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Feature extraction method of explosion vibration signal based on HHT

Zhang Long Shi Yongxiang Song Shiqian Jiao Xuejie Zhang Geng

(Northwest Institute of Nuclear Technology.Xi'an 710024, China)

Abstract: In order to research the time-frequency characteristics and energy distribution of explosion vibration signals,
a HHT based feature extraction method of explosion vibration signal was constructed in this paper. And we used the
method to analyze the vibration velocity signals of a certain explosion experiment. The results showed that denoising
the high-frequency IMF components after EMD decomposition using wavelet threshold method could effectively remove
high-frequency noise from the signal and improve the accuracy of Hilbert spectrum analysis. Through comparative
analysis of the Hilbert time-frequency spectrum, marginal spectrum and instantaneous energy spectrum of the signals
at each measuring point, the instantaneous relationships among time-frequency-energy and variation pattern with
explosion center distance were obtained. Within a range of 80 meters from the explosion center, the vibration signal
energy is mainly distributed in the 0~250 ms time range and 0~150 Hz frequency range. With the increase of distance
from explosion center, the starting time, peak speed time and energy concentration period of the signals at each
measuring point was gradually delayed. In addition, the amplitude of vibration, instantaneous energy and high-
frequency components in the signals were gradually decayed.
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Fig. 1 The time domain waveform of simulated signal
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Fig. 2 The Hilbert time-frequency spectrum of simulated signal
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Table 1 Comparison of denoising effects of different methods
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40 m
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SNR 10. 117 10. 851 11. 429
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RMSE 0.728 0. 667 0. 684
SNR 8. 845 9.017 8.962
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RMSE 0. 833 0. 809 0.767
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