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Multimodal remote sensing image segmentation algorithm
based on improved MCANet-CM

Hu Junfeng Yang Yong

(College of Computer Science and Control Engineering, Northeast Forestry University, Harbin 150040, China)

Abstract: Synthetic Aperture Radar and optical images capture surface features through distinct dimensions, providing
highly complementary information for land classification research with significant application value. However. existing
MCANet-CM algorithms struggle to effectively capture target contours in multimodal data during cross-modal feature
interaction, resulting in insufficient spatial detail representation of fused features for object boundaries in complex
scenarios. This makes the effective integration of dual-modal data for precise pixel-level classification remain a critical
challenge. To address this issue, this paper proposes an enhanced multimodal remote sensing image semantic
segmentation algorithm based on improved MCANet-CM. The algorithm introduces the DyCPCA attention
mechanism, which dynamically calibrates inter-channel dependencies to adaptively enhance feature responses related to
target contours, thereby significantly improving the model’ s capability to capture fine-grained information from
multimodal data. Simultaneously, a Rectangular Self-Calibration Module is incorporated, which constructs an
asymmetric receptive field structure to strengthen the model’ s perception of edge information across different
orientations, markedly enhancing localization accuracy for foreground objects. Through the synergistic operation of
these two modules, effective fusion of optical and SAR data is achieved. Experiments on the WHU-OPT-SAR dataset
demonstrate that compared with the baseline MCANet-CM model. the improved model achieves 2.85% and 2.81%
enhancements in mean Intersection over Union and mean Fl-score, respectively. When compared with state-of-the-art
algorithms like FTransUNet, the proposed model also exhibits superior segmentation performance.

Keywords: SAR;optical image; MCANet-CM; multimodal ; semantic segmentation
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