"'*%W@W“@”W% T oW R A %48 % 4 23 0]

ELECTRONIC MEASUREMENT TECHNOLOGY 2025 4 12 H

DOI:10. 19651/j. cnki. emt. 2518388

R AR B8 5 5K 2 0 2 50 7R BB PR 3 T B AR AL

#gax' £ K F 91 #& HK %
(1.2 KFELA5HEBRFR T 443002; 2. BEMHALE L AFRAS B S44E N TG 443000)

W OE . B LR R R e A C R 5 | AR Y P R SR AL, L — P S R AR e 7 K w1 19 3 3l T L A T T B
PR AL SR W . T 5T L A T AT S R ek DRHE Y Ty ST B ik 5SS MY SR et O R R AT A S BRI B L B . AR
J5 75 TR C W B AT 75 3K . 4 A DL | L A 25 455 5 G8 AT AR S/ DRy BB o R4 15 8 R 282 P 9 A Dy R R A i 1 B IR A
ARAERY Ay T A0 03 7 i S o B 1 L B B A R0 S I A R L AR — R O R B Bk . FERLVA T, R Bernoulli
TR D W S ) 2 A R O 5 ACRR 28 S R AL B AR R IR R AR L S IR T B AR R T R AR ). fEEAUE L
S A VG P B 3 T Bk R R R L RO RE . B e A9 TEEESS 95 s AR G005 L 56 UE T H 5 W R 2 B A R
KR ESNEC A 5 BB R 2E S 5 W IR0 Ak 5 B R R O I 5 o oG G R vk

FESFEE: TM732.3; TN92 XHkHRIRAG: A EREAEZRSERIG: 470. 4054

Active and reactive power coordinated optimization of active distribution
network considering low-carbon demand response

Wei Yewen' Wang Xiao' Lei Ming' Tan Lin®  Xu Tao®
(1. School of Electrical Engineering and New Energy, Three Gorges University, Yichang 443002, China;
2. State Grid Hubei Electric Power Co. , Ltd. , Yichang Power Supply Company, Yichang 443000, China)

Abstract: A proactive active and reactive power collaborative optimization strategy considering low-carbon demand is
proposed to address issues such as voltage exceeding limits caused by the high proportion of new energy connected to
the distribution network. Firstly, in order to fully tap into the potential of carbon reduction in the system, a tiered
carbon trading model is established to stimulate load side adjustment of electricity consumption behavior and achieve
low-carbon response. Then, considering the operational requirements of the distribution network, a collaborative
optimization model is constructed with the goal of minimizing network loss, voltage deviation, and comprehensive
operating costs, and compensating equipment and flexible loads as decision variables. To overcome the drawbacks of
slow convergence speed and susceptibility to local optima in the Pelican algorithm, an improved Pelican algorithm is
proposed. In the early stage of the algorithm, Bernoulli chaotic mapping is used to initialize the population and sparrow
vigilance mechanism and nonlinear inertia weights are introduced to balance and enhance the exploration and
development capabilities of the algorithm. In the later stage of iteration, the Cauchy perturbation is used to enhance the
algorithm's ability to escape from local optima. Finally, the effectiveness of the proposed strategy and algorithm was
verified through simulation of an improved IEEE33 node system.
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Table 5 Optimization results of different algorithms
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