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Speaker verification method based on dilated convolution and
multi-scale attention mechanism
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Abstract: To address the limitations of the CAM~+ + model in feature extraction and recognition performance under
complex acoustic conditions, this paper proposes TF-DCAM, a speaker verification model integrating dilated
convolution and temporal-frequency multi-scale attention mechanisms. The model enhances feature representation
through dilated residual convolution and a time-frequency adaptive refocusing unit to suppress redundant information.
A temporal-frequency multi-scale attention module is introduced to improve sensitivity to key information via channel
attention and cross-dimensional interaction. An adaptive masking temporal convolution module is further incorporated
to model long-term dependencies effectively. Finally, a combination of contrastive loss functions is applied to jointly
optimize the speaker embedding space. Experiments conducted on the CN-Celeb dataset show that TF-DCAM reduces
EER and minDCF by 14.98% and 10. 98% respectively, compared with the baseline. The model also demonstrates
strong cross-lingual generalization on the VoxCelebl dataset. Results indicate that the proposed method significantly
improves speaker verification performance and robustness while maintaining model efficiency.
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Fig. 1 Overall structure diagram of the TF-DCAM model
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Fig. 2 Dilated convolution residual block
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Fig. 4 Structure diagram of TF-MAM
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Fig.5 Single temporal convolutional layer structure
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FKmh SRR AT 43 8 Bl T Bt A2
FE A TR 22 [6) B ARLARLEE o PRI I A 25 52 3] B — 288 031 0 i %
FAY 52 ], 8 18 5 R 3 b O Ak 1 A 25 T 4544

3) 2R kA A

AR AR AAMLoss 1E b 3 # & iK%, 51 A
SupConLoss Fll NT-XentLoss 1E R %} H 31 2< s Bk 178 &
Wk, BHEVE R BRAA T

L =L+ A Lse+ALyr (34)

Hf, &, 52, 43128 SupConLoss Al NT-XentLoss )
W,

TE S B0 2k A2 v X T A X Bl % pR B A A R E AT 2 IR
WA [ IS R AEA R AL A, B AT DUEEA SR
UK 17 BT 3% PR B 43 28 1 B AR ROR L 7E $R T B
FIRBE ST I B FE T AR E PR AR

2 LWERSHEESWT

HiEE
TEAR R SLH N E T3 TEF-DCAM 3% A i AR
. 124 -

exp(z;

(32)

Ly = (33)

2.1
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I, CN-Celeb ¥4 J2& B i 55z K 1w SCH I 3035 AR 5
Bl 2 — . H CN-Celebl fil CN-Celeb2 ¥ #8320 A% , H
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fili 1 CN-Celeb B 7 42 1 19 T 5% WX 48 . 2 7% 200 £ Uhih
A2 18 000 LB HIEXT , FH T PP Al 485 28 7 vh S0 Ze R B op
B U 3G AR PERE
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RN 0,001, % 3 R 1 WarmupCosineSchedulerLR 347
B WA MR EN 5 . mREIEEN 0,001, /b
2 BN 1X107° X R AL E B E N 0. 01, S 4R FH 60
UG PRAFROR B A AR T
2.3 EMIERR

TEVETE N BRI 55, £ 2R A S5 45 12 % (equal error
rate, EER) Al &% /N 86 I A% 4y 2K %0 (minimum detection cost
function, minDCE)AE A # O P REFEM $8 ¥ . Hi b EER #om
32 52 F R AE A 45 B A 485 15 VA SE B o Lo, 1], 3K
B AR » R X 43 K TR B 3E A A BE 7 #58 5 minDCF
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3 5 LA R A AR A VAR AR TR A A [] 7 T 3 5 09 e 3R
FO BB AR AR TR A 5 A R b N B TSR Y & ek
AN, Sy B A T A R A PR BE AR SR I AT BUR 3 Iih
FLAEHT : B (Params) BRI BY S50 19 B % B2 0% 48
B (FLOPs) i £ 458 15 78 4 38 o BEAY T8 A s semf IR 7
(real-time factor, RTF) i & #5878 75 52 BR &8 35 o i) 4 348 3
L AR AR 3R S
2.4 MK RPNEMRU LR

Nk — AR A 2 54 R TS N RN R G
SR X 43 B A SCTE EHUR % AAMLoss 1 5& 4l |, 51
A SupConlLoss Fll NT-XentLoss I % Lt 1 9% o6 £ 0E 17 Bk
GNGR, R R R AR A T8 0 S R e P R
We 5 2, A SCIRETE T — AN A A S, PPA X TR M g

(EER Hl minDCF) iy &1 .

TILERANFE 1R AT SRS D Y BN EBE N
0. 005 (W RN 2 4% 0. 002 5) Bif, K T8 P il 4 o R 2 1] L 4
T, WX H A S A B T U0 A0 FRAE 25 [E] S5 4 5 2) K B A R E
— T E 0.01 J5. EER [ £ 14.72%, minDCF [# &
0. 672 9,k B AR e, U BH 35 25 39 0 X bE A% 5 7T 34 5 A
BIBEF153) YA E I = 0. 015 Ji5 . MEREME A T F, 3 W it 58
B X LY 24 3RCAT B R S 2k B A4k B bR . S BUR A S5 R R
75 4) AL IR F 0. 02 B, YINZk S BB B2 M ME B4, 4 2
A H AR 2 o L 58 T AAMLoss %38 B A iy A 3L
AR, NG BARE., S LER AXRLER
SupConLoss 5§ NT-XentLoss AL 441K 0. 005, 75 & iF &%
B BE Y ) At L e T 2 A mE Pk S BN R

R 1 7E CN-Celeb iR LRIX LR K BRHNER UL IR

Table 1 Experiment on the optimization of the weight of the contrastive loss function on the CN-Celeb dataset

fEi Al SupConLoss f{ & NT-XentLoss # B X LA 2 A EER/% MinDCF
CAM++ 0 0 0 15.55 0.715 8
CAM++ 0.002 5 0.002 5 0.005 14.91 0.690 3
CAM+ + 0.005 0 0.005 0 0.010 14.72 0.672 9
CAM—++ 0.007 5 0.007 5 0.015 15.03 0.688 5
CAM++ 0.010 0 0.010 0 0.020 — —
TF-DCAM 0 0 0 13. 88 0.659 0
TF-DCAM 0.002 5 0.002 5 0.005 13. 46 0.640 9
TF-DCAM 0.005 0 0.005 0 0.010 13. 22 0.637 2
TF-DCAM 0.007 5 0.007 5 0.015 13.65 0.648 1

2.5 CN-Celeb #IEE LI *T Lk

Sy A HPEAS BT 4R TF-DCAM £ %1 1y 4 g . 4 SC7E CN-
Celeb %4l 4 I 535 4F 5k B A QM 09 3075 A5 A B 3
77 % e 92 86, % B Ay Xt A R [ §5 ResNet34,
ERes2Net .ECAPA-TDNN Fl CAM -+, 7 4 [7] #4 7 b 21
TARMYIG B E T 045 4R R (EER) 5 it /N AR A
R AL (minDCFO 1 R HZ PN 4545 o

T LSRR 2 TR, NS R LUE H, TF-
DCAM #£ EER il minDCF Wi 30 48 b5 b ¥4 T HAb A5 8,
WM RGeS S Ea g, BRSNS
ResNet34 1 ERes2Net #f Lt., TF-DCAM 38 i 51 A %5 i &
U5 A IE N T S B T TR RO R A RE ),
HRAFRAE B A1 %%, EER A1 minDCF i35 T K&, 76 £ 43511
FERCR I R B A AR TR RE . 2) 5 ECAPA-TDNN
M CAM+ +AH L, R4 = F 5T TDNN HEZL 4 &, TF-
DCAM #—25 5] A 2 RE EE S HLE 5 X B R 5 A
16, EER 43 %] F [ 3.83% F1 2. 09% , minDCF 43 1] [ fik
0.118 1 1 0. 078 6, B Uik | A BRI 7E £ 4 5 15t 4k 149 [7] B L
SR YRR IE R AR AR Az AL PERE .

R 2 KIEFETE CN-Celeb 1B E X LL LI

Table 2 Comparative experiments of each model on the
CN-Celeb dataset

e A Params/M EER/% minDCF
ResNet34 6.7 15.99 0.721 2
ERes2Net 6.6 15.18 0.669 4

ECAPA-TDNN 14.7 17.29 0.755 3
CAM—+ + 7.2 15. 55 0.715 8
TF-DCAM 7.6 13.22 0.637 2

2.6 VoxCelebl 3 £ SE I Xt bt

g 25 Bk i R AR B TE SR A 5 R R IR B AT
Wz AL RE 7 5 B #E M A SCHE VoxCelebl ML HikE4T T
PSR R SR ST g . T A R AL B (U AE T A SCaE B CN-
Celeb B 4 347 U1 . N5 A VoxCelebl Ht i 4F T Y1l £k
FEA DR IEIN A 25 5 0 & WM 5 12 AR T A 9 s . il
K B R A VoxCelebl ‘B 75 R 43 (4 3 4 &, I 4y I CN-
Celeb 52 5 v 4 ] 1) T Al 48 b5 —— 55 85 1R % (equal error
rate, EER) Fl &% /N8 AR 26 ZX (minimum detection cost

* 125 »
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function, minDCF) , SZEHEES 2. 5 5 AH [R A9 4% = AR Y
HEAFXF I, 3% ResNet34 . ECAPA-TDNN,CAM+ + Fil 7
4t TE-DCAM BER . iy A 455 80 A8 AH [R) I 25 i 5
PR RR T AT, 5640F B Bt Bt — (1 FH 4% 5% A AU 4T 43 An
[F6 2 5 1 ) e AL

TSR K 3 R, ARP LR LE L, TF-
DCAM 7& VoxCelebl I W5 T & 3 fJ T H b 455 A9 1) Pk R
F W EER K 14. 55% ,minDCF Jy 0. 891 3, 1E fF A X [ 4
R85y Ry B A, R B A S 1 B B Rz Ak AR . B AT
W DX s CNN 424 (ResNet34 ., ERes2Net) : T #
BB T b RAZ K, EER 4 5] 0 16.95% M
16. 85% »minDCF #A1d 0. 90, Uk B ¥ JZ H¢ AF 32 B 2% 46 15 Fh
RS b X LA B R B DS A4, ML Z R, TF-
DCAM #£ EER EFEAK 2. 4% 2. 3% . 32 B A SCRE AL 38 5
FIAZ BT SR E AR AL A S8R T X & & KA AR
1651 50 S Y BE 1. 2) X E W TDNN 48 4
(ECAPA-TDNN.CAM-+ +): BAA X Bifh ik H & — &
M SCERBERE S B TR AL RE B AREER
FEHILH A 15 B0 OR I B8 k2R AR A e AR YRR A SR AE AR E
P F F&. TF-DCAM #i tt ECAPA-TDNN, EER [# fi
1. 86 % »minDCF & 0. 051 2, F 3 Y 0 38 p9 41 T 48 5 4
B Ss. fimiH 2. TE-DCAM /4 Fr i L T . 8
IR 2O T LA R () B S R S RRAE A e
2.7 HEMER

R EE 4 A S R B 7E TE-DCAM # 7 oh g A7 3% e
ARSCETE T IH RS L 4> BIFE Baseline #5180 & 4 5] A&
B AL 28 A B (DMS) LI 22 8 1 38 H 4

x3 HIEBIFE VoxCelebl I&iE & F A Xt L SLI6
Table 3 Comparative experiments of each model on the

VoxCelebl validation set

TRAY Params/M  EER/% minDCF
ResNet34 6.7 16. 95 0.923 1
ERes2Net 6.6 16. 85 0.903 7

ECAPA-TDNN 14.7 16. 41 0.942 5
CAM++ 7.2 16. 36 0.930 6
TF-DCAM 7.6 14.55 0.891 3

H(TF-MAM) | B i B B P B (AMTO) LK L4
e PR, LU AE CN-Celeb 84548 AT . IFAL 845 0 EER
F1 minDCF,

SRS RN 4 BTOR, AR R W D AE R IR B A v 5|
A DMS i85 ,EER il minDCF [ Z 14. 91 % #1 0. 689 2,
Ut B 23 1 25 R B 4 TR AF B2 BRI 42 JR) 1Bk A2 17, 34 i e
ATAR A SRS RE 7 s 2) 7E L EE A M A TF-MAM #i8, EER
H— TR 14. 25 % . R WIZE Y RE A AL G B ASURRAE
PRI RN 2 4 {5 B0 RIKAE T3 3) 4R k5] A AMTC £
)5 ,EER Ml minDCF [ % 13. 88 % Fl 0. 659 0, 3 W%
Pl 7 iy A AR R T ARAE B B R SCE B D
T K EG A5 Ok pR B, B PR R E — 2 4R T EER BR &
13.22% ,minDCF & E 0. 637 2, W1F T 241 % W8 Akt
A ZS WH M B R EVE . 48 b TSI iE B T
AT Y A BRI R A R TR T PR R, B A A
A L R A O R 38 25 RO

&4 7E CN-Celeb HiEE FHHBIZT
Table 4 Ablation experiments on the CN-Celeb dataset

. :I*{Hﬂ% FH I 2 RO R Qﬁm%ﬁﬁ%ﬁﬂ? Xt tl:?ﬁs'e EER/ % DCE
P (DMS) (TF-MAM) LR (AMTCO) PRI AR

Baseline X X X X 15.55 0.715 8

+DMS J X X X 14.91 0. 689 2

+TF-MAM N J X X 14. 25 0.663 8

+AMTC J NG N X 13. 88 0.659 0

+ % H A R N NG N NG 13.22 0.637 2

2.8 FIRFPBRMESM
TR JEE i 28 I 28 A5 | 5k 7 o L 00 0 2 ) R B
XA R Fy W S e P R LA QR . RV SOk
Wik DK ) Bh 2 ] R EAE 0.1~0.001 Z A, H
0. 01 )™ 2 T\ g J2 e ot e S35k 12 -5 2 P 19 6 AL - AR A
A FE T B A 55 5 000 2% 45 kg v L i R i A )
HOR . BARTE 4000027 ] S BE N 0. 01 B AR 7R |
S 300t B R A e 5 U Bl S B R R RO O L B
Z G| RBE AT, 2 ik A B2 F A A 3 kLR Sk

* 126 -

W AR SR IA 2 ST T 0. 001, L% 58 I 245 51 72 19 %k
R e, RIS ANUH M TIN50 & 5 n i,
T AT AR IR 2k B A, th o BRI AL T R AR
AR, LU R R AV IR % S F R 0,001 1 4544
T B B A8 IR 58 BN 25 L O AE B IR AR AR T AR B AR R
B, BRI A M 5 S

IS 2 T 1 8 Jo A 1) S 0 2 ) 36, S Je 2 2 2 R AT
SR ZRar 8T . RAE T A TAE P X2 > R E A TE .
S H 2 ) R 1X107 ' ~2X107° Z[a], LT
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T B W Bl 2 AR E I D fE B A o il T AR STRE B A CN-
Celeb $4li 4k b . 275 FiRVE R BT T 4LAN ) 1 B 2 )
RIFF%, N 0.000 1,0.000 5,0.001,0.001 5,0. 002, 7 P 5
HAWE S AR G H AT 60 U1, IF LAg:
UE4E BB EER AR PERE AL 1545 .

THLIRANE 6 P A F] A~ R E T AR R R
UM — 2 i 22 e e, T O S TR S R T, B o ST R R
T AT 27 o R B BRI GIE 4R AR EER #82 ]  — > i
AMEFEIT MR A 2T R 0,001 B B UESR B EER
BB /0N, Ul AR SOk R £F e 477 2 520 0. 001 I fiE it
A R R AR AR, PR B PR WD 4R 7 2 R Dl 0. 001,
2 g ] 0 0,001 AR R SEEe I ZRiBbr .
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Fig. 6 The variation of model performance under different

final learning rates

2.9 EZMESH

Je Al TF-DCAM #E RN/ H 3 98 IR 1 A9 JF 44 L A S0
H 5 ECAPA-TDNN,ResNet34 & CAM+ + =fh £ i 8
RUHEAT B 28 BEXT LG, PFAl 48 BR85S 8 i (Params) (77 45
B RE(FLOPs) fSE Y R F (RTEF) . fT A 455 8 35 78 5
4R CPU M8 TIPS M B8 B, SCIR 25 RNk 5 s . 45
R DA ECAPA-TDNN, TF-DCAM 24 & 3 /b 24
48.1% ,FLOPs F#{% 53. 3% ,RTF &2 0. 014 , 4 35 3 J&F 4%
Fh#B T 57 % , 45 i BEAR T 52 2% 8 9 R) B DR 7 4 75 1 1R
SIPERE s 2 A H ResNet34, TF-DCAM (1 FLOPs /¢ K H 4
27.1% ,RTF WAK . SR 5 & i 7 580 % T ResNet34
Z R S BRI e , RTRE AR AR B K B AU IRl A L S
HEMBE Z B 3 M Ik CAMA+ +, TE-DCAM & 5 g 4
B, FLOPs 384042 5 o AR A28 A% T I At 9 i 8 A Y, 3%

R5 BEBEREMNHIR
Table 5 Experiment on the comparison of the complexity

of each model

R Params/M  FLOPs/G RTF
ECAPA-TDNN 14.7 3.96 0. 033
ResNet34 6.7 6. 84 0. 032
CAM++ 7.2 1.72 0.013
TF-DCAM 7.6 1.85 0.014

WIFE AR 52 R G R A0 TR B 0k — 2B B T T AL 16 g v i
R, 255 KF TF-DCAM FEAR TR ALA F 55 M2 i 2
[BISEEL T R4S S T 9 U PR A S PR v F

3 & it

A SCHR T — b R T I A 22 R A R AE T 2H AL
AR A B IABER TF-DCAM, £ Xt & 241 35 31 58 T 15
BERHIETCA B ) AN R AF IR AT T R, B
P 25 5 U B (DMS) I JH 22 RUBE 25 11 5k 25 45 4 5 1 A
HRAAALE ARG R T RRAE AR 7 FRR, i 2 R
HREANBESR(TF-MAM) 85 5B B G422 |1, 32
TET A X O AR B YRR T 5 TR, A 3 B I )Y
BREH (AMTO) i 2 R Ak 5 1 ST bl i
LT B g AE R 35 B 5. 51 A SupConLoss 5 NT-
XentLoss Xf LL 41 25, 52 Bk A 25 [H) B9 25 44 ik . 72 CN-
Celeb ZUAEAE M VoxCelebl B UF 4R I Y 5255 56 F 2 B, BT
#& TF-DCAM #i#I7E EER Fl minDCF P 5UE b7 1348 T
Z i AR LA B, 7 B TR P R Y TR I R4S T AR Y
TR I, R th RIS 1R 5 S 5 S PR a2 .
e AR ik — 25 PR T v A3 N A3 22 IR BE 5 AL L O
155 H P AROPE (Y 508 L B 1R O A LS N T 37 Sk R gk
0 UE 04 TR 13z Ak e 5 N E
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