs F&I% T 0. 6 G, 7B R R AR T 4 5 1Y 2 3¢
A A L AT AN A A R R TR R Y R
TRE BE 25 L ATk, T80 7 B 25 A R Ok i e 1 BRI 4%
AN T A R
3.5 SPPF #&3Rd bk L6

AT HEIEAE SPPF g | A S[R3 28 7 ALl el A5 26 A% )
PERE M52 i, AR SCHE SPPF A1 43 5151 A CAAYY (ELAYY |
EMA™’ (exponential moving aver-age)., MLCA ( multi-
level channel attention), MPCA ( multipath coordinate
attention) , SE™" (squeeze-and-excitation) . LSKA DA K {ii
B RS 5 19 LSKA 722 S HLH #E 47 X L S0 86, S0 86
ZERANZ 2 FiR,

Hop, 5l A CAA 2 ML A3 F i SPPF # ke, #5
T 29 (E 398 BE (mAP) AR T 1. 9%, S8 T
0.54 M,GFLOPs #2555 T 0.5 G; 5| A ELA [E2 JJ#LH 4
B mAP 2T 0.6% . S8 &N T 1. 84 M,GFLOPs
T 0.2 G T R SPPE BEHe , AR AG IKS BE 42 7). (5
B 2 B0 KR BN, 7H R B GFLOPs WA Frig K,
WAE T REZR NG EHE: 5 EMA FE T
ML, mAP 4R T 0. 1%, B EEB M T 0. 04 M,GFLOPs
BET 0.3 G5l A MLCA & S HLH. mAP % T
0. 5% T BEMSHEALA ZL ;5] A MPCA HE 0L
il mAP 28 T 0. 4%, ZEEWIN T 1. 31 M,GFLOPs $2
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Table 2 SPPF module comparison experiment

S P/% R/ mAP@0. 5/ % Params/M GFLOPs/G
SPPF 86.0 83.3 89.9 2.26 6.5
+CAA 87.9 80. 8 88.0 2. 80 7.0
+ELA 87.6 84.6 90. 5 4. 10 6.7
+EMA 88.6 82.5 90. 0 2. 30 6.8
+MLCA 87.5 82.1 89.4 2.26 6.5
+MPCA 88.6 82.4 90. 3 3. 57 6.6
+SE 88.2 80.9 89.0 2. 30 6.5
+LSKA 88.3 82.4 90. 5 2.93 6.7
GRFSPPF_LSKA 88.8 84.3 90. 6 2.30 6.6

BT 0.1 G, BRI A 4R T, (5 S 8 i R iR R
T A AR TR (0 5 P PR 8 A7 B0 PR L A0 AN A AR A R A2
MBI 2% s3I SE 3 & LG BB A mAP R
T 0.9% . ZHEW KT 0.04 M,GFLOPs %A 284k 51 A
LSKA FEZE I HLH L B mAP 428 T 0. 6%, S 5t
fin T 0.27 M,GFLOPs 27+ T 0.2 G, i 2% J§ GRFSPPF _
LSKA fe, # B 1) mAP #2878 T 0. 7%, S8 &I
0.04 M,GFLOPs 8225 T 0.1 G, M1 % F HAb JLA
B, A YA $ v A ARG KGR B, S8R AT

B R IRt SR Kk JR (9 GRESPPF_LSKA
B P B S A A% Y S AR B 1Y 22 ROBE R AE B2 IR AR5 B T
AT 2 v A TRy 0
3.6 FPN W43 LL L5

T RFEA TR B FPN R £ X A5 5D A I 14 BE /Y 52 )
AR 341 5 51 A CGREPN (context-guided spatial feature
reconstruction FPN) | FreqFPN., GFPN""' | MAFPN D) &
i ) EMBSFPN M 454E 7 YOLOv10n f1 45035 W 45 3k 17
XT LG SE g, g A R IR 3 TR

* 3 FPN W&3tLLikig

Table 3 FPN network comparison test

FPN M 4% P/% R/% mAP@0. 5/ % Params/M GFLOPs/G
YOLOv10n 86. 0 83.3 89.9 2.26 6.5
CGRFPN 87.5 82.4 89. 2 2.82 6.7
GFPN 89.9 83.3 91.2 3.18 8.2
MAFPN 88.6 84. 4 90. 7 3.05 7.9
FreqFPN 88.3 84.0 90. 3 2.12 6.2
EMBSFPN 88.0 85.1 91.4 1.85 5.9

Hrr, 5] A CGRFPN M 4E K YOLOv10n () 358 M
25, A BT DROBE AL Y 35S I 4%, R A Y 34 7 RS R
(mAP)FEIET 0.7%, 288 T 0.56 M, GFLOPs 2
F+T 0.2G; 5] A GFPN M4 BRI mAP 28 T 1. 3%,
ZHBEWMT 0.92 M, GFLOPs 48 % T 1.7 G, B8] A
MAFPN M % MR mAP 8 T 0.8% . S5 =M T
0.79 M,GFLOPs #£7% T 1.4 G, R 5] A GFPN [ £ #
MAFPN [ £ , #B i B AU () 48 0 4% B2 A AT 42 v (H S 40
R B B R R B I, N A B R R Y S R A T 0K
1A FreqFPN M4 BRI A mAP #2557 0. 4% . S5 8%
T 0.14 M, GFLOPs B&{£ T 0. 3 G; i 5k /1 EMBSFPN
M4 . mAP £ 1 1. 5%, ZHE ML T 0. 41 M,GFLOPs
FEART 0.6 G AHEF HABLJLA FPN B4, i%x FPN W 4 A~
AR v 7 A A ) G R L T L R AR AR A 1) B B AR

e 212 »

i, (AR B N e Ak, BB, SR EMIBSEFPN B 264 Ji
HEE TR ) 00 I &4, T LA A i v A TR A N R B Y [ B, T
) 98 JEL A TR S A A 0 R L
3.7 EREEILLTR

R T 2 BT AR SCHCHE SR A S 7R TR B R 3 T B
BE ARG i () A58 R e e L et U I B i TR Gl LR
F B AT X b S5 B, /2 $§ SSD. Faster R-CNN,
YOLOvSn, YOLOV5s, YOLOV7-tiny, YOLOv8n, YOLOv10n,
SCHRLOTRA K scik[10], SEs s Rungs 4 iR,

MRS k. 5 SSD kL. mAP HBE T
1.8% S E AR T 22. 87 M, i 84 (GFLOPs) (&% T
337.87 G; 5 Faster R-=CNN B LA L. mAP #£8 T 5%,
ZHB AR T 39.32 M, GFLOPs F&{% T 200.8 G; 5§
YOLOvSn B L, mAP 5 T 3. 7% . S8 in T
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Table 4 Comparison experiments of mainstream algorithms

R/ mAP@®0.5/ Params/ GFLOPs/

Rl % Y v G
SSD 94. 4 90. 8 24. 68 343.77
Faster R-CNN  90. 7 87.6 41.13 206. 7
YOLOv5n  82.8 88.9 1.76 1.1
YOLOvss — 82.2 88.9 7.01 15.8
YOLOv7-tiny  81.1 89.5 6. 02 13.2
YOLOv8n  82.9 90. 0 3.01 8.1
YOLOvlOn  83.3 89.9 2. 26 6.5
Sck[9] 83.7 89. 7 2. 60 7.4
SCEk[10]  87.5 91.5 2.70 11.8
Ours 86. 0 92.6 1.81 5.9

0.05 M,GFLOPs #£ & T 1.8 G; 5 YOLOv5s & A1 1 .

mAP#E T 3. 7%, ZHEALT 5.2 M, GFLOPs &A%
T 9.9G; 5 YOLOv7-tiny Bk MHIL, mAP & T 3.1%,
BHEFET 4. 21 M,GFLOPs FE T 7. 3 G35 YOLOvSn &
A, mAP & T 2. 6%, ZEEEMLT 1.2 M, GFLOPs
MEAR T 2.2 G35 YOLOvIOn BiEMIL , mAP RS T 2.7%.,
BHBRART 0. 45 M, GFLOPs F#K T 0. 6 G; B4 1 4
JEE TR R A 4 i Ak ) 4R 0, 5 SRR ) HR 42 1 1 Bl 5 vk 4R
omAP#E T 2.9%, S8 AL T 0. 79 M, GFLOPs [%
8T 1.5 G 530k 10 ] 3 1 i e it SR A . mAP 42 5
T L 1% . SHEER T 0. 89 MLGFLOPs (&£ T 5.9G,
3 X 3k 4 3 3 R (A X AR B, SR TE T A SO R SRR A
TR Bl 70 2 THT SR A T R % e e D S
3.8 WML

g T B WA 0 R s R SRR A U R L S R
YOLOv10n 53 26 A e 48 b kA7 R I, feff AN ] 25 2
A A AE DX 43 S TR) SRS 1 2 500, T Ak 25 SR il 12 BT .

(a) JRYOLOV10nEL v i 1 35 5
(a) Original YOLOv10n algorithm detection effect

(b) Bk J& HFA IR

(b) Improved algorithm detection effect

Bl 12 WA S B A TR X L

Fig. 12 Comparison of algorithm detection performance before and after improvement

WA X E R S R R R T DLE R
YOLOv10n 58 75 A6 IVVRE 482475 L R 9 dle o B o 52
T 0 A D0 A 5 O AU 19 I R0 5 7 o 0 5 09 5 92 o X 45 A i
220 A7 G 00 BSF 48 TR TR R A G YOS L D TR A T U
R Bl ) & A . W B EE SER I , Bl S SOk TE VR B R
2 W e g A N e B T G ) G IO

4 % it

BT S 7 R 2 il R 3R T S A RS T B R B TR A U A
A S B0 R T BT KR ) B, AR SCHR T — R i
YOLOv10n Y7 3h il 7k & T SR a4 0 3k . 78 £ T M 4%
T R CGMC21 AR , (AR 78 B it Ak 1% [ B, 39 56 B
AU HAE SR BUBE ) s 78 SPPF il 5] A LSKA & 1#l
il If X SPPF-LSKA # $ i#F 47 = W B ik, 14 & 37 i

GRFSPPF-LSKA B8, 388 K2 B A %5008 3 1 K A0 2

RO FRAE 1) 42 HOAN Rl 5 B8 7, 9800 15 B % 2R Il il 5 7 AR

W&, 3% 3T T EMBSFPN [’ 45, i — 25 384 5 A% 70 % A )

FOBE AR 9 B BRI R4 BE 3, OF %) 22 ROBE R AR kAT 1A 3

AR £+ £ R 1A R B A A 1 5 51 A Focaler-CloU 4

AR pR K, B v 0 BRE B S RS BEE R R Y Y i B

I,

5% 3k
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