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摘 要:工业产品表面缺陷检测作为智能制造质量控制的核心环节,其检测精度与实时性高低对工业生产至关重要。
针对现有无监督异常检测方法在复杂工业场景下面临的局部特征敏感性不足、计算冗余度高等关键问题,提出一种基

于PatchCore的改进型多尺度特征融合检测算法。首先,通过引入自注意力机制的多尺度特征融合处理方式,对
layer3特征图进行自注意力机制与平均池化的融合处理,增强算法对局部与全局异常特征的捕捉能力;提出通道聚合

降维方法,将原始特征随机划分为若干连续子组,并对每组特征进行聚合操作生成低维特征,达到减少计算冗余的同

时保留部分原始特征局部信息;构建迁移学习模型,增强算法在异常检测任务中的泛化能力,提高实际工业项目的检

测精度。通过对内存散热片图像进行缺陷检测实验,结果表明,改进算法相较原算法 AUROC提升2.28%,F1Score
提升4.89%,能够满足工业场景下高效率高精度的需求。
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Abstract:As
 

the
 

core
 

link
 

of
 

intelligent
 

manufacturing
 

quality
 

control,
 

the
 

detection
 

accuracy
 

and
 

real-time
 

performance
 

of
 

surface
 

defects
 

in
 

industrial
 

products
 

are
 

crucial
 

for
 

industrial
 

production.
 

Aiming
 

at
 

the
 

key
 

problems
 

of
 

insufficient
 

local
 

feature
 

sensitivity
 

and
 

high
 

computational
 

redundancy
 

faced
 

by
 

existing
 

unsupervised
 

anomaly
 

detection
 

methods
 

in
 

complex
 

industrial
 

scenarios,
 

an
 

improved
 

multi-scale
 

feature
 

fusion
 

detection
 

algorithm
 

based
 

on
 

PatchCore
 

is
 

proposed.
 

Firstly,
 

by
 

introducing
 

a
 

multi-scale
 

feature
 

fusion
 

processing
 

method
 

with
 

self
 

attention
 

mechanism,
 

the
 

layer
 

3
 

feature
 

map
 

is
 

fused
 

with
 

self
 

attention
 

mechanism
 

and
 

average
 

pooling
 

to
 

enhance
 

the
 

algorithm's
 

ability
 

to
 

capture
 

local
 

and
 

global
 

abnormal
 

features;
 

propose
 

a
 

channel
 

aggregation
 

dimensionality
 

reduction
 

method,
 

which
 

randomly
 

divides
 

the
 

original
 

features
 

into
 

several
 

continuous
 

subgroups
 

and
 

aggregates
 

each
 

group
 

of
 

features
 

to
 

generate
 

low
 

dimensional
 

features,
 

achieving
 

the
 

goal
 

of
 

reducing
 

computational
 

redundancy
 

while
 

preserving
 

some
 

local
 

information
 

of
 

the
 

original
 

features;
 

build
 

transfer
 

learning
 

models
 

to
 

enhance
 

the
 

algorithm's
 

generalization
 

ability
 

in
 

anomaly
 

detection
 

tasks
 

and
 

improve
 

the
 

detection
 

accuracy
 

of
 

actual
 

industrial
 

projects.
 

Through
 

defect
 

detection
 

experiments
 

on
 

memory
 

heat
 

sink
 

images,
 

the
 

results
 

show
 

that
 

the
 

improved
 

algorithm
 

improves
 

AUROC
 

by
 

2.28%
 

and
 

F1Score
 

by
 

4.89%
 

compared
 

to
 

the
 

original
 

algorithm,
 

which
 

can
 

meet
 

the
 

requirements
 

of
 

high
 

efficiency
 

and
 

high
 

precision
 

in
 

industrial
 

scenarios.
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0 引  言

  在工业领域中,产品质量控制直接影响企业核心竞争

力与经济效益[1],作为质量控制的核心环节,工业产品表面

缺陷检测对确保产品合格率具有不可替代的作用。目前工

业产品表面的异常检测主要依赖人工方式进行目视检测,
存在人工检测效率低下[2]、劳动强度大、细小缺陷难以发

现、漏检率居高等问题,严重制约了企业的产能提升和成本

·361·



 第48卷 电 子 测 量 技 术

控制。因此传统的人工视觉检测已经难以满足企业的

要求[3]。
近年来,随着卷积神经网络的不断发展,越来越多的深

度学习模型被应用到异常检测领域中[4]。基于深度学习的

异常检测算法能够根据输入图片自身的特点,通过图像处

理技术自动学习复杂、抽象的特征,从而实现细微缺陷的检

测,在检测精度和效率方面均显著优于传统方法[5]。
目前,基于深度学习的异常检测方法主要分为有监督

和无监督两大类。有监督异常检测方法依赖于标注的数

据,通过构建深度神经网络实现正常样本与异常样本的区

分。虽然有监督异常检测方法检测效果较为准确,却存在

以下局限:算法性能高度依赖标注数据的质量与数量[6],会
消耗大量的人力资源;根据已有数据训练出来的异常检测

算法对于未知类型的异常检测失效,严重限制了算法的适

用性。相较于有监督检测算法,无监督异常检测算法只需

要拥有正常样本便可进行训练,异常检测与定位则通过比

较正常样本与测试样本特征的差别实现[7]。在实际工业应

用中,更具有实用价值[8]。
现阶段,无监督异常检测算法主要分为基于重建和基

于特征嵌入两类方法。基于重建的方法核心思想是通过对

正常样本的分布特征进行建模实现异常检测[9],常见的重

建模型包括自动编码器[10]、基于生成对抗网络(generative
 

adversarial
 

networks,GAN)[11-12]等。基于重建的方法具有

较好的直观性与可解释性,但是有时模型会出现“过度泛

化”等问题,导致异常图像也会被较好的重建[13]。
基于特征嵌入的思想则是将高维图像数据映射到一个

低维的特征空间(嵌入空间),在此空间内,正常数据和异常

数据的特征分布可以被很好地捕捉。通过比较测试样本与

正常样本数据分布的差异,从而判断测试样本是否为异常。
如Cohen等[14]受到KNN算法的启发,提出了一种基于异常

图像和正常图像之间对齐的新型异常分割方法—SPADE,
利用多分辨率特征金字塔的对应关系来获得像素级异常分

割结果。Defard等[15]提出的PaDiM将高斯分布建模方法应

用在patch级别的多尺度特征图,对正常样本的特征分布进

行建 模,并 使 用 马 氏 距 离 检 测 异 常。Roth等[16]提 出 的

PatchCore算 法 设 计 了 具 有 最 大 代 表 性 的 特 征 记 忆 库

(Memory
 

Bank),在保证检测精度的同时显著减少了推理所

需要的时间。Zhou等[17]提出的VQ-Flow方法通过捕获概

念特定的正态模式,并对复杂的多类数据分布进行建模,从
而在多类设置中区分异常和正态样本。在PatchCore提出之

后,许多新的方法如GLASS[18]、DDAD[19]、CRAD[20]等相继

提出,尽管它们的检测效果有了新的提升,但在检测过程中

需要进行多轮训练,难以部署到现实工业场景。
而PatchCore凭借无需重复训练的特征记忆库和较快

推理速度的优势,更加适用于实际工业场景。Zhang等[21]

提出的Rail-PatchCore方法通过加入双维通道注意模块,
有效地降低了背景噪声的干扰,增强了异常特征的捕获能

力;杜坡等[22]提出的改进PatchCore模型将主干特征提取

网络改为ResNet18,以达到轻量化的效果;Jiang等[23]提出

的FR-PatchCore构建了一个特征矩阵,该矩阵被提取到特

征记忆库中,解决了PatchCore在相似性主体方法在准确

定位异常方面面临的重大限制;Ishida等[24]提出的SA-
PatchCore将自注意力机制引入PatchCore中,提高算法对

共现相关异常的检测能力。以上对PatchCore的改进方法

大多都是基于特定任务完成的,且无法兼顾计算复杂度与

检测精度之间的平衡。此外内存散热片表面缺陷类型与特

点和上述任务具有较大差异,因此需要针对内存散热片表

面缺陷数据集进行PatchCore算法的研究。
现有的方法虽然取得了较好的检测结果,但在处理多

尺度异常特征时存在细节丢失问题[25],且降维过程计算复

杂度较高。为了进一步增强无监督异常检测算法的检测性

能,本文以PatchCore为基础模型,提出一种改进的内存散

热片表面缺陷检测的算法,主要工作内容如下:
首先通过引入自注意力机制的多尺度特征融合处理方

式,实现对局部特征异常与基于远距离像素之间关系的全

局特征异常的综合检测,提高检测的准确性以及分割的精

度;提出通道聚合降维方法,将原始特征随机划分为若干连

续子组,并对每组特征进行聚合操作,从而生成低维特征,
达到减少计算冗余同时保留部分原始特征局部信息的效

果;进行迁移学习模型的构建,使算法捕获的特征更适合工

业产品表面缺陷异常检测的任务,提高检测的精确度。

1 PatchCore算法

  PatchCore是一种高效的无监督工业异常检测算法,
该算法的核心工作在于通过构建具有代表性特征的记忆库

来实现对正常样本分布的有效建模,从而检测异常图像中

的异常区域(如刮痕、凹点等)。由于模型在训练时不需要

异常样本,因此能够节省大量人工采集与标注图像的时间,
且该方法能够识别多种异常,无需为每一种异常进行单独

的训练,具有较高的适用性。PatchCore算法原理简图如

图1所示。

PatchCore将输入图像分割成多个局部区域(patch),
随后使用在ImageNet上预训练的 Wide

 

ResNet-50作为骨

干网络[26],提取中间两层(layer2、layer3)特征图并获取每

个patch的特征向量。对获取的特征向量进行自适应平均

池化处理,以确保不同尺寸的输入图像能够产生具有一致

维度的特征向量。
在训练阶段,PatchCore将所有正常图像的局部特征

向量构建成原始的记忆库,使用核心集子采样方法将记忆

库规模压缩至原始大小的1%~10%以显著降低存储内存

与推理时间。
在测试阶段,PatchCore对测试图像使用与训练阶段

相同的操作提取每个patch的特征向量,随后使用 K近邻

(k-nearest
 

neighbor,KNN)方法找到每个patch的特征向
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图1 PatchCore算法原理简图[16]

Fig.1 Schematic
 

diagram
 

of
 

PatchCore
 

algorithm
 

principle[16]

量在记忆库中与其最接近的特征向量,并计算它们之间的

欧氏距离作为异常值。将所有异常值中的最大值作为图

像级的异常值,如果该值超过预设的阈值,则认为整个图

像存在异常。这些特性使PatchCore成为当前最先进的工

业异常检测算法之一,也为本研究提供了重要基础。

2 改进的PatchCore算法

2.1 整体架构设计

  改进型PatchCore算法结构如图2所示,包含3个关

键改进:

图2 改进的PatchCore算法结构

Fig.2 Improved
 

PatchCore
 

algorithm
 

structure

  1)多尺度特征处理:通过在ImageNet上预训练的

WideResNet-50提取输入图像的多层级特征,对layer3层

级的特征图使用自注意力机制与平均池化融合处理,增强

算法对局部异常与全局异常的综合检测能力。

2)通道聚合降维:提出通道聚合降维方法代替随机投

影降维技术,在保证算法精度的前提下降低计算的复杂程

度,提高算法的推理效率。

3)构建迁移学习模型:使用迁移学习技术对预训练模

型进行微调,使算法能够学习到更适用于特定数据集的特

征表示,提高实际工业项目的检测效果。

2.2 多尺度特征提取与处理

  在异常检测过程中,多尺度特征的有效融合对异常检

测精度具有决定性作用[27]。Wide
 

ResNet-50的layer2和

layer3特征图保留了较多的如轮廓、边缘、颜色等底层特

征,这些特征对捕获图像中的异常非常重要;由于深层网

络特征会过于偏向ImageNet的数据分布,并不能很好的

适用于工业场景,因此本文改进的算法仍沿用PatchCore
的多尺度特征提取策略,选择layer2和layer3来进行特征

信息的提取。主体结构如图3所示。

layer2特征图(28
 

pixel×28
 

pixel)保留了更多的底层

图3 特征提取与处理

Fig.3 Feature
 

extraction
 

and
 

processing

特征,适合检测图像中的微小局部异常。因此对layer2提

取的特征图使用进行内核大小为3、步长为1、填充为1的

卷积核进行平均池化,确保输出特征图的尺寸不变。通过

聚合局部区域的特征信息以增强局部特征的鲁棒性,以实

现对微小的局部异常检测。具体实现过程如下:

Oi',j' =
1

k·k∑
k-1

i=0
∑
k-1

j=0
I(i'·s-p+i),(j'·s-p+j) (1)

其中,Oi',j' 表示输出特征图在位置(i',j')处的值,
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I(i,j)表示输入特征图在位置(i,j)处的值,k为内核大小,s
为步长,p 为填充。layer3特征图(14×14分辨率)具有更

大的感受野,能够捕获图像中广泛的上下文信息,所以更

适合图像全局特征的异常检测。因此,对layer3特征图进

行如下处理:将layer3特征图按通道维度一分为二,其中

前半部分通道由自注意力机制处理,用于检测测试图像的

全局特征异常;后半部分通道则进行平均池化,增强算法

局部异常检测能力。
对于前半部分通道特征图,使用内核大小为3、步长为1、

填充为1的卷积核进行最大池化来强调局部区域内的显著特

征,将池化后的特征展平并对特征张量的维度进行重新排列,
复制3次后分别作为查询(Q)、键(K)和值(V)。计算查询Q
与键K 之间的点积,然后利用softmax函数归一化以计算注

意力权重。通过此非线性方式,算法能够更好地捕捉到不同

区域之间的相关性和异常特征。具体实现过程如下:

AttentionWeight=softmax
Q·KT

dk  (2)

其中,dk 表示键K 的维度。将注意力权重与值V 相

乘,得到加权后的特征,并将其维度排列为原始特征图形

状。后半部分通道特征图则执行平均池化处理,保留局部

细节特征。由于layer3特征图的分辨率小于layer2,使用

双线性插值将其分辨率调整至与layer2相同,再与layer2
输出结果拼接。

2.3 通道聚合降维

  PatchCore算法对原始记忆库使用随机投影降维技术

来 降 低 特 征 向 量 的 维 度。 该 方 法 根 据 Johnson-
Lindenstrauss定理,通过随机投影将高维特征向量投影到

低维空间,保持数据的几何结构和相对距离,从而降低后

续核心集子采样的计算复杂度。但是随机投影降维具有

以下局限性:首先降维结果依赖于随机生成的投影矩阵,
因此每次运行的结果可能不同,这将导致结果的不稳定

性[28];其次随机投影可能对某些需要精确保留距离或全局

结构的数据集效果不佳,且随机投影的效果依赖于投影矩

阵的选择,这将增加使用随机投影的复杂性。
因此,提出一种基于通道特征聚合的降维方法,通过

对原始特征进行分组和聚合,实现特征维度的降低。核心

思想是将高维特征随机划分为若干连续子组,每组包含若

干特征,通过聚合操作(如取均值)生成低维特征,从而实

现在保留重要特征信息的同时,有效降低计算复杂度和存

储空间。令输入矩阵为X∈RN×D,经过降维之后的输出矩

阵则为Xreduced∈RN×Dr。具体计算过程如下:

1)根据降维比例r,计算降维后的特征维度:

Dr =D·r (3)

2)将高维特征随机划分为Dr 个连续子组,每组大小

k=D/Dr。分组及组内特征可表示为:

Gi = xi·k+j j=1,2,…,k  ,i=0,1,…,Dr-1
(4)

3)再对每个组 的 特 征 进 行 聚 合 操 作,以 均 值 聚 合

为例:

zi =
1
k∑

k

j=1
xi·k+j (5)

其中,N 表示样本数量,Dr 表示降维后的特征维度,

D 表示原始特征维度,r表示目标降维比例(通常取0.1),

Gi 表示划分的第i个组,x 表示组内包含的特征。经过以

上步骤,降维后的特征矩阵为 Xreduced=[z0,z1,z2,…,

zDr-1]∈RN×Dr。
通道聚合降维法通过随机分组和聚合操作实现降维,

降低计算复杂度,适合对大规模数据进行处理。同时通过

聚合操作能够在一定程度上保留原始特征的局部信息,避
免了全局降维方法可能带来的信息丢失问题。降维比例r
可以根据实际需求进行调整,在降维效果和计算复杂度之

间进行平衡。

2.4 迁移学习模型的构建

  迁移学习是深度学习领域中一种重要的技术手段,旨
在将在大规模数据集上预训练的模型应用于特定的小规

模数据集,从而解决小规模数据集标注困难、数据量不足

等问题[29]。为了增强算法在检测任务中的泛化能力,对改

进的PatchCore模型使用迁移学习中的微调方法,即对预

训练模型进行小幅度调整,使模型适应新任务。具体流程

如图4所示。

图4 迁移学习流程图

Fig.4 Transfer
 

learning
 

flow
 

chart

为了增强模型的泛化能力并避免过拟合,将输入图像

统一调整为256
 

pixel×256
 

pixel,并使用双线性插值对图

像进行平滑的缩放,保持图像几何特征。随后使用随机旋

转和随机水平翻转操作,增强模型对旋转变化的鲁棒性以

及增加数据的多样性,对图像数据进行归一化处理以加速

模型收敛。
在模型初始化过程,首先加载预训练的 Wide

 

ResNet-
50-2权重,替换最后的全连接层,将输出特征维度从1

 

000
维调整为任务所需的类别数以适应新的分类任务。随后

使用交叉熵损失函数作为优化目标,通过最小化模型预测

概率分布与真实标签分布之间的差异,驱动模型学习有效

的特征表示。优化器则采用随机梯度下降优化器,将初始

学习率设置为0.01,动量参数为0.9以减少训练过程中的

震荡。
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训练过程中,遍历训练数据,计算损失并更新模型参

数。随后将模型设置为评估模式,遍历测试数据,计算测

试损失和准确率,并使用TensorBoard记录训练过程中的

损失和准确率以实时监控模型性能。

3 实验结果与分析

3.1 实验数据集

  本实验采用某公司提供的内存散热片构建表面缺陷

检测数据集,数据来自于真实工业生产场景,具有较高的

实用价值和挑战性。该数据集主体为内存散热片表面以

及表面缺陷图像,根据图像类别,本实验根据图像颜色将

其分为Black和 White两类分别进行检测。其中Black数

据集多为污点、异色种类的异常,White数据集则更多为划

痕种类的异常。本实验数据集共有正常样本897张,异常

样本692张,图片大小均为224
 

pixel×224
 

pixel,实物图如

图5所示。

图5 内存散热片表面缺陷数据集

Fig.5 Dataset
 

of
 

surface
 

defects
 

on
 

memory
 

heat
 

sinks

3.2 实验评价指标

  为了全面评估改进算法的性能,采用以下两个广泛认

可的指标进行算法评价:AUROC和F1Score[30]。AUROC
是指ROC曲线下的面积,用于评估分类模型在不同阈值

下的综合性能。F1Score是精确率和召回率的调和平均

数,特别适用于类别不平衡的场景。F1Score的计算公式

如下:

Precision=
TP

TP+FP
(6)

Recall=
TP

TP+FN
(7)

F1Score=2×
Precision·Recall
Precision+Recall

(8)

其中,TP 表示正确识别的正样本数量,FN 表示错误

识别为负样本的正样本数量,FP 错误识别为正样本的负

样本数量,TN 表示正确识别的负样本数量。

3.3 实验环境与参数

  实验所使用的操作系统为 Windows
 

11家庭中文版,

CPU为Intel(R)
 

Core(TM)
 

i9-14900HX,主频2.20
 

GHz,
内存16

 

GB。GPU 配置为 NVIDIA
 

GeForce
 

RTX
 

4060
 

Laptop
 

GPU,显存8
 

GB。在实验过程中,核心集子采样的

采样率为1%,通道聚合降维的降维比例为10%,编程语言

为python3.8,加速模块基于CUDA-11.8实现。

3.4 实验结果与分析

  1)算法检测精度结果对比

为了验证改进算法的有效性,本实验在内存散热片表

面缺陷检 测 数 据 集 上 与 无 监 督 异 常 检 测 算 法 PaDim、

PatchCore、VQ-flow、CRAD、GLASS、DDAD和已有改进

的PatchCore算法SA-PatchCore、Rail-PatchCore进行对

比实验。实验结果如表1所示。

表1 主流算法在数据集上的检测结果

Table
 

1 Detection
 

results
 

of
 

mainstream
 

algorithms
 

on
 

the
 

dataset %
数据集 评价指标 PaDim PatchCore VQ-flow CRAD GLASS DDAD SA-PatchCore Rail-PatchCore Ours

Black
AUROC 70.18 96.73 94.70 93.88 99.92 99.37 98.73 98.73 99.55
F1Score 89.35 96.50 94.49 94.70 98.94 98.72 97.12 97.71 99.06

White
AUROC 93.33 97.35 92.03 94.20 99.43 98.64 98.27 98.21 99.08
F1Score 82.78 91.37 95.20 95.25 98.27 98.32 95.73 98.04 98.59

  由表1的实验结果可得,本文改进的算法在Black和

White数据集上的表现皆优于除 GLASS之外的其他算

法,在 AUROC 与 F1Score指 标 上 有 明 显 提 升。尽 管

GLASS算法在检测精度方面获得最佳结果,但该算法在

运行过程中需要进行数百轮训练,取最佳结果作为输出,
并不适用于实际工业检测场景。在与其他改进PatchCore
算法的对比中,虽然两种算法均对模型进行了改进,但提

升的效果均低于本文改进算法。本文改进算法 AUROC
指标的提升表明,使用引入自注意力机制的多尺度特征融

合处理方式能够更好的捕获异常特征,有效提升检测精

度;F1Score指标的提升表明,改进的算法在精确率和召回

率之间取得较好的平衡,能够进行有效的分类。综上对比

分析,本文改进算法更适用于实际工业检测场景之中,同
时保证了较高的精确度以及检测实时性,具有较高的应用

价值。

2)不同降维方法对计算冗余方面性能对比

为了验证通道聚合降维技术对算法推理速度的影响,
本文做了如下实验:分别对改进的算法使用通道聚合降维、
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随机投影降维和PCA降维方法,对比算法在单张图片上的 推理时间和特征记忆库的构建时间,具体结果如表2所示。

表2 不同降维方法在单张图片上的推理时间和特征记忆库构建时间对比

Table
 

2 Comparison
 

of
 

inference
 

time
 

and
 

memory
 

bank
 

construction
 

time
 

of
 

different
 

dimensionality
 

reduction
 

methods
 

on
 

a
 

single
 

image s
数据集 评价指标 随机投影降维 PCA降维 通道聚合降维

Black
单张图片的推理时间 0.202 0.169 0.155
特征记忆库构建时间 111 97 82

White
单张图片的推理时间 0.230 0.184 0.163
特征记忆库构建时间 907 724 566

  由表2可得,当使用通道聚合降维方法时,算法在

Black与 White数据集中单张图片的推理时间皆小于另外

两种方法。这表明改进的的算法在保证检测高精度的基

础上实现了更快的推理效率,具有更高的性能,更好地满

足工业背景下的高效率标准。同时,使用通道聚合降维方

法时,算法构建特征记忆库的效率有着巨大的提升,表明

算法在训练阶段的计算复杂度大大降低,体现了算法性能

的优越性。此外,由于通道聚合降维方法对随机划分的连

续子组进行聚合操作,保留了检测所需要的部分特征信

息,因此能够比随机投影降维与PCA降维方法有更高的

检测精度,实验结果如表3所示。

3)自注意力机制在不同通道维度比例下检测精度的

对比试验

对layer3层特征图引入自注意力机制能够增强算法

  

对基于远距离像素之间关系的全局特征异常的检测能力,
但同时也会带来更大的计算冗余和降低局部异常检测能

力的缺点。因此为了实现算法对局部异常和全局异常的

综合检测能力,本文进行了自注意力机制在不同通道维度

比例下检测精度的对比试验,其中通道维度比例分别选取

25%、50%、75%、100%。实验结果如表4所示。

表3 不同降维方法对检测精度的影响

Table
 

3 The
 

impact
 

of
 

different
 

dimensionality
 

reduction
 

methods
 

on
 

detection
 

accuracy %
降维方法 平均AUROC 平均F1Score

随机投影降维 98.53 97.44
PCA降维 98.38 96.99

通道聚合降维 99.31 98.82

表4 自注意力机制在不同通道维度比例下的检测精度

Table
 

4 Detection
 

accuracy
 

of
 

self
 

attention
 

mechanism
 

at
 

different
 

channel
 

dimension
 

ratios %
数据集 评价指标 25% 50% 75% 100%

Black
AUROC 98.93 99.55 99.06 99.75
F1Score 97.92 99.06 96.92 95.85

White
AUROC 99.04 99.08 98.97 99.04
F1Score 98.28 98.59 97.37 95.11

  由表4的实验结果可知,当通道维度比例为50%时,

White数据集AUROC和F1Score两个指标均最高;对于

Black数据集,虽然通道维度比例为50%时的AUROC结

果比100%时低0.2%,但是其F1Score结果远高于后者,
综合考虑下通道维度比例为50%时综合检测能力更强。
此外,由于引入自注意力机制会增加计算复杂度,因此通

道维度比例为50%更能满足时效性要求。

4)消融实验结果与分析

为了验证提出的各项改进措施对算法性能的贡献,本
文进 行 了 消 融 实 验 的 设 计。在 相 同 实 验 条 件 下,以

PatchCore算法为基础,逐步进行各项改进措施。SA指代

自注意力机制(self-attention,SA),CFA指代通道聚合降

维(channel
 

aggregation
 

dimensionality
 

reduction,CFA),

TL指代迁移学习(transfer
 

learning,TL),以各数据集平均

AUROC和F1Score作为评价指标,实验结果如表5所示。
由表5的实验结果可知,将自注意力机制引入算法并

改变处理方式,算法的AUROC指标提高0.87%,F1Score
提升2.82%,表明该改进增强了算法对异常的捕获能力,
特别是在检测长程依赖关系(如划痕)方面表现突出;此
外,使用通道聚合降维方法代替随机投影降维技术后,算
法平均AUROC提升0.41%,平均F1

 

Score提升1.27%,
表明此改进不仅能够加快算法的推理效率,还能保证算法

精度的微小增长,提高算法的综合能力;通过构建迁移学

习模型,预训练模型学习到更适用于此数据集的特征表

示,算法平均 AUROC提升0.61%,平均F1
 

Score提升

0.77%,对算法的精度和召回率都起到了积极的作用。将

3种改进方案结合在一起后,AUROC 提 升 了2.27%,

F1Score提升了4.89%,在各个数据集上的推理效率均有
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  表5 消融实验结果

Table
 

5 Results
 

of
 

ablation
 

experiment %
实验方法 平均AUROC 平均F1Score AUROC提升 F1Score提升

PatchCore 97.04 93.93 0 0
PatchCore+SA 97.91 96.75 0.87 2.82
PatchCore+CFA 98.28 97.59 1.24 3.66
PatchCore+TL 97.13 94.895 0.09 0.97

PatchCore+SA+TL 98.53 97.44 1.49 3.51
PatchCore+CFA+TL 98.94 98.71 1.90 4.78
PatchCore+SA+CFA 98.70 98.05 1.66 4.12

Ours 99.31 98.82 2.27 4.89

所提升,表明改进的算法达到了提高算法检测精度和检测

效率的效果。

5)定位与分割结果可视化

为了更 好 的 观 察 改 进 算 法 的 检 测 与 定 位 结 果,对

PaDim、PatchCore、SA-PatchCore和本文算法进行了可视

化处理。首先对所有测试图像的异常得分进行归一化,随
后将最终的结果以热图的形式呈现,异常得分以文字的形

式展现在热图的左上角,具体示例如图6所示。

图6 各算法异常区域定位结果

Fig.6 Anomalous
 

region
 

localization
 

results
 

of
 

various
 

algorithms

  热图中红色区域越多、颜色越深则表明该处为异常区

域的可能性越大。如(图6(b))所示,PaDim算法最终生成

的热图异常区域明显区别于另外3种算法,出现了鲜明的

非异常区域的红色标记,这表明PaDim算法在检测与定位

过程中产生了严重的误定位问题,因此无法正确的对异常

区域进行分割。从图6(c)、图6(d)和图6(e)相比可看出,

PatchCore算法生成的热图异常区域更加分散,正常区域

中也出现了大块的黄色标记。而本文改进的算法热图上

异常区域与真实缺陷位置高度吻合,更加集中于真实异常

的位置,未出现定位错误的问题。
综上所述,本文改进的算法有以下3方面的效果:首

先,通过对特征信息进行多尺度特征融合处理,提高算法

对局部异常与全局异常特征的捕获能力,增强算法的综合

检测能力;其次,提出通道聚合降维方法,实现在保留部分

重要特征的基础上降低计算复杂度,提高算法推理效率;
最后,通过对预训练模型进行迁移学习,增强算法的泛化

能力与鲁棒性,提高算法的检测精度。

4 结  论

  在工业领域,高效准确的异常检测技术是产品质量控

制的关键环节。针对现有无监督异常检测算法在检测精

度和 计 算 效 率 方 面 的 不 足,提 出 了 一 种 基 于 改 进

PatchCore的无监督异常检测算法。该算法引入自注意力

机制并优化处理方式,增强了算法对局部与全局特征的捕

获能力;提出通道聚合降维方法,实现精度与推理效率的

全面优化;对预训练模型进行迁移学习,进一步提升改进

算法的检测精度。通过对真实工业场景下所采集的内存

散热片表面缺陷数据集进行实验,该算法在 AUROC和

F1Score两个指标上都有着较大的提升,实现了更高性能

的缺陷检测,表明改进算法能够更好地满足工业产品检测

所需要的高精度、高效率的标准。
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