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摘 要:针对低照度环境下,目标特征不明显、细节丢失严重、场景适应性差等问题导致目标检测精度低的问题,提出

了一种基于边缘驱动的目标检测方法ED_YOLO。首先,设计了 HESM模块,通过Sobel算子提取边缘信息,引导多

元特征交互,提升有效信息的敏感度。其次,提出了C2f_DRM模块,高效整合局部细节与全局上下文信息。然后,构
建了LFAM模块,在共享卷积的基础上,优化不同尺度特征的自适应调控方法,有效减少细节信息丢失。最后,引入

RepGFPN模块,利用重参数化技术,提高模型的多尺度特征提取能力。在ExDark数据集上的实验结果表明,所提出

方法的 mAP50达到了72.17%,与原始YOLOv8n相比,提高了2.87%,取得了较好的检测效果。
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Abstract:Aiming
 

at
 

the
 

problems
 

of
 

limited
 

adaptability,
 

loss
 

of
 

details
 

and
 

unclear
 

features
 

faced
 

by
 

target
 

detection
 

in
 

low-light
 

environment,
 

the
 

edge-driven
 

detection
 

method
 

ED_YOLO
 

is
 

proposed.
 

Firstly,
 

the
 

HESM
 

module
 

is
 

proposed
 

to
 

extract
 

edge
 

information
 

through
 

the
 

Sobel
 

operator,
 

guide
 

the
 

interaction
 

of
 

multiple
 

features,
 

and
 

improve
 

the
 

sensitivity
 

of
 

effective
 

information.
 

Secondly,
 

the
 

C2f_DRM
 

module
 

is
 

designed
 

to
 

efficiently
 

integrate
 

local
 

details
 

and
 

global
 

context
 

information.
 

Then,
 

the
 

LFAM
 

module
 

is
 

constructed.
 

Based
 

on
 

shared
 

convolution,
 

the
 

adaptive
 

control
 

method
 

of
 

features
 

of
 

different
 

scales
 

is
 

optimized
 

to
 

effectively
 

reduce
 

the
 

loss
 

of
 

detail
 

information.
 

Finally,
 

the
 

RepGFPN
 

module
 

is
 

introduced
 

to
 

improve
 

the
 

multi-scale
 

feature
 

extraction
 

capability
 

of
 

the
 

model
 

by
 

using
 

reparameterization
 

technology.
 

Experimental
 

results
 

on
 

the
 

ExDark
 

dataset
 

show
 

that
 

the
 

mAP50
 

of
 

the
 

proposed
 

method
 

reaches
 

72.17%,
 

which
 

is
 

2.87%
 

higher
 

than
 

the
 

original
 

YOLOv8n,
 

achieving
 

better
 

detection
 

effect.
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0 引  言

  低照度条件下的目标检测是指在光照条件不足的情况

下,通过计算机视觉技术自动识别和定位图像中的目标,被
广泛应用于安防监控[1]、自动驾驶[2]、夜间巡检等领域,对
于提升智能监控系统可靠性、提高夜间安全防护能力具有

重要意义。
随着人工智能技术的持续发展,学者们提出了一系列

基于深度学习的低照度图像目标检测方法。现有的研究方

法主要分为两大类:采用图像增强算法与目标检测相结合

的两阶段算法和通过改进目标检测算法实现的单阶段

检测。
在两阶段算法中,首先利用SCINet[3]、RetinexNet[4]和

EnlightenGAN[5]等图像增强模型提升低照度图像的整体

质量,为后续的目标检测任务提供更清晰、可辨识的特征信

息,以 降 低 目 标 检 测 的 难 度。例 如,Wang 等[6]采 用
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DCGAN算法 先 将 低 照 度 图 像 增 强,然 后 通 过 改 进 的

Faster
 

R-CNN进行目标检测,有效提升了低照度图像目标

检测的性能。Xue等[7]提出的 MPE-DETR模型通过融合

多尺度金字塔增强网络,增强了低照度图像的结构和纹理

特征,结合实时检测器,有效提高了夜间检测精度。尽管两

阶段算法在检测精度方面具有一定优势,但其将低照度目

标检测拆分成增强和检测两个步骤,这种设计使得图像增

强算法与目标检测相互独立,导致计算成本上升,难以满足

实时应用的需求。同时,由于两者未进行端到端的联合优

化,难以实现从图像增强到目标检测的协同优化,无法达到

系统的整体最优性能。因此,出于对检测速度与计算效率

的需求,近年来的研究逐渐聚焦于单阶段目标检测算法的

优化与应用。单阶段检测是通过优化YOLO[8-10]和SSD[11]

等经典算法,能够高效地实现目标检测任务。例如,舒子婷

等[12]提出了YOLOv5_DC模型,通过双通道输入分别处理

图像的亮度和纹理信息,增强特征提取能力。Yin等[13]将

离散余弦变换(DCT)信息嵌入 YOLOv3网络,提出了

DCT驱动的DEFormer架构,借助频率信息提升低照度场

景下的检测性能。Cui等[14]利用自动编码器对图像特征进

行重构,并结合多任务学习框架,设计了多任务自动编码转

换(MAET)模型,进一步优化了检测精度。杜运亮等[15]通

过知识蒸馏技术,将复杂模型的知识迁移到轻量级模型中,
提升了YOLOv8检测器的性能和效率。郭志聪等[16]通过

图像增强技术突出异物的特征,借助slim-neck设计优化模

型结构,提升检测效果。蔡腾等[17]采用 MobileNet
 

v2[18]作
为YOLOv8的骨干网络,提升了模型的计算效率和特征提

取能力。Sasagawa等[19]设计了 YOLO-in-the-dark算法,
通过将特征传递至粘合层,实现了不同域模型的融合,进而

增强了模型的检测性能。此外,王非凡等[20]将传统图像

处理方法与深度学习相结合,设计了图像自适应增强网

络,并与YOLOv5进行端到端的联合训练,有效提高了检

测精度。上述单阶段方法大多通过图像增强算法或额外

的计算模块与目标检测模型相结合,提高了识别精度。然

而,这些方法在不同光照条件下的适应性有限。在光照强

度变化较大时,无法有效调整图像的对比度和亮度,容易

受到噪声干扰,导致目标特征提取不够准确,从而影响整

体检测性能。
综上所诉,为了解决低照度目标检测中存在的特征不

明显、细节信息丢失严重、场景适应性能力不足等问题,本
文提出了一种基于边缘驱动的低光照目标检测算法Edge-
Driven

 

YOLO(ED_YOLO)。首先,提出了层级边缘感知

模块(hierarchical
 

edge
 

sensing
 

module,HESM),促进多元

特征之间的深度融合与交互,增强目标区域的特征表达能

力。其 次,设 计 了 扩 张 残 差 模 块 (C2f
 

dilation
 

residual
 

module,C2f_DRM),通过区域残差化和语义残差化,高效

地获取多尺度上下文信息。然后,构建了轻量化特征聚合

模块(lightweight
 

feature
 

aggregation
 

module,LFAM),利
用自适应门控动态调整各尺度特征的权重,提升对细小特

征的感 知 能 力。最 后,引 入 重 参 数 化 广 义 特 征 金 字 塔

(reparameterized
 

generalized-FPN,RepGFPN),结合多尺

度特征交互,增强模型对多样化特征的适应能力。

1 Edge-Driven
 

YOLO(ED_YOLO)

  ED-YOLO以 YOLOv8n为基准网络进行模型改进,
主要由主干网络、颈部网络和头部网络组成,其整体框架如

图1所示。

图1 ED_YOLO网络框架

Fig.1 Framework
 

of
 

ED_YOLO

  在主干网络,采用 HESM模块替换YOLOv8n主干网

络中的前两层卷积操作,实现多元特征的深度聚合,提升

模型对关键信息的感知能力。将C2f_DRM模块取代主干

网络部分C2f模块,有效地整合局部细节与全局上下文信

息。LFAM模块替换主干网络SPPF池化操作,自适应地

分配不同尺度特征的权重,增强对细节信息的捕捉能力。

在 颈 部 网 络,将 原 始 特 征 金 字 塔 网 络 替 换 为

RepGFPN[21]模块。RepGFPN模块采用了多方向的信息

流动机制,通过自顶向下、从下向上以及跨层特征交互来

提高多尺度特征提取和融合能力。
在头部网络延续了YOLOv8n的设计,采用了当前主

流的解耦头结构(decoupled
 

head,DH),在模型的效率、精
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度以及应用的广泛性方面都带来了显著提升。

1.1 层级边缘感知模块

  在低照度照条件下,物体的颜色和纹理信息容易变得

模糊不清,导致特征显著性降低,增加了识别难度。然而,
在这种环境下,物体的边缘特征(如物体的轮廓、边界)依

然能够提供清晰可靠的几何结构信息。基于这一特性,设
计了 HESM模块,通过Sobel算子提取目标的边缘细节,
并融合多尺度边缘特征与空间信息,提升目标区域的特征

表达能力。Sobel算子结构如图2(a)所示,HESM 模块结

构如图2(b)所示。

图2 Sobel算子结构图与 HESM结构图

Fig.2 Structure
 

diagram
 

of
 

Sobel
 

operator
 

and
 

HESM

  首先,构建多尺度特征图。将输入的弱光图像L 经过

三次3×3卷积进行特征提取,逐步聚合全局信息,输出特

征图L1、L2、L3。 实现公式如下:

L1=Conv(L,C,K,S,P),C=16,K =3,S=2,P=1
L2=Conv(L1,C,K,S,P),C=32,K =3,S=2,P=1
L3=Conv(L2,C,K,S,P),C=32,K =3,S=1,P=1

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

(1)
其中,Li 为输出特征图,Conv表示普通卷积,G 表示

生成特征图的通道数量,K、S 和P 分别表示卷积核的大

小、步幅和填充大小。
接着,将生成的3个特征图L1,L2,L3 通过Sobel算

子、最大池化操作进行进一步处理。Sobel算子依赖像素

间的相对灰度变化,不易受到绝对亮度的影响,能够提取

出清晰的几何结构信息。

Sobel算子对输入特征图L1,L2,L3 进行水平和垂直

方向的梯度计算,利用水平和垂直方向的梯度,计算出每

个像素的梯度幅值,获取像素点的边缘强度。Sobel算子

实现公式如下:

Gx =
-1 0 1
-2 0 2
-1 0 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 *Li

Gy =
-1 -2 -1
0 0 0
1 2 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 *Li

G(x,y)= Gx
2+Gy

2

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(2)

其中,GX 为水平方向梯度,GY 为垂直方向梯度,Li

为输入特征图,G 为像素点的梯度幅值。
最大池化操作通过局部显著区域的聚合,进一步丰富

特征表达。通过对特征图进行零填充,并针对输入特征图

L1、L2、L3 的每个通道,采用大小为2×2、步幅为1的最大

池化操作,提取局部区域的显著信息,分别输出特征图L1、

L2、L3。 实现公式如下:

Li(x,y)=max
1

m=0
max
1

m=0
Li(x+m,y+n) (3)

其中,Li 为输入特征图,y 为输出特征图,x、m 是特

征图的行和列索引。m、n是池化窗口内的偏移量。

·691·



 

杨潞霞
 

等:ED_YOLO:基于边缘驱动的低照度目标检测算法
 

第23期

最后,将通过Sobel算子提取的边缘信息与最大池化

操作提取的空间信息进行特征拼接,结合多尺度特征交互

及3×3卷积深度提取,输出融合多尺度、边缘敏感性和空

间显著性的统一特征图。

1.2 扩张残差模块

  在低照度环境下,图像整体亮度分布不均,致使局部

细节信息模糊。而全局上下文信息可以提供更广泛的背

景线索,帮助模型推断目标的形状、位置和语义信息。因

此,本文引入空洞重参数化结构(dilated
 

reparam
 

block,

DRB)[22],设计了C2f_DWM模块,通过提取更广泛的上下

文信息,整合和恢复低照度图像中分散和模糊的特征。

C2f_DWM模块结构如图3(a)所示,DRB如图3(b)所示。

图3 C2f_DWM结构图与DRB结构图

Fig.3 Structure
 

diagram
 

of
 

C2f-DWM
 

and
 

DRB

  在第1条分支中,C2f_DWM通过一个3×3卷积进行

初步特征提取,引入ReLU激活函数,增强非线性表达能

力,去掉噪声干扰。接着,使用一个3×3卷积专注于提取

局部特征,捕获输入特征图的局部细节信息。实现公式

如下:

X1 =RELU(Conv3×3(X))

C1 = (Conv3×3(X1)) (4)

其中,X1 为输入特征图,C1 为第1条分支输出特征,

RELU 为激活函数,Conv3×3()为3×3卷积。
在第2条分支中,使用核大小为5的DRB模块。DRB

模块通过多层卷积进行特征提取。浅层卷积层提取图像

的基础特征,深层卷积层逐步捕获抽象的语义信息。随

后,利用多个连接层将不同卷积层的特征信息进行多次融

合,丰富特征的层次和维度,使模型能够更全面地理解图

像的全局结构和上下文关系。实现公式如下:

C2 =DRB(X1,k1,d1) (5)
其中,C2 为第2条分支输出特征,DRB(X1,k1,d1)

是扩张率为d 和卷积核大小为k的扩张重参数化分支。
在第3条分支中,使用核大小为7的DRB模块,进一

步扩展感受野,捕获更广阔的全局信息。随后,将3条路

径输出的特征沿通道维度拼接,整合多尺度信息。利用一

个1×1卷积对拼接后的特征进行融合,并引入ReLU激

活函数以增强非线性特性,抑制无意义的负值响应。同

时,结合残差连接机制,提升特征表达能力和信息传递的

完整性。实现公式如下:

C3 =DRB(X1,k2,d2)

Xoutput =X+RELU(Conv1×1(Concat(C1,C2,C3))) 
(6)

其中,C3 为第3条分支输出特征,Conv1×1()为1×1
卷积,Concat为拼接操作,Xoutput 为输出特征图。

1.3 轻量化特征聚合模块

  在低照度条件下,图像往往伴随着较高的噪声水平。
在此状况下,SPPF池化操作难以准确区分噪声与有效信

息,导致细节信息丢失严重。为了解决这一问题,本文构

建了LFAM模块,增强对细节信息的捕捉能力,同时降低

计算复杂度和参数量,提升模型的运行效率和泛化能力,
其结构如图4所示。

首先,LFAM模块通过一个
 

1×1
 

卷积和批量归一化

对输入特征图进行通道压缩,从而有效减少计算复杂度。
接着,通过一个3×3共享卷积进行特征提取,在不同膨胀

率(dilations=[1,
 

3,
 

5])[23]下重复使用这一卷积核,实现

了对 图 像 特 征 的 多 尺 度 捕 获。其 中,较 小 的 膨 胀 率

(dilations=[1])能够有效捕捉局部区域的细粒度细节特

征;而较大的膨胀率(dilations=[5])则能够扩展感受野,

·791·



 第48卷 电 子 测 量 技 术

图4 LFAM结构图

Fig.4 Structure
 

diagram
 

of
 

LFAM

捕捉到更大范围内的上下文信息以及更粗粒度的特征。
多尺度特征的提取有助于模型更好地理解图像中的不同

层次细节,从而在处理复杂场景时能够增强对细节信息的

捕捉能力。然后,引入轻量级门控机制,通过全局平均池

  

化、1×1卷积和Sigmoid归一化计算不同尺度特征的权

重,并采用加权求和的方式进行特征融合。最终,通过

1×1卷积进一步调整通道数,以适配下游任务需求。实现

公式如下:

X1 =Conv1×1(X)

wi =σ(Conv1×1(GAP(X1)))

Yd =Conv1×1(∑wi·Conv
di
3×3(Conv1×1(X)))

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (7)

其中,X1 为输入的特征图,Conv3×3()为3×3卷积,

Conv1×1()为1×1卷积
 

Concat为拼接操作,Wi 是用于加

权不同尺度特征的门控权重,d 为膨胀率,Yd 为输出特

征图。

1.4 重参数化广义特征金字塔
 

  在低光照条件下,低层特征中的边缘和纹理信息容易

受到噪声干扰,然而,高层语义特征则表现出更强的稳健

性。因此,本文引入RepGFPN模块,通过跨阶段部分连接

结构(cross
 

stage
 

partial
 

stage,CSPStage)[24],将低层的空

间细节与高层的语义特征有机结合,有效补偿低层特征中

的细 节 丢 失 问 题。RepGFPN 结 构 如 图 5(a)所 示,

CSPStage如图5(b)所示。

图5 RepGFPN结构与CSPStage结构

Fig.5 Structure
 

diagram
 

of
 

RepGFPN
 

and
 

CSPStage

  RepGFPN凭借其高效的特征融合机制,在保持低计

算负担的同时,显著提升了检测精度。其核心CSPStage,
能够灵活处理2层或3层特征图。在操作过程中,特征图

经拼接后分为两条分支:一条通过1×1卷积压缩通道,另
一条则进入ELAN特征聚合模块,该模块包含多个3×3
卷积操作。最终,两条分支的特征经拼接后融合为输出

结果。

2 实验分析

2.1 实验环境与数据集

  本文实验环境为 Windows11操作系统,配备NVIDIA
 

RTX4070 显 卡,采 用 Pytorch1.12 深 度 学 习 框 架 及

Python3.9编程语言。
本文采用ExDark数据集和DarkFace数据集进行实

验分析。ExDark数据集常用于评估不同目标检测算法在

低照度条件下的性能。ExDark数据集包含7
 

363张图像,
按照8∶2的比例分为训练集和测试集。数据集标注了12
类目标,包括自行车、船、瓶子、公交车、汽车、猫、椅子、杯
子、狗、摩托车、人和桌子。DarkFace数据集是一个面向低

照度检测任务的大规模图像数据集。DarkFace数据集包

含6
 

000张拍摄于夜间复杂场景的图像,划分为5
 

400张训

练图像和600张测试图像,具有典型的低光照、高噪声等

挑战性特点。
2.2 评价指标

  本文选取平均精度mAP@0.5、平均精度 mAP@0.5:
0.95、参数量(Params)、计算量(GFLOPS)等指标进行实

验对比。公式如下:

P =
TP

TP+FP
(8)

R =
TP

TP+FN
(9)
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AP =∫
R

0
P(R)dR (10)

mAP@0.5=
1
N∑

N

i=1
APi (11)

mAP@0.5:0.95=
1
T∑

0.95

t=0.5
APt (12)

其中,TP(true
 

positives)为真正例,表示被检测样本

中为正确的正样本。FP(false
 

positives)为假正例,表示被

检测为错误的正样本。FN(False
 

negatives)为假反例,表
示被错误识别为负样本的正样本数量。P 表示精确度,指

衡量分类器分出来的正类的确是正类的概率。R 表示召回

率,指分类器能否找出所有真正的正类的概率指标。APi

是第i个类别的AP 值。N 表示类别总数。T 是IOU阈值

的数量,APt 指在IOU阈值为t时的平均精度。
2.3 消融实验

  本文以 YOLOv8n作为基础框架,在ExDark数据集

上进行消融实验,验证ED_YOLO中各模块在低照度场景

下的检测性能,结果如表1所示。表1中,M1、M2、M3和

M4分别对应 HESM 模块、C2f_DWM 模块、LFAM 模块

以及RepGFPN模块。

表1 消融实验

Table
 

1 Ablation
 

experiments %

类别 YOLOv8n YOLOv8n+M1
YOLOv8n+M1+

M2
YOLOv8n+M1+

M2+M3
YOLOv8n+M1+
M2+M3+M4

Bicycle 77.4 77.6 77.4 77.1 80.6
Boat 67.7 71.7 72.7 67.8 72.2
Bottle 66.0 67.4 66.1 69.8 70.2
Bus 80.1 82.0 84.0 84.2 84.4
Car 77.9 77.0 78.2 79.3 78.0
Cat 67.3 68.6 70.6 73.2 73.4
Chair 63.3 61.4 63.7 63.9 63.5
Cup 63.7 64.2 64.7 67.5 68.0
Dog 62.4 65.3 66.3 67.9 68.3

Motorbike 80.2 80.5 82.0 82.4 83.8
People 69.7 71.8 72.3 74.1 73.2
Table 56.5 55.2 55.3 55.8 56.7
P/% 76.2 77.3 78.5 78.9 79.1
R/% 59.4 61.2 62.4 62.6 62.8

mAP0.5/% 69.3 70.5 71.5 71.9 72.17
mAP0.5:0.9/% 43.3 44.7 44.8 45.8 45.9

  由表1可知,ED_YOLO(YOLOv8n+M1+M2+M3
+M4)算 法 的 mAP0.5 为 72.17%,相 对 于 基 础 网 络

YOLOv8n,ED_YOLO算法 mAP0.5提高了2.87%。首

先,在YOLOv8n加入 HESM(M1)模块,增强目标区域的

特征表达能力,mAP0.5提升了1.2%。随后,在此基础上

加入
 

C2f_DWM(M2)模块,有效地捕获低照度图像全局上

下文信息,mAP0.5进一步提高1%。接着,将SPPF模块

替换为
 

LFAM(M3)模块,减少了图像细节信息丢失,mAP
值提升了0.4%。最后,引入RepGFPN(M4)模块,提高模

型的多尺度特征提取能力,mAP0.5额外提高了0.27%。
同时,改进前YOLOv8n模型的精确度P为76.2%,召回

率 R 为 59.4%,对 应 的 漏 检 率 为 40.6%,误 检 率 为

23.8%;而改进后的模型精确度提升至79.1%,召回率提

升至62.8%,漏检率下降至37.2%,误检率降至20.9%。
实验结果表明,改进后的ED_YOLO算法在保持较高检测

准确率的同时,提升了低照度图像下的目标检测性能。

2.4 对比实验

  为了验证算法在低照度环境下目标检测的精度,在
Exdark 数 据 集 上,选 取 YOLOv3-tiny、YOLOvx-s、

YOLOv7-tiny、 YOLOv5s、 YOLOv8n、 YOLOv8s、

YOLOv10s等通用的目标检测算法以及EnlightenGAN+
YOLOv6s、MLFE-YOLOX、DarkYOLOv8、LOL_YOLO、

 

Zero_DCE+
 

YOLOv8s
 

等近年来最新的低照度目标检测

算法进行对比实验,结果如表2所示。
如表2所示,与通用 目 标 检 测 算 法 YOLOv3-tiny、

YOLOvX-S、 YOLOV7-tiny、 YOLOv5s、 YOLOv8n,

YOLOV8s 和 YOLOv10s 相 比,ED _ YOLO 算 法 在

mAP0.5指 标 上 分 别 提 升 了 12.97%、9.37%、8.67%、

5.07%、2.87%、0.11%和
 

0.67%。
与近 年 来 针 对 低 照 度 环 境 的 目 标 检 测 算 法

EnlightenGAN+YOLOV6s、MLFE-YOLOX、DarkYOLOv8、

LOL_YOLO、
 

Zero_DCE+
 

YOLOV8s
 

相比,ED_YOLO
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  表2 在ExDark数据集上不同目标检测算法精度比较

Table
 

2 Comparison
 

of
 

the
 

accuracy
 

of
 

different
 

object
 

detection
 

algorithms
 

on
 

the
 

ExDark
 

dataset
方法 参数量/M GFLOPs P/% R/% mAP0.5/% mAP0.5:0.9/%

YOLOv3-tiny 8.90 5.60 69.1 53.7 59.20 33.00
YOLOvx-s 8.29 26.80 69.3 57.4 62.80 38.20
YOLOv7-tiny 6.20 4.50 70.6 56.9 63.50 39.20
YOLOv5s 7.02 16.00 71.7 57.8 67.10 40.30
YOLOv8n 3.15 8.90 76.2 59.4 69.30 43.30
YOLOv8s 11.14 25.87 78.8 61.9 72.06 45.60
YOLOv10s 8.07 24.80 78.6 61.5 71.50 43.42

EnlightenGAN+YOLOV6s[25] - - 66.1 53.7 62.30 33.60
MLFE-YOLOX[26] - - - - 66.20 39.00
DarkYOLOv8[17] - 8.53 - - 70.10 43.90
LOL_YOLO[27] - - 70.9 62.5 68.10 42.30

Zero_DCE+YOLOv8s
 

30[28] 11.15 33.32 68.9 54.4 71.91 44.50
ED_YOLO 3.35 13.40 79.1 62.8 72.17 45.80

算法在 较 低 计 算 量 的 前 提 下,mAP0.5 分 别 领 先 了
 

9.87%、5.97%、2.07%、4.07% 和 0.26%。同 时,ED_

YOLO算法在精确度P和召回率R也优于其他目标检测

算法。证明ED_YOLO不仅有效抑制误检,而且增强了对

真实目标的响应能力。实验结果表明,本文提出的模型

ED_YOLO算法在综合性能上均优于其他算法,在低照度

环境下的目标检测任务中表现出更好的性能,相比与其他

目标检测算法更适用于低照度环境下的目标检测任务。
为进一步评估所提出方法在低照度环境下的稳健性

和泛化性,在DarkFace数据集上与若干性能优异的目标

检测算法进行了对比分析。DarkFace数据集相比ExDark
数据集亮度水平更低,具有典型的低照度、高噪声等挑战

性特点,因而对检测模型的感知能力提出了更高要求。结

果如表3所示。
 

表3 在DarkFace数据集上不同目标检测算法精度比较

Table
 

3 Comparison
 

of
 

the
 

accuracy
 

of
 

different
 

target
 

detection
 

algorithms
 

on
 

the
 

DarkFace
 

dataset %

方法 P R mAP0.5 mAP0.5:0.9
YOLOv5s 68.1 36.5 50.3 23.2
YOLOv8n 69.6 38.6 52.8 24.6
YOLOv8s 72.2 40.1 54.3 26.5
YOLOv10s 71.7 39.8 54.1 25.8
ED_YOLO 73.5 44.3 55.2 27.1

  实验结果表明,在精确度P、召回率 R、mAP0.5和

mAP0.5:0.9 等多个评价指标上,ED_YOLO算法均优于对

比模型,证明其在提升特征表达能力、保留细节信息以及

增强模型鲁棒性方面具有明显优势。同时,在面对光照极

度不足、目标尺寸不稳定等复杂场景时,ED_YOLO算法

仍能保持较高的检测性能,表明其具备良好的泛化能力和

实际应用潜力。

2.5 热力图对比

  为了更直观的展示ED_YOLO算法的检测能力,将
YOLOv8n和ED_YOLO算法使用热力图进行可视化对比,结
果如图6所示。可以看出,YOLOv8n原始模型热力图的高亮

区域不明显,细节信息丢失严重,而ED_YOLO能够在全局范

围内获取到更多关键性特征,精确的识别目标。

图6 热力图可视化对比

Fig.6 Heat
 

map
 

visualization
 

comparison
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2.6 可视化结果对比

  为了验证ED_YOLO算法的有效性,图7展示了不同

方法在Exdark数据集上的检测结果。图中左上角为检测

算法的名称,并给出了目标种类与置信度。

图7 数据集图像效果对比

Fig.7 Comparison
 

of
 

image
 

effects
 

in
 

the
 

dataset

  从图7可以看出,由于背景区域光照条件不均匀,各
类检测算法方法均存在漏检与误检现象,而ED_YOLO算

法降低了低照度场景下的漏检和误检问题,成功检测出所

有目标,同时保持较高的检测精度。上述实验结果表明,

ED_YOLO算法更适用于低照度场景下的目标检测。

2.7 低照度极端场景对比

  为了验证在低照度极端场景下ED_YOLO算法的性

能,本节给出了ED-YOLO算法和性能较好的YOLOv8s、

YOLOv10s的可视化对比。结果如图8所示,图中左上角

为检测算法的名称。
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图8 极端场景对比

Fig.8 Extreme
 

scenario
 

comparison

  如图8(a)所示,在界限不明显的场景中,YOLOv8s和

YOLOv10s在检测人和车时容易出现漏检和误检,相较而

言,ED_YOLO算法能够有效检测出所有目标。图
 

8(b)展
示了在夜间模糊场景下不同方法的检测结果,YOLOv8s
和YOLOv10s均出现了误检,而ED_YOLO算法则能够

准确地识别出摩托车。在图
 

8(c)所示的明暗差距较大场

景下,其中 YOLOv8s和 YOLOv10s检测置信度普遍偏

低,而ED_YOLO相比YOLOv8s和YOLOv10s有着更高

的识别率。
从上述可视化对比结果可以看出,在低照度条件下,

ED_YOLO算法场景适应性更强,面对低照度极端场景同

样具备着较好的检测效果。

3 结  论

  本文提出了一种基于边缘驱动的低照度图像目标检

测ED_YOLO算法。所设计的 HESM 模块,提高了目标

区域的特征表达能力。为了解决低照度条件下的图像细

节信息模糊,提出了C2f_DWM 模块,整合局部细节与全

局上下文信息。构建的LFAM模块,能够自适应调控不同

尺度权 重,更 好 地 捕 捉 图 像 中 细 微 之 处。此 外,引 入

RepGFPN模块,提高模型的多尺度特征提取能力。与目

前主流算 法 以 及 其 他 低 照 度 场 景 下 的 算 法 相 比,ED_

YOLO算法在参数量、计算量较小的基础上,实现了更高

的检测精度。
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