LIS

ir ey

Ll

ELECTRONIC MEASUREMENT TECHNOLOGY

B o R $48 & H 23 4]

2025 4 12 H

DOI:10. 19651/j. cnki. emt. 2518417

ED YOLO: EFH 4Rz KB EBMRKEMNEE"

B a4 Han'’ LA Hegl?
(LLARFEFRAAMAFEHARKFR TP 030619; 2. FAA T A SRR R LB EEELEHET TP 030619;
3.B/ANTERFHELE S F TEPR 2 M 730070)

W OE: MR ERET . BARREAEA W) A ™ E L 3 R N 1 2 A R) RS B0 E AR R IORG B IR Y 18], 4R
T—FE TG B AR J7 % ED_YOLO, B, 5 T HESM #3858 i Sobel B FHIMLF R .51 % £
JCHRE A AR TH A RS BT . HORGIERH T C2f_ DRM BB S S R 52/ E T XfFEE. Ri5. 14
BT LFAM #ide, g b B B BN SE R b AL A R BEASRAE A A GE R R A i B s b M S B £k, BJF.9IA
RepGFPN i, Fil 5 S 40k F AR L 32 i 700 1 2 RO AR AE SR IAE 1 . 78 ExDark 0454 L9 S50 45 £, BT 42
5 mAP50 iK% T 72.17% . 5 JFIE YOLOvSn MIEL 3255 T 2. 87 %6 UG T A8 4 A A 0 5 2R

KR NI B ER ; YOLOvVSn W 45 5 FRAE gl

FESZES: TP391.4;TNO XkFRIRAD: A ERREEZRSERG: 520.20

ED_YOLO:Edge driven low light object detection algorithm
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Abstract: Aiming at the problems of limited adaptability, loss of details and unclear features faced by target detection
in low-light environment, the edge-driven detection method ED_YOLO is proposed. Firstly, the HESM module is
proposed to extract edge information through the Sobel operator, guide the interaction of multiple features, and
improve the sensitivity of effective information. Secondly, the C2f _DRM module is designed to efficiently integrate
local details and global context information. Then, the LFAM module is constructed. Based on shared convolution, the
adaptive control method of features of different scales is optimized to effectively reduce the loss of detail information.
Finally, the RepGFPN module is introduced to improve the multi-scale feature extraction capability of the model by

using reparameterization technology. Experimental results on the ExDark dataset show that the mAP50 of the proposed

method reaches 72.17% , which is 2. 87% higher than the original YOLOv8n, achieving better detection effect.
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Table 1

i A 2SR A ORI IE S AR IE AR, R R Al
KRBT A EENIEROM RIS, AP,
RH AN AP fH. N FoaREER. T & 10U WHE
B . AP, $87E 10U BME N ¢ B A9 S350 05 B
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AL YOLOv8n 1y JE il HEZR , 78 ExDark %4 45
AT IS R AL, B E EDYOLO 4% 455 B 70 % 18 B i 5
TRR IR SRR 1 s, &1 H, M1, M2, M3 Hi
M4 43 3%t % HESM 8 . C2f DWM #e | LFAM £ e
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Ablation experiments %

YOLOv8n+ M1+

YOLOv8n+ M1+ YOLOv8n+ M1+

%5 YOLOv8n  YOLOv8n+Ml
M2 M2+ M3 M2+ M3+ M4

Bicycle 77.4 77.6 77.4 77.1 80. 6
Boat 67.7 71.7 72.7 67.8 72.2
Bottle 66. 0 67. 4 66. 1 69. 8 70. 2
Bus 80. 1 82.0 84.0 84. 2 84. 4
Car 77.9 77.0 78.2 79.3 78.0
Cat 67.3 68. 6 70. 6 73.2 73.4
Chair 63.3 61.4 63.7 63.9 63.5
Cup 63.7 64. 2 64.7 67.5 68.0
Dog 62. 4 65. 3 66. 3 67.9 68. 3
Motorbike 80. 2 80. 5 82.0 82. 4 83. 8
People 69. 7 71. 8 72.3 74.1 73.2
Table 56. 5 55. 2 55. 3 55. 8 56. 7
P/% 76. 2 77.3 78.5 78.9 79.1
R/% 59. 4 61.2 62. 4 62.6 62. 8
mAP, 5/ % 69. 3 70. 5 71.5 71. 9 72.17
mAP, .00/ % 43.3 44.7 44. 8 45. 8 45.9
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[ B HERT YOLOvSn 58 foRE 8 & P o 76. 2%, 3 7l
RR N 59.4%, XF R 0 IR KRN 40.6% . 1R KRN
23. 8% ; T U 5 AL BURG A BE 4R A 2 79. 1 %0, A Wl 4
THZE 62.8% Wi R FHEZE 37. 2% IR R KR 20.9%,
S SE SRR L B A ) ED_YOLO 55 4 78 A4 35 48 i 46
A R 00 TR A, B2 T TR BEUEE R 1 B AR R I B
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ST R SA AR AR R R IR T B A A T YRS B A
Exdark %0 #% % b, #% B YOLOv3-tiny, YOLOvx-s,
YOLOv7-tiny,  YOLOv5s, YOLOv8n, YOLOvSs,
YOLOv10s 4538 J (9 B A5 4 0 53 5 LL & EnlightenGAN+
YOLOv6s.MLFE-YOLOX, DarkYOLOv8,LOL_YOLO,
Zero_DCE+ YOLOv8s 45T 4F 3k 5 37 09416 B B b 4 U
BREHEAT X L SR SR IR 2 PR,

gk 2 pros, 538 A B bRk & % YOLOv3-tiny,
YOLOvX-S., YOLOV7-tiny. YOLOv5s., YOLOv8n,
YOLOVSs #l YOLOv10s 4 K, ED _ YOLO 3% ¥ 7&
mAPO. 5 #5 b5 A Bl T+ T 12.97%.9.37%.8.67%.
5.07%.2.87%.0. 11%H1 0. 67%,

5 A Ok B X AR R O B W B B A D
EnlightenGAN + YOLOV6s, MLFE-YOLOX, DarkYOLOvS,
LOL_YOLO, Zero_DCE+ YOLOVS8s #t,ED_YOLO
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Table 2 Comparison of the accuracy of different object detection algorithms on the ExDark dataset
Vikis ZH R /M GFLOPs P/ % R/ % mAP, /%  mAP.../%

YOLOv3-tiny 8. 90 5. 60 69. 1 53.7 59. 20 33. 00
YOLOvx-s 8.29 26. 80 69. 3 57. 4 62. 80 38. 20
YOLOv7-tiny 6. 20 4.50 70. 6 56. 9 63. 50 39. 20
YOLOv5s 7.02 16. 00 71.7 57.8 67. 10 40. 30
YOLOv8n 3.15 8. 90 76. 2 59. 4 69. 30 43.30
YOLOv8s 11. 14 25. 87 78.8 61.9 72.06 45. 60
YOLOv10s 8.07 24. 80 78. 6 61.5 71. 50 43. 42
EnlightenGAN+YOLOV6s™" — — 66. 1 53.7 62. 30 33. 60
MLFE-YOLOX™" - — — — 66. 20 39. 00
DarkYOLOv8"" — 8.53 — — 70. 10 43.90
LOL_YOLO™ — — 70. 9 62.5 68. 10 42. 30
Zero_DCE+YOLOv8s 30 11.15 33. 32 68. 9 54. 4 71. 91 44. 50
ED_YOLO 3.35 13. 40 79. 1 62. 8 72,17 45. 80

BEAEBRMITE &R T, mAPO.5 /F Sk T
9.87%.5.97%.,2.07% . 4.07% F 0.26%, [&mf, ED_
YOLO Bk 7ER 1% P A A R R WA T H A 5 pr ks il
Bk, WEW ED_YOLO AUA R Hl A, i 5358 7 XF
L E B ma RRE Ty, ST A SR AR B, AR SO 4R i R
ED_YOLO Sk fE 45 &t fg L 00 F AL S AR IR B
IREE T 1 H B A I AT 55 P 22 B0 40 T 4 4 Pk A AR L S A
A 00 450 B 5 AR R B R BE N 1 E AR R A 55

Ry i — 25 VAL BT 2 8 5 VR AR AR R RE R BT A A i
Mz At #F DarkFace (44 I 54 T e 5 09 B s
K B9k 4T T XF He 43 M7 . DarkFace 04 % 4H [t ExDark
B AR 5 B K T TG, B R (0 I TR B e MR R A Bk R
PR A DR X A 0 R ) R BE B T R e R, 4
BN 3 iR,

% 3 7E DarkFace HiIE&E L AR B NEEBE LR
Table 3 Comparison of the accuracy of different target

detection algorithms on the DarkFace dataset %

Tk P R mAP,;  mAP, ;..
YOLOv5s  68.1  36.5 50. 3 23.2
YOLOv8n  69.6  38.6 52.8 24.6
YOLOv8s  72.2  40.1 54.3 26.5
YOLOv10s  71.7  39.8 54.1 25. 8
ED_YOLO  73.5  44.3 55.2 27.1
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Fig. 8 Extreme scenario comparison
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