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Surface defect detection algorithm for memory heat sink
based on improved PatchCore

Li Bing"? Gan Genzheng'? Liu Songyan'? Zhang Xinlei'? Zhai Yongjie'*
(1. Department of Automation, North China Electric Power University,Baoding 071003, China;

2. Baoding Key Laboratory of Intelligent Robot Perception and Control in Electric Power System, Baoding 071003, China)

Abstract: As the core link of intelligent manufacturing quality control, the detection accuracy and real-time
performance of surface defects in industrial products are crucial for industrial production. Aiming at the key problems
of insufficient local feature sensitivity and high computational redundancy faced by existing unsupervised anomaly
detection methods in complex industrial scenarios, an improved multi-scale feature fusion detection algorithm based on
PatchCore is proposed. Firstly, by introducing a multi-scale feature fusion processing method with self attention
mechanism, the layer 3 feature map is fused with self attention mechanism and average pooling to enhance the
algorithm's ability to capture local and global abnormal features; propose a channel aggregation dimensionality
reduction method, which randomly divides the original features into several continuous subgroups and aggregates each
group of features to generate low dimensional features, achieving the goal of reducing computational redundancy while
preserving some local information of the original features; build transfer learning models to enhance the algorithm's
generalization ability in anomaly detection tasks and improve the detection accuracy of actual industrial projects.
Through defect detection experiments on memory heat sink images. the results show that the improved algorithm
improves AUROC by 2.28% and FlScore by 4.89% compared to the original algorithm. which can meet the
requirements of high efficiency and high precision in industrial scenarios.

Keywords: anomaly detection;unsupervised algorithm;PatchCore algorithm;channel aggregation dimensionality reduction
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Table 5 Results of ablation experiment %
S T7 ) AUROC S F1Score AUROC #£7F F1Score # 7}
PatchCore 97. 04 93.93 0 0
PatchCore+SA 97.91 96. 75 0.87 2.82
PatchCore+CFA 98. 28 97.59 1.24 3. 66
PatchCore+TL 97.13 94. 895 0.09 0.97
PatchCore+SA+TL 98. 53 97. 44 1. 49 3.51
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PatchCore+SA+CFA 98. 70 98. 05 1. 66 4.12
Ours 99. 31 98. 82 2.27 4.89
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Fig. 6 Anomalous region localization results of various algorithms
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