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摘 要:合成孔径雷达图像与可见光图像通过不同的维度采集地表特征,为土地分类研究领域提供高度互补的信息,
具有重要的应用价值。然而,现有 MCANet-CM算法在跨模态特征交互过程中,难以有效捕捉多模态数据中目标轮

廓,导致融合特征对复杂场景下目标边界的空间细节表征能力较弱,这使得如何有效结合两类模态数据以实现精准的

像素级分类,仍然是目前的关键问题。针对这一问题,本文提出了基于改进
 

MCANet-CM
 

的多模态遥感图像语义分

割算法。算法中提出了DyCPCA注意力机制,该机制通过动态校准通道间的依赖关系,自适应地增强与目标轮廓相

关的特征响应,有效提升了模型对多模态数据中细节信息的捕捉能力;同时引入矩形自校准模块,该模块通过构建非

对称的感受野结构,增强了模型对不同方向边缘信息的感知能力,显著提高了模型对前景对象的定位精度。通过这两

个模块的协同作用,实现了光学数据与
 

SAR
 

数据的有效融合。在 WHU-OPT-SAR数据集上进行实验,相较于基准

模型MCANet-CM,改进模型在平均交并比与平均F1分数上分别提高了2.85%与2.81%。与FTransUNet等先进算

法对比,改进模型同样实现了更好的分割效果。
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Abstract:Synthetic
 

Aperture
 

Radar
 

and
 

optical
 

images
 

capture
 

surface
 

features
 

through
 

distinct
 

dimensions,
 

providing
 

highly
 

complementary
 

information
 

for
 

land
 

classification
 

research
 

with
 

significant
 

application
 

value.
 

However,
 

existing
 

MCANet-CM
 

algorithms
 

struggle
 

to
 

effectively
 

capture
 

target
 

contours
 

in
 

multimodal
 

data
 

during
 

cross-modal
 

feature
 

interaction,
 

resulting
 

in
 

insufficient
 

spatial
 

detail
 

representation
 

of
 

fused
 

features
 

for
 

object
 

boundaries
 

in
 

complex
 

scenarios.
 

This
 

makes
 

the
 

effective
 

integration
 

of
 

dual-modal
 

data
 

for
 

precise
 

pixel-level
 

classification
 

remain
 

a
 

critical
 

challenge.
 

To
 

address
 

this
 

issue,
 

this
 

paper
 

proposes
 

an
 

enhanced
 

multimodal
 

remote
 

sensing
 

image
 

semantic
 

segmentation
 

algorithm
 

based
 

on
 

improved
 

MCANet-CM.
 

The
 

algorithm
 

introduces
 

the
 

DyCPCA
 

attention
 

mechanism,
 

which
 

dynamically
 

calibrates
 

inter-channel
 

dependencies
 

to
 

adaptively
 

enhance
 

feature
 

responses
 

related
 

to
 

target
 

contours,
 

thereby
 

significantly
 

improving
 

the
 

model's
 

capability
 

to
 

capture
 

fine-grained
 

information
 

from
 

multimodal
 

data.
 

Simultaneously,
 

a
 

Rectangular
 

Self-Calibration
 

Module
 

is
 

incorporated,
 

which
 

constructs
 

an
 

asymmetric
 

receptive
 

field
 

structure
 

to
 

strengthen
 

the
 

model's
 

perception
 

of
 

edge
 

information
 

across
 

different
 

orientations,
 

markedly
 

enhancing
 

localization
 

accuracy
 

for
 

foreground
 

objects.
 

Through
 

the
 

synergistic
 

operation
 

of
 

these
 

two
 

modules,
 

effective
 

fusion
 

of
 

optical
 

and
 

SAR
 

data
 

is
 

achieved.
 

Experiments
 

on
 

the
 

WHU-OPT-SAR
 

dataset
 

demonstrate
 

that
 

compared
 

with
 

the
 

baseline
 

MCANet-CM
 

model,
 

the
 

improved
 

model
 

achieves
 

2.85%
 

and
 

2.81%
 

enhancements
 

in
 

mean
 

Intersection
 

over
 

Union
 

and
 

mean
 

F1-score,
 

respectively.
 

When
 

compared
 

with
 

state-of-the-art
 

algorithms
 

like
 

FTransUNet,
 

the
 

proposed
 

model
 

also
 

exhibits
 

superior
 

segmentation
 

performance.
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0 引  言

  遥感图像语义分割作为像素级分类技术,通过获取每

个像素的语义信息并分配标签的方式实现对地物的精准识

别[1-2]。在标签分配过程中,该技术对不同类别的像素采用

不同颜色进行标注,从而形成分割图。目前,遥感图像语义
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分割技术在 城 市 规 划、环 境 监 测 等 领 域 具 有 重 要 应 用

价值[3-5]。
随着传感技术的不断进步,遥感图像数据的获取方式

更加便捷。其中,高分辨率遥感图像包含着丰富的语义信

息,但传统方法往往难以充分利用这些信息,导致难以实现

理想的分割效果。近些年,深度学习技术不断发展,这一技

术的应用为图像分割领域提供了高效的分析手段,推动了

遥感图像分割领域的发展。与传统的机器学习方法相比,
卷积神经网络(convolutional

 

neural
 

networks,CNN)在遥

感图像语义分割任务中表现优异,有效地提升了分割的准

确率。其中,全卷积网络(fully
 

convolutional
 

networks,

FCN)[6]使用卷积层替代传统全连接层的方式进行结构改

进,可以有效处理任意尺寸的输入图像,并实现了端到端的

预测,有效提升了分割效率。同时,FCN方法也存在缺陷,
在FCN的池化与下采样操作中,随着特征图尺寸的缩小,
网络无法兼顾图像细节,造成了细节的丢失,这使得最终的

分割效果在图像细节等方面依然存在着提升的空间。针对

这一问题,研究人员提出了以 U-Net[7]为代表的网络,U-
Net网络在跳跃连接过程中可以实现高层次特征图与低层

次特征图的融合,兼顾了图像细节信息与全局信息的提取。
同时,随着深度学习的不断发展,应用于分割领域的网络层

出不穷。PSPNet[8]网络通过引用金字塔池化模块,充分提

取上下文信息的同时,对不同尺度特征图进行特征融合,提
升特 征 提 取 能 力。提 出 的 DeepLab[9] 系 列 网 络 以

Deeplabv3+网络为代表,引入空间金字塔池化模块(atrous
 

spatial
 

pyramid
 

pooling,ASPP),实现多尺度特 征 提 取。

HRNet[10]网络采用并行结构进行多尺度特征融合,实现了

全局信息与局部信息的结合,提升了分割精度。目前,单模

态分割算法的研究不断推进,但受限于单模态数据的局限

性[11-12],分割效果的提升过程存在较大困难。
随着遥感技术的不断发展,除传统光学图像外,SAR

图像、DSM图像等单通道图像的获取也不再困难[13-14]。传

统光学图像能够提供高分辨率信息,但在雨雪等恶劣天气

条件影响下,采集图像的质量往往难以保证。合成孔径雷

达(synthetic
 

aperture
 

radar,SAR)传感器能够克服恶劣天

气条件的影响,稳定获取图像数据,同时,SAR图像也能为

光学图像提供互补信息[15]。因此,以光学图像和SAR图

像作为输入的多模态遥感分割算法的研究,可以有效利用

多模态信息,弥补单模态算法的不足,具有重要的研究

意义[16-18]。
当前,针对多模态遥感数据,主要采用决策级融合与特

征级融合[19-20]两种方法进行结合与分析。决策级融合是指

在网络对多模态数据分别进行分类的基础上,对多个分类

结果使用加权平均等方法进行处理,得到最后的分割结果。
这种方法虽然易于实现,但分割结果往往不够理想。特征

级融合以PSCNN[21]为例,相比决策级融合更进一步,采用

特征堆叠等方式进行特征融合,但依然未能较好地利用多

模态数据信息,在融合方式上依然有较大的提升空间。

MCANet-CM[22]模型使用多模态交叉注意力模块与特征拼

接方式,将光学图像与SAR图像特征进行结合,在特征提

取过程中实现了多模态数据的融合,相比决策级融合与特

征级融合,更好地融合了多模态数据特征,得到了更理想的

分割结果。然而,MCANet-CM
 

在多模态数据融合方面虽

取得一定成果,但仍存在局限性。该模型在目标轮廓提取

上表现欠佳,在特征融合环节,其多模态交叉注意力模块对

不同模态数据的特征权重分配较为固定,难以适配复杂的

应用场景,致使融合效果受限,部分关键信息在融合过程中

丢失;并且在全局上下文信息提取与前景目标定位方面,仅
依赖传统的特征提取方式,对前景目标的定位精度不足,难
以满足高分辨率遥感图像精确分割等场景的需求。为进一

步提升分割效果,本文主要工作如下:

1)提出基于 MCANet-CM的改进网络架构,在编码器

与解码器结构中分别进行改进,提升特征融合效果与分割

精度。

2)设计注意力模块 DyCPCA[23]。针对 MCANet-CM
特征权重分配固定的问题,DyCPCA以通道先验为特征,
动态分配注意力权重,提升模块泛化性的同时,有效提升了

模型 对 多 模 态 数 据 中 细 节 信 息 的 捕 捉 能 力,弥 补 了

MCANet-CM在复杂环境下特征融合与轮廓提取的不足。

3)引入矩形自校准模块(rectangular
 

self-calibration
 

module,RCM)[24]。鉴于 MCANet-CM 在全局上下文信息

提取与前景目标定位上的局限性,RCM能够在提取全局上

下文信息的同时,通过自校准方式灵活调整矩形关注区域,
显著提高对前景分类目标的定位精度,从而解决 MCANet-
CM在高分辨率遥感图像分割中定位不准的问题。

1 相关工作

1.1 网络结构

  本文使用 MCANet-CM网络作为基准模型,模型采用

了经典的编码器-解码器架构。以 MCANet-CM 网络为基

础,本文提出了 MCANet-CMRC网络。MCANet-CMRC
网络 设 计 并 引 入 了 动 态 通 道 先 验 卷 积 注 意 力 模 块

(DyCPCA)和矩形自校准模块(RCM),增强了特征提取与

重建能力。模块间相互协同,确保了特征图在通道维度和

空间维度上的高效表达,有效提升了模型的分割性能,网络

结构如图1所示。
在编码器中,使用ResNet101网络进行特征提取,对输

入数据进行四阶段特征提取与下采样。其中,Covlow
OPT 与

Covlow
SAR 由ResNet101网络第一阶段(Layer1)提取,Covhigh

OPT

与Covhigh
SAR 由第4阶段提取(Layer4)提取。在ResNet101的

残差结构中,输入数据经卷积、批归一化后,引入CBAM模

块强化特征提取,再与原始输入进行残差连接,提升网络对

关键特征的捕捉与表达能力。同时,编码器中采用了多模

态交叉注意力模块(MCAM)。MCAM 模块能够高效捕捉
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图1 MCANet-CMRC网络结构

Fig.1 Diagram
 

of
 

MCANet-CMRC
 

network
 

structure

单一数据源特征图中的位置信息,实现SAR图像与光学

图像特征图之间的深度交互。MCAM结构如图2所示,其
中Q、K、V 特征通过1×1卷积 所 提 取。将 高 层 特 征

Covhigh
OPT,Covhigh

SAR 进行1×1卷积提取与经 MCAM 融合后特

征直接拼接,再经 ASPP模块与上采样获得高层融合特

征。将低层特征Covlow
OPT,Covlow

SAR 与经 MCAM 融合后的特

征直接拼接,通过1×1卷积得到低层融合特征。高低层

融合特征拼接后,经DyCPCA模块处理,作为编码器输出,
传输至解码器。解码器依次通过3×3卷积、RCM 模块与

上采样操作,生成最终分割结果。

图2 MCAM结构

Fig.2 MCAM
 

structure

·17·
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1.2 DyCPCA模块

  注意力机制从提出开始,在深度学习领域便发挥着重

要的作用。在遥感领域,优秀的注意力机制可以使模型专

注于地物目标的提取,在小目标类别的提取与大目标类别

边界定位上,注意力机制都凸显出独特的优势。传统注意

力机制在提升模型性能的同时,在计算成本与泛用性上存

在着不 小 的 提 升 空 间,针 对 这 一 需 求,本 文 设 计 了

DyCPCA模块。

CPCA模块对输入特征图并行进行最大、平均池化,
池化结果经共享 MLP处理,输出相加后经Sigmoid激活

得通道注意力特征图,与输入特征图逐元素相乘获通道

先验特征图。通道先验特征图经不同尺寸卷积核的深度

卷积模块,卷积结果相加得空间注意力特征图,经1×1
卷积处理后,与通道先验特征图逐元素相乘,输出处理后

的特征。

DyCPCA模块在空间注意力设计中使用动态卷积

(dynamic
 

convolution)[25]替换CPCA模块中的深度卷积,
动态卷积与通道先验同样具有动态调整能力并且动态卷

积的低计算量特性,符合轻量化设计目标。多尺度动态卷

积提取结构,保证特征细节完整性的同时提升了模块的特

征提取能力与泛用性。DyCPCA模块结构如图3所示,实
现了模块的强泛用性与轻量化设计,在提升性能的同时避

免了传统注意力机制中存在的大量的矩阵运算,有效减轻

了计算负担。

图3 DyCPCA结构

Fig.3 DyCPCA
 

structure

  在ParameterNet网络中,提出了一种新的卷积方法-
动态卷积。动态卷积可以根据输入特征动态调整卷积参

数,在增加少量计算量(FLOPs)的基础上,成倍增加了模

型的参数量。动态卷积的工作流程可以表示为:

Y =X*W' (1)

W'=∑
M

i=1
αiWi (2)

其中,M 代表动态专家的数量,专家数量作为模块参

数可自行设置,Wi 代表第i个卷积的权重参数,W'代表

动态卷积的权重参数,αi 代表对应的动态系数。式(1)
中,对输入特征X,使用动态卷积进行卷积运算。对于每

个输入特征X,首先通过全局平均池化处理,然后通过以

softmax为激活函数的 MLP层生成动态系数αi,过程如

式(3)所示。

α=softmax(MLP(Pool(X))) (3)
动态卷积与标准卷积的参数量比值与浮点数计算量

(FLOPs)比值的计算过程如式(4)和(5)所示。其中,K 代

表卷积核的大小,Cin 和Cout对应输入特征图的通道数与输

出特征图的通道数,H'和W'分别代表输出特征图的高度

和宽度。

Rparam =
C2

in+CinM+MCoutCinK2

CoutCinK2 =
Cin

CoutK2+
M

CoutK2+

M ≈
1
K2+M

 

(M ≪CoutK2,Cin ≈Cout) (4)

Rflops =
C2

in +CinM +MCoutCinK2+H'W'CoutCinK2

H'W'CoutCinK2 =

Cin

H'W'CoutK2+
M

H'W'CoutK2 +
M

H'W'+1≈1(1< M ≪

H'W',Cin ≈Cout) (5)
动态卷积的参数大约是标准卷积的M 倍,但浮点数计

算量几乎一致,在不影响计算效率的前提下,有效地提升

了性能。同时,由于动态卷积的卷积核参数是根据每个输

入特征进行动态选择的,使得动态卷积可以更好地适应不

同的输入特征,提高了模型的泛化能力。

1.3 RCM模块

  RCM模块通过全局上下文信息提取和空间特征重建

的方式提升语义分割的准确性。RCM 整体结构如图4所

示,模块通过建立矩形关注区域并动态调整注意形状,增
强了对前景对象的定位和识别能力。

RCM模块由矩形自校准注意力(residual
 

cross-attention,

·27·
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图4 RCM结构

Fig.4 RCM
 

structure

RCA),归一化与多层感知机(multilayer
 

perceptron,MLP)
三部分组成。RCA是模块的核心环节,通过池化方法实现

水平方向与垂直方向的双向上下文信息提取,将提取信息

相加,建立矩形关注区域。RCA进一步通过水平与垂直条

带状卷积设计自校准函数,生成注意力特征。由于条带状

卷积的参数具有学习特性,使关注区域更接近前景对象的

同时可以有效适应不同尺度的输入特征。RCA最后设计

了特征融合功能,使用深度可分离卷积提取输入特征,将
提取特征与注意力特征进行逐元素相乘,得到最终的输出

特征。将输出特征通过归一化与多层感知机对特征进一

步处理,强化特征的表达。RCM 模块的设计方式最终实

现了全局上下文信息的提取与特征重建。
在语义分割任务中,RCM 模块凭借对前景对象的优

异聚焦能力,在遥感数据集上有着良好表现。针对遥感任

务中难以解决的小目标定位与大目标边界划分问题,RCM
模块能够精确定位多种尺度的目标,提升模型对前景对象

的提取能力,进而提升分割精度。

2 实验结果与分析

2.1 实验环境与评估指标

  1)实验环境

实验所 用 配 置:操 作 系 统:
 

Ubuntu
 

22.04;
 

GPU:

NVIDIA
 

RTX
 

4090
 

24
 

GB;CPU:i7-13700k。模型训练环

境:Python3.8,Pytorch2.4.1。
训练参数设定为:训练轮次为105,Batch-size=8,学习

率为0.001,输入图像为256
 

pixel×256
 

pixel。

2)评估指标

为评估模型的语义分割性能,实验共使用了3个评估

指标:总 体 准 确 率(overall
 

accuracy,OA)、平 均 交 并 比

(mean
 

intersection
 

over
 

union,mIoU)、平均F1分数(mean
 

F1-score,mF1)。

OA表示正确分类的样本数占总样本数的比例,计算

公式如下:

OA =
TP+TN

TP+TN +FP+FN
(6)

mIoU和mF1是衡量分割性能最常用的两个指标,计
算公式如下:

IoUk =
TP

TP+FP+FN
(7)

F1k =
2TP

2TP+FP+FN
(8)

mIoU =
1
K∑

K

k=1
IoUk (9)

mF1=
1
K∑

K

k=1
F1k (10)

其中,k 代表实验数据集的类别数量,TP、TN、FP
和FN 分别代表真正例、真负例、假正例、假负例的元素

数量。

2.2 实验数据集

  本文实验数据采用了 WHU-OPT-SAR数据集,图像

数据采集于湖北省,包含100张高分辨率光学图像与SAR
图像,图像分辨率为5

 

556×3
 

704。其中,光学图像为四通

道图像,包含RGB通道与近红外通道,SAR图像为单通道

图像。数据集包含农田、城市、村庄在内的8个语义类别,
并配有详细的像素级标注,适用于多模态遥感图像分割任
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务的研究。实验中,将数据集按照3∶1∶1的比例划分为训

练集、测试集与验证集。

2.3 实验结果与分析

  1)网络改进对比实验

MCANet-CMRC网络融合了DyCPCA注意力机制和

RCM模块,增强了特征提取的能力,有效地提升了多模态

数据的融合效果。DyCPCA
 

模块在
 

CPCA
 

注意力机制的

基础上进行了改进,通过引入动态卷积,提升了对输入特

征的感知能力,能够根据输入数据的特征进行动态的权重

调整,使DyCPCA模块能够高效处理多模态输入数据,精
准捕捉特征信息,优化分割效果。

为验证 DyCPCA模块的有效性,以 MCANet-CM 网

络为基准模型,以 WHU-OPT-SAR为实验数据集,进行两

组对比实验,对比不同注意力机制与改进方法的效果。第

1组实验,将DyCPCA模块与CPCA模块及其他先进注意

力机制进行对比,结果如表1所示。在引用DyCPCA模块

使后,网 络 的 分 割 指 标 OA、mIoU、mF1 分 别 达 到 了

82.62%、54.93%、68.80%,与原CPCA模块及 MCA[26]、

SCSA[27]等先进注意力相比,引用DyCPCA模块,可以使

网络的分割性能得到更大的提升,验证了模块的有效性。
第2组实验,采用不同类型的卷积对CPCA模块改进,结
果如表2所示。实验结果表明,与PConv等[28-29]先进卷积

相比,使用动态卷积的改进方法,实现了最好的模型性能,
验证了改进方法的有效性。

表1 注意力改进对比实验

Table
 

1 Comparison
 

experiment
 

of
 

attention
 

improvement
%

模型
 

OA mIoU mF1
Base 81.75 53.50 67.34
+CPCA 82.59 54.60 68.25
+MCA 81.77 53.29 67.07
+SCSA 82.06 53.76 67.51
+MSCA 81.69 52.93 66.74
+PCAA 79.62 50.04 64.04
+DyCPCA 82.62 54.93 68.80

表2 卷积改进对比实验

Table
 

2 Comparison
 

experiment
 

of
 

convolution
 

improvement
%

模型
 

OA mIoU mF1

Base 81.75 53.50 67.34

+CPCA 82.59 54.60 68.25

+CPCA(PConv) 81.68 52.88 66.56

+CPCA(ScConv) 81.62 52.14 65.57

+DyCPCA 82.62 54.93 68.80

2)消融实验

为验 证 MCANet-CMRC 网 络 各 结 构 的 有 效 性,以

MCANet-CM为基准网络,针对DyCPCA和RCM 模块进

行消融实验,在 WHU-OPT-SAR数据集上进行验证。消

融实验结果如表3所示,每种改进方法均不同程度地度提

升了模型的分割性能。

表3 消融实验

Table
 

3 Ablation
 

experiment %

DyCPCA RCM
 

OA
 

mIoU
 

mF1
- - 81.75 53.50 67.34
√ - 82.62 54.93 68.80
- √ 82.45 54.87 68.77
√ √ 83.06 56.35 70.15

  融合DyCPCA模块使模型在OA、mIoU、mF1三个分

割指标上,相较于基准网络分别提升了0.87%、1.43%、

1.46%。DyCPCA
 

模块能够有效提升模型对不同类别像

素的分类能力和语义信息的捕捉能力,从而增强整体分割

性能。引用RCM模块,同样提升了网络的性能,分割指标

在基准网络的基础上分别提升了0.7%、1.37%、1.43%。

RCM
 

模块通过优化前景物体的位置建模和上下文信息提

取,提升了模型对复杂场景的处理能力。

MCANet-CMRC网络在 OA、mIoU、mF1指标上,相
较于基准网络,分别提升了1.31%、2.85%、2.81%。实验

结果表明,融合DyCPCA模块和RCM 模块的网络结构在

综合性能上达到了更优水平。二者的协同作用实现了整

体性能的优化,使模型在多模态任务场景下表现出良好的

性能。

3)对比实验与分割结果可视化

为验证 MCANet-CMRC模型改进的有效性,本小节

设计对比实验,选取先进的单模态与多模态算法进行对

比,在 WHU-OPT-SAR数据集上评估各网络的分割性能,
对比实验结果如表4所示。

单模态算法如PSPNet、DeepLabv3+在语义分割任务

中表现良好的性能。PSPNet通过空间金字塔池化能够有

效捕捉多尺度上下文信息,DeepLabv3+则结合了空间金

字塔模块和解码器-编码器结构,能够有效地关注目标的边

界信息。然而,单模态算法无法充分利用多模态数据的互

补性,在复杂场景中难以实现准确的分割效果。
多模态算法CMFNet[30]与FTransUNet[31]在网络结

构设计中,均采用U型结构。CMFNet网络针对跳跃连接

结构进行改进,在跳跃连接中引入Transformer结构提升

多尺度融合能力。FTransUNet网络在编码器结构中结合

了卷积网络与 Transformer结构,同时提出以SE注意力

为基础创新的特征融合模块,准确提取局部细节信息与全

局语义信息。在 Vaihingen与Potsdam 的多模态数据集
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  表4 对比实验

Table
 

4 Comparative
 

experiment %

模型
IoU

农田 城市 村庄 水域 森林 道路 其他
 OA

 

mIoU
 

mF1

Base 67.88 55.75 48.04 67.41 80.48 37.26 17.67 81.75 53.50 67.34
U-Net 66.10 55.24 46.19 66.51 79.19 34.08 19.26 80.77 52.37 66.48
PSPNet 64.77 55.96 40.75 62.20 78.44 24.94 18.60 79.47 49.38 63.46

DeepLabv3+ 66.81 56.16 46.58 65.79 79.18 34.73 18.92 80.88 52.59 66.67
HRNet 68.33 57.40 48.06 67.63 80.12 38.43 21.25 81.82 54.46 68.47
CMFNET 69.23 59.55 49.62 68.91 80.93 38.38 20.35 82.58 55.28 69.02
FTransunet 67.56 58.38 47.17 67.06 80.03 34.97 17.32 81.43 53.21 67.00
MCANet-CMRC 69.90 58.91 50.08 70.12 81.31 40.82 23.30 83.06 56.35 70.15

上,两种算法均取得了优异效果,但在 WHU-OPT-SAR数

据集上的分割效果仍需提升。
本文的分割结果如图5所示,通过四组实验样本的可视

化展示,可以清晰观察到 MCANet-CMRC网络的分割性能优

势。在第1组与第2组分割图中,MCANet-CMRC网络可以

清晰勾勒出目标的轮廓,在道路这类小比例目标上,优势更为

明显,展现出网络优秀的细节捕捉能力。在第3组与第4组

分割图里,MCANet-CMRC网络同样表现出色,有效降低了目

标错误分类的概率,同时实现了对小目标的精准定位,进一步

凸显了模型在图像分割任务中的优越性与稳定性。

图5 可视化结果图

Fig.5 Visualization
 

result
 

plots

3 结  论

  本研究从多模态遥感图像分割算法设计的角度出发,
以提升模型分割性能为目标,提出了 MCANet-CMRC网

络。MCANet-CMRC网络在编码结构中设计并引入了

DyCPCA注意力机制,使用动态卷积对CPCA注意力进行

改进,增强泛用性的同时提升了模型对重点区域的关注能

力。网络在解码结构中引入矩形自校准模块(RCM),该模

块在多种语义分割任务上表现出优异的性能,在多模态遥

感任务中,该模块的引入使模型更精准地捕捉上下文信

息,提高了模型对前景对象的定位能力。
以 WHU-OPT-SAR

 

数据集作为实验数据集,检验模

型效果,与基准模型相比,MCANet-CMRC网络在 mIoU
和mF1指标上分别提高了2.85%和2.81%。针对多模态

数据间的差异问题,提出的改进方法协同作用,有效地提

升了分割精度,实现了更精准的像素级分类。
本文提出的改进网络在实现分割效果提升的同时,在

模型结构与泛用性上仍有优化空间。今后的研究将致力
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于模型分割性能的进一步提升,同时对模型在多模态遥感

任务中的泛用性进行优化。
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