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摘 要:道路破损增加了交通事故的发生概率,严重威胁交通安全。因此,实时监测路面状况对于保障道路安全和有

效管理基础设施至关重要。针对现有道路缺陷检测中精度不足和小目标检测困难的问题,本文提出了一种基于改进

RT-DETR的道路缺陷检测算法。首先,通过引入部分卷积(PConv)对RT-DETR主干网络进行重构,从而有效降低

计算开销;其次,在主干网络中融合三重注意力机制,提升模型对多维特征的感知能力,进而更精准地捕捉图像细节。
接着,采用双向特征金字塔网络(BiFPN)优化CCFM特征融合模块,并引入S2特征,增强小目标的检测性能。最后,
利用DySample上采样算子获取更多局部细节与语义信息,进一步提升模型对小目标的检测能力。实验结果表明,改
进后的算法在RDD2022数据集上的 mAP@50较原始RT-DETR模型提升了3.6%,且参数量减少了12.5%,检测速

度达到66
 

fps。与其他目标检测算法相比,改进算法在检测精度和速度方面均表现出显著优势,具有更好的实际应用

前景。
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Abstract:Road
 

damage
 

increases
 

the
 

likelihood
 

of
 

traffic
 

accidents,
 

posing
 

a
 

serious
 

threat
 

to
 

traffic
 

safety.
 

Therefore,
 

real-time
 

monitoring
 

of
 

road
 

conditions
 

is
 

crucial
 

for
 

ensuring
 

road
 

safety
 

and
 

effectively
 

managing
 

infrastructure.
 

To
 

address
 

the
 

issues
 

of
 

insufficient
 

detection
 

accuracy
 

and
 

small
 

target
 

detection
 

challenges
 

in
 

existing
 

road
 

defect
 

detection
 

methods,
 

this
 

paper
 

proposes
 

an
 

improved
 

RT-DETR-based
 

road
 

defect
 

detection
 

algorithm.
 

First,
 

partial
 

convolution
 

(PConv)
 

is
 

introduced
 

to
 

reconstruct
 

the
 

RT-DETR
 

backbone
 

network,
 

effectively
 

reducing
 

computational
 

overhead.
 

Second,
 

a
 

triplet
 

attention
 

mechanism
 

is
 

integrated
 

into
 

the
 

backbone
 

network
 

to
 

enhance
 

the
 

model's
 

sensitivity
 

to
 

multi-dimensional
 

features,
 

enabling
 

more
 

precise
 

capture
 

of
 

image
 

details.
 

Next,
 

a
 

BiFPN-based
 

feature
 

pyramid
 

network
 

is
 

employed
 

to
 

optimize
 

the
 

CCFM
 

feature
 

fusion
 

module,
 

and
 

S2
 

features
 

are
 

introduced
 

to
 

improve
 

the
 

detection
 

performance
 

of
 

small
 

targets.
 

Finally,
 

the
 

DySample
 

upsampling
 

operator
 

is
 

utilized
 

to
 

capture
 

more
 

local
 

details
 

and
 

semantic
 

information,
 

further
 

enhancing
 

the
 

model's
 

ability
 

to
 

detect
 

small
 

targets.
 

Experimental
 

results
 

show
 

that
 

the
 

improved
 

algorithm
 

achieves
 

a
 

3.6%
 

increase
 

in
 

mAP@50
 

on
 

the
 

RDD2022
 

dataset
 

compared
 

to
 

the
 

original
 

RT-DETR
 

model,
 

with
 

a
 

12.5%
 

reduction
 

in
 

the
 

number
 

of
 

parameters
 

and
 

a
 

detection
 

speed
 

of
 

66
 

fps.
 

Compared
 

with
 

other
 

object
 

detection
 

algorithms,
 

the
 

improved
 

algorithm
 

demonstrates
 

significant
 

advantages
 

in
 

both
 

detection
 

accuracy
 

and
 

speed,
 

making
 

it
 

more
 

suitable
 

for
 

practical
 

applications
 

in
 

road
 

defect
 

detection.
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0 引  言

  随着现代交通基础设施的快速发展,道路维护与管理

在保障交通安全和提升出行体验方面发挥着至关重要的作

用。道路缺陷,如裂缝、坑洞和龟裂,不仅影响驾驶的舒适

性,还可能增加交通事故的风险,并加重车辆维修成本。因
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此,及时、准确地检测和修复这些缺陷,对于确保道路安全

具有重要的意义[1]。
传统的检测方法多依赖人工巡检和基于规则的图像

处理技术,但这些方法通常效率较低、准确度有限,并且容

易受环境因素如光照和天气的影响。近年来,深度学习技

术的兴起为路面缺陷检测带来了显著的进展。通过自动

化特征提取和模式识别,深度学习能够高效地从海量图像

中提取缺陷特征,大幅 提 高 了 检 测 的 准 确 性 和 自 动 化

水平。
目标检测技术在深度学习中的应用可分为两大类:基

于区域的两阶段检测模型和基于回归的单阶段检测方法。
两阶段模型通常包括候选区域生成与特征提取和分类两大

过程,典型算法如 Fast
 

R-CNN[2]、R-FCN[3]和 Mask
 

R-
CNN[4]。这类方法在复杂背景下特别适合小目标检测,并
且对遮挡和复杂环境具有较好的适应性,但其缺点是计算

量大、速度较慢,尤其在实时检测任务中可能无法满足高效

性要求。相比之下,基于回归的一阶段检测方法通过一次

前向传播直接输出目标的类别与位置,具有较高的处理速

度和简化的架构,适用于实时应用。然而,这类方法通常依

赖非极大值抑制(non-maximum
 

suppression,NMS)技术来

消除冗余边界框,这会导致处理效率低,且难以应对小目标

的漏检问题[5-6]。

Transformer模型最初在自然语言处理领域表现优

异,近 年 来 被 逐 渐 应 用 于 计 算 机 视 觉 领 域。DETR
(detection

 

transformer,DETR)首次将 Transformer应用

于计算机视觉领域,直接对图像进行集合预测,取消了

anchor机制和NMS处理,简化了目标检测流程,在目标检

测领域表现出了卓越的学习能力[7]。然而,DETR在训练

时需要大量时间,限制了其在实时应用中的使用。许多研

究人员对DETR进行了改进,但注意力机制本身引入了更

多的参数和计算复杂性,阻碍了DETR模型的实时应用。

Zhao等[6]提出了实时检测模型RT-DETR,这是一款高实

用性的端到端实时目标检测模型,保持高精度的同时实现

了实时性能,在速度和精度方面优于同等规模的 YOLO
(you

 

only
 

look
 

once,YOLO)系列[8-10]检测模型。
尽管深度卷积神经网络(CNN)在道路缺陷检测领域

中取得了显著进展,但仍然面临许多挑战。李松等[11]提出

了基于YOLOv8的BOT模块,能够同时提取道路损伤图

像的全局与局部特征,并结合CA注意力机制与C2fGhost
模块显著提升了检测精度。然而,传统的YOLO模型在小

目标检测上表现较差,特别是在低分辨率图像上,容易产生

误 检 和 漏 检。Yang 等[12] 使 用 全 卷 积 网 络 (fully
 

convolutional
 

networks,FCN)进行裂缝检测,能够识别多

种裂缝类型,但FCN对不同尺度目标的适应性差,且在处

理复 杂 背 景 时 表 现 欠 佳。Kang 等[13]采 用 Faster
 

R-
CNN[14]算法进行道路裂缝检测,但计算量大,速度较慢,难
以满足实时检测需求。与此同时,Du等[15]提出的加权双

向特征金字塔网络(bidirectional
 

feature
 

pyramid
 

network,

BiFPN)在多尺度特征融合上取得了较好的进展,但其仍然

面临着小目标检测精度不足的问题。牛慧余等[16]通过改

进 Mask
 

R-CNN主干网络提高了裂缝特征提取能力,然
而,该模型对计算资源的需求较高,不适用于实时应用。在

道路缺陷检测领域,实时性尤为关键,特别是在车载设备与

无人机巡检中。车载设备如自动驾驶汽车需快速响应路面

变化,处理延迟需低于50
 

ms,但算力受限(几TOPS),且需

低功耗(<10
 

W)。无人机巡检则需实时处理高清图像以

识别微小缺陷,要求单帧处理不超过100
 

ms(30
 

fps),算力

同样有限(约10
 

TOPS),且需控制功耗(<20
 

W)以维持长

时间飞行。
针对当前道路缺陷检测领域面临的小目标检测效果

差,对不同尺度目标适应性差,以及难以满足实时检测需求

的问题,本文在借鉴上述研究成果的基础上对RT-DETR
模型进行了改进,提出了以下几点创新:

1)利用部分卷积(partial
 

convolution,Pconv)[17]和三重

注意力机制(Triplet
 

Attention)[18]重构了骨干网络,有效地

增强了模型的特征提取能力和小目标检测能力,减少了模

型的参数量,提高了模型的检测精度。

2)设计改进版的跨尺度特征融合模块(cross-scale
 

feature
 

fusion
 

module,CCFM)增强了模型对不同尺度目标

的,采用双向特征金字塔网络(BiFPN)[19]替代传统的特征

金字塔FPN(feature
 

pyramid
 

network,FPN),并引入额外

的高分辨率特征图S2,与S3融合,显著提高了小目标的检

测精度。

3)引 入 动 态 上 采 样 算 子 (dynamic
 

upsampling,
 

DySample)[20],进一步提升特征金字塔网络的性能,增强了

对小目标的检测能力。

1 RT-DETR模型

  RT-DETR[6](real-time
 

detection
 

transformer,RT-
DETR)是一种实时端到端目标检测框架,该 框 架 基 于

 

Transformer
 

架构,创新性地摒弃了传统目标检测方法中

的NMS,在保持高检测精度的同时显著提升推理速度,特
别适用于对实时性要求较高的应用场景。

RT-DETR的整体架构由骨干网络、高效混合编码器

和解码器三部分组成。骨干网络采用残差网络(residual
 

network,ResNet)[21]或 HGNet[22],负责提取多尺度特征

图。高效混合编码器通过基于注意力的同尺度特征交互模

块(attention-based
 

intra-scale
 

feature
 

interaction,AIFI)和
基于

 

CNN
 

的跨尺 度 特 征 融 合 模 块(cross-scale
 

feature
 

fusion
 

module,
 

CCFM)协同工作,实现高效语义信息捕获。
具体而言,AIFI在单尺度上捕获特征以降低计算复杂度,
而CCFM则融合多尺度特征,生成高质量特征表达,为解

码器提供精准输入。本文选择RT-DETR-R18作为基线模

型,其结构设计如图1所示。
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图1 RT-DETR-R18模型原理图

Fig.1 Diagram
 

of
 

the
 

RT-DETR-R18
 

model
 

architecture

  在解码阶段,RT-DETR
 

引入不确定性最小化查询选

择机制,通过联合优化分类置信度和定位置信度,有效提

升检测精度。同时,解码器支持动态调整层数,以灵活适

应不同的实时检测需求,无需重新训练模型,从而进一步

增强了模型的适配性和实用性[6]。

2 改进的RT-DETR模型

  本文对RT-DETR-R18网络进行了若干改进,旨在提升

算法对道路缺陷检测的精度和速度,减少模型的参数量。
在追求检测精度最大化提升的同时,通过模型轻量化设计

与计算效率优化策略,确保推理速度维持在原始基线水平,
本文在主干网络采用三重注意力快速特征提取模块(triple-
attention

 

faster
 

feature
 

extraction
 

module,TAFaster)替换原

本的BasicBlock结构。在特征融合阶段,采用双向金字塔跨

尺度融 合 模 块(bidirectional
 

feature
 

pyramid
 

network
 

with
 

cross-scale
 

feature
 

fusion
 

module,BiFPN-CCFM)优化算法的

多尺度特征融合能力,并引入S2特征,提高模型对小目标的

敏感度。最后,应用DySample上采样算子来进一步优化特

征金字塔网络的性能,增强了对小目标的检测效果。改进

后的RT-DETR结构如图2所示。

图2 改进后的RT-DETR模型

Fig.2 The
 

improved
 

RT-DETR
 

model

2.1 三重注意力快速特征提取模块(TAFaster)

  为了在减少RT-DETR原模型参数量的同时提升检

测精度,本文提出了一种三重注意力快速特征提取模块

TAFaster,该模块结合了三重注意力机制和轻量级主干网

络FasterNet中的FasterBlock模块。

FasterBlock应用了一种创新的PConv技术,通过减
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少计算冗余和内存访问,实现高效的特征提取。PConv层

在部分通道上应用传统的卷积进行空间特征的提取,其他

通道则保持不变,以此实现高效的利用计算资源。图3为

TAFaster模块以及PConv模块与传统卷积的对比。

图3 TAFaster模块以及PConv与传统卷积的对比

Fig.3 TAFaster
 

module
 

and
 

comparison
 

of
 

PConv
 

with
 

traditional
 

convolution

  PConv的FLOPs和内存访问量为:

h×w×k
2

×c2p (1)

h×w×2cp +k2×c2p ≈h×w×2cp (2)
普通卷积的浮点运算量和内存访问量为:

h×w×k2×c2 (3)

h×w×2c+k2×c2p ≈h×w×2c (4)
在深度卷积运算中,输入特征图的维度由通道容量c、

垂直高度h和水平宽度w 共同表征。其中,常规卷积操作

采用k×k尺寸的卷积核,其通道维度保持为c。而PConv
通过通道压缩机制,将通道数缩减为cp,且满足cp 与c的

比例关系cp/c=1/4。 基于该结构设计,PConv的计算效

率显著提升:其浮点运算量仅为传统卷积的1/16,同时内

存访问开销也降低至常规卷积的25%。
为增强模型对多模态特征的表达能力和微小目标检测

精度,本研究设计了一种三维注意力模块Triplet
 

Attention。
该模块突破传统注意力机制的设计框架,采用三分支异构

结构实现多粒度特征融合:顶端分支通过空间旋转与卷积

操作捕捉通道与高度(C-H)之间的交互,增强垂直特征融

合能力;中间分支专注于通道与宽度(C-W)的关联分析,
提升水平感知精度;底端分支则保留经典空间注意力机制

以强化局部特征对比。这种三支路协同设计不仅实现了

跨维度特征交互的全面覆盖,还通过异构结构避免了单一

分支的过拟合风险。在注意力权重生成过程中,该模块创

新性地采用复合池化策略Z-Pool,该策略通过融合平均池

化与最大池化的输出特征,将四维特征张量压缩至二维表

示空间。与传统的全局平均池化相比,Z-Pool在有效保留

关键信息的同时显著降低了计算复杂度,且避免了降维操

作可能导致的特征信息丢失。进一步地,模块通过旋转操

作建立高度(H)与宽度(W)维度间的隐式依赖关系,这种

跨维度交互机制使其能够捕捉到传统注意力机制难以建

模的特征关联模式。最终,3个支路的输出特征经过均值

融合与卷积变换,生成具有统一维度的注意力特征表示。
实验结果表明,在ImageNet-1k图像分类、MSCOCO 和

PASCAL
 

VOC目标检测等任务中,Triplet
 

Attention模块

相比于SE
 

Attention
 

(squeeze-and-Excitation
 

Attention)模
块和 卷 积 块 注 意 力 模 块(convolutional

 

block
 

attention
 

module,CBAM)等主流方法,有更优的性能。尤其在资源

受限场景下,其仅引入极少的额外参数和计算开销,却能

显著提升模型对微小目标的检测精度,并通过梯度加权类

激活 映 射 (gradient-weighted
 

class
 

activation
 

mapping,

Grad-CAM)可视化验证了其更强的特征 聚 焦 能 力[23]。

Triplet
 

Attention模块的原理如图4所示。

图4 三重注意力模块

Fig.4 Triplet
 

attention
 

module
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2.2 双向金字塔跨尺度融合模块BiFPN-CCFM
  随着神经网络层次的加深,简单地增加网络层数未必

能提升精度,反而可能导致梯度消失或梯度爆炸等问题。
谷歌2020年发布的加权双向特征金字塔网络BiFPN相比

于PAN[24]网络,其特点在于引入了双向信息流,信息不仅

可以从顶部向底部传递,还能从底部向顶部回流。这种双

向流动的特性使得不同层级之间的特征可以相互调整和

交换,进而优化特征的融合效果,提升模型的性能。
如图5(a)所示,PAN结构通过横向连接改进了信息

传递,但其单向特性可能导致浅层特征的丢失。为解决这

一问题,BiFPN采用双向信息流(图5(b))使得特征在双向

流动中得以更全面地整合,保留更多细节。

图5 PAN网络与BiFPN网络结构图

Fig.5 PAN
 

and
 

BiFPN
 

architecture
 

diagram

RT-DETR检测框架通过融合主干网络深层3个阶段

的特征表示,建立了一种通用的目标检测架构。在道路缺

陷检测领域,由于远处细微裂缝目标仅占图像极小比例的

像素区域,浅层特征信息在提取的过程中很容易丢失,为
解决这一问题,本研究改进并引入了双向特征金字塔网络

BiFPN,改进后的网络架构如图6所示。

图6 改进的BiFPN结构

Fig.6 Improved
 

BiFPN
 

architecture

在改进的BiFPN架构中,首先从骨干网络中引入能捕

获更多局部细节的160
 

pixel×160
 

pixel高分辨率特征图,
其次,通过将S2层提取的高频细节特征与S3层进行跨尺

度融合。这种多层级特征整合机制增强了模型对细微目

标的识别能力。

2.3 基于点采样的上采样Dysample模块

  在路面缺陷检测场景中,缺陷区域往往像素占比小,
且常常存在污渍遮挡或者图像光照不均等情况,导致难以

提取目标缺陷特征,从而影响模型的检测精度和鲁棒性。
为了应对这一挑战,本文引入基于点采样的动态上采样器

Dysample,旨在增强模型对小缺陷的检测能力以及抗干扰

能力,Dysample的设计原理如图7所示,公式如式(5)~(8)
所示。

χ'=grid_sample(χ,S) (5)

S =G+O (6)

O =0.25(linear(χ)) (7)

O =0.25σ(linear1(χ))×linear2(χ) (8)
式中:χ 表示输入特征、χ'输入特征、O 为生成偏移量、σ表

示Sigmoid函数、G 为原始采样、S 为上采样特征。

图7 Dysample网络结构图

Fig.7 Dysample
 

network
 

architecture

如图7(a)所示,输入特征χ通过采样点发生器生成的

采样集S 进行重采样。图7(b)是采样点发生器结构图,其
采集器由两部分构成,分别是生成的偏移量G 和原始采样

网格G,偏移量O 的生成机制结合了线性变换与像素随机

播放。以图7(b)上半部分所示静态因子采样方法为例,给
定一个上采样因子S 和一个大小为c×h×w 的特征映

射,特征映射通过一个输入通道和输出通道分别为c 和

2s2 的线性层,生成一个大小为2s2×h×w 的偏移量O。
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然后,使用像素级随机方法将其转换为2×sh×sw,其中2
表示x 和y 坐标,最后生成一个大小为c×sh×sw 的上采

样特征图[25]。Dysample方法通过引入邻近像素采样机

制,有效增加了样本多样性,从而缓解类别不平衡问题,抑
制虚假预测。与传统上采样方法相比,Dysample能够更好

地保持图像高频细节,避免简单像素复制导致的模糊和锯

齿伪影,显著提升重建质量。

3 实验与结果

3.1 数据集与实验环境

  本文所用的RDD2022[26]为全球道路损伤检测挑战赛使

用的数据集,由中国、印度、日本、美国和捷克等多个国家的道

路图像组成。本文选取4
 

398张分辨率为512
 

pixel×512
 

pixel
的中国道路图像作为实验对象。其中包含2

 

401张无人机

拍摄的道路图片和1
 

977张车载相机拍摄的道路图像。本

文研究的道路缺陷类型有5种,包括纵向裂缝D00、横向裂

缝D10、网状裂缝D20、坑洼D40和道路修补Repair,不同

道路缺陷类型在数据集中分布如表1所示。

表1 数据集中缺陷类型及数量

Table
 

1 Defect
 

types
 

and
 

quantities
 

in
 

the
 

dataset

缺陷类型 标签 数量

网状裂缝 D20 756

纵向裂缝 D00 3
 

270

横向裂缝 D10 1
 

895

坑洼 D40 255

路面修补 Repair 821

  不同类型的道路缺陷实例如图8所示。数据集按照

8∶1∶1的比例划分为训练集、验证集和测试集。

图8 数据集中不同道路缺陷示例图

Fig.
 

8 Examples
 

of
 

different
 

road
 

defects
 

in
 

the
 

dataset

本文实验使用CentOS
 

7.9操作系统,处理器型号为

Intel
 

Xeon
 

Silver
 

4210R,采用PyTorch
 

2.4.0+cu118
 

深度

学习框架,搭载5张NVIDIA
 

GeForce
 

RTX
 

3080
 

GPU,每
张显卡的显存为10

 

GB,CUDA版本为11.8。实验超参数

设置如表2所示。

表2 实验超参数

Table
 

2 Experimental
 

hyperparameters

参数 参数值

Learning
 

rate 0.000
 

1
Image

 

size 640×640
Optimizer AdamW
Batch

 

size 8
Epoch 200

3.2 评价指标

  本文采用了COCO数据集类型的评价方法,构建了轻

量化-精度双轨评估体系,采用参数量(Params)、每秒10亿

的浮 点 运 算 次 数 (giga
 

floating-point
 

operations
 

per
 

second,GFLOPs)和每秒检测帧数(frames
 

per
 

second,

FPS)三维指标衡量模型效率,其中Params反映空间复杂

度(值越小内存占用越低),GFLOPs表征计算复杂度,FPS
体现实时性(值越高推理速度越快);平均精度均值(mean

 

average
 

precision,mAP)来检验模型的分类的准确性和物

体的定位性能,
 

其计算如式(9)所示。

mAP =
1

classes∑
classes

i=1∫
1

0
P(R)d(R) (9)

其中,P 表示精确度,R 表示召回率。
另外在 COCO 数据集中,针对small、medium、large

 

3种不同尺寸目标制定了测量标准:像素小于32
 

pixel×
32

 

pixel的 为“小 目 标”,像 素 在 32
 

pixel×32
 

pixel~
96

 

pixel×96
 

pixel之间的为“中等目标”,像素大于96
 

pixel×
96

 

pixel的为“大目标”。

3.3 消融实验

  为评估改进模型在道路缺陷检测任务中的实际效果,
本研究在同一的实验条件下,以RT-DETR原模型作为基

准模型,进行了一些列消融实验,分别验证了Pconv模块、

Triplet
 

Attention模块、BiFPN模块和Dysample模块这4
种改进方法带来的性能增益。实验结果如表3所示。

分析表中消融实验结果可知,在引入PConv
 

后,模型

的mAP@0.5从86.1%提升至86.3%,在保证检测精度

的前提下,参 数 量 减 少 了14.67%,浮 点 运 算 量 减 少 了

15%,检测 速 度 提 升 至 70.4
 

fps。这 一 结 果 的 原 因 是

PConv通过在保持特征图尺寸不变的情况下减少了通道

数量,从而提高了模型的计算效率,减少了计算开销并提

升了检测速度。
在PConv的基础上,进一步引入了 Triplet

 

Attention
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  表3 消融实验结果

Table
 

3 Ablation
 

experiment
 

results

Pconv Triplet
 

Attention BiFPN Dysample Map@0.5/% Params/M GFLOPs FPSbs=1
× × × × 86.1 19.92 60 56.7
√ × × × 86.3 17.00 50.9 70.4
√ √ × × 88.9 17.00 51.0 68.1
√ √ √ × 89.5 17.42 57.8 66.0
√ √ √ √ 89.7 17.43 57.8 66.0

模块,使得mAP@0.5进一步提升至88.9%。这一提升主

要得益于该模块增强了对小目标和细粒度特征的关注,尤
其是在车载相机拍摄的道路图像中,裂纹往往占据较少像

素且背景复杂。Triplet
 

Attention帮助模型更好地识别这

些难以察觉的道路裂纹,提升了检测精度。
随后,在引入Triplet

 

Attention的基础上,在模型的颈

部网络中加入了S2特征参与特征融合,并且在跨尺度特

征融合层中添加了BiFPN。尽管这一改动导致模型参数

略有增加,但 mAP@0.5从88.9%提升至89.5%,表明

BiFPN优化了跨尺度特征融合,提升了多尺度目标的检测

能力。
为了进一步增强模型对小目标的检测能力,本文使用

Dysample替换掉了原有跨尺度融合层中的上采样模块,进
而使mAP@0.5再度提升了0.2%。实验结果表明随着

PConv、Triplet
 

Attention、BiFPN和DySample上采样算子

的逐步引入,最终模型的 mAP@0.5
 

提升至89.7%,较基

础模型提高了3.6%,并且检测速度提升至66.0
 

fps,较基

础模型提高了16.4%。与此同时,参数量为17.43
 

M,浮
点运算量为57.9

 

GFLOPs。这一结果证明,逐步引入这些

模块能够在保证较低计算开销的同时,显著提升模型的检

测精度和速度,平衡了检测精度、计算开销和检测速度之

间的矛盾。

3.4 检测效果可视化对比

  为全面评估改进模型的检测性能,本文从 RDD2022
数据集中随机选取一张车载相机拍摄的路况图像和一张

无人机拍摄的路况图像进行检测与识别实验。图9为车

载相机拍摄的路面场景。在该场景中,RT-DETR原始算

法对细小裂纹的检测置信度较低,尤其是在图像上半部分

中间区域出现漏检现象,暴露出其在细微结构检测方面的

局限性。相较而言,改进后的RT-DETR算法在该场景中

表现出色,几乎未出现漏检或误检。图10展示了无人机

拍摄的路况图像。在这一场景下,尽管原始模型与改进模

型均实现了较高的检测水平,但改进模型凭借更高的置信

度和更稳定的检测性能。
改进算法通过引入Pconv和Triplet

 

Attention优化骨

干网络,显著增强了特征提取能力,并有效改善了小目标

检测性能。同时,结合重新设计的双向金字塔跨尺度融合

模块BiFPN-CCFM,进一步提升了模型在细小裂纹及复杂

  

图9 车载相机拍摄的路面场景

Fig.9 Road
 

surface
 

scene
 

captured
 

by
 

in-vehicle
 

camera

图10 无人机拍摄的路面场景

Fig.10 Road
 

surface
 

scene
 

saptured
 

by
 

drone
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目标检测任务中的表现。可视化实验结果表明,改进模型

在多场景下展现出更高的稳定性和优越性,验证了其在检

测精度与鲁棒性上的显著提升。

3.5 主流算法对比实验

  为评估改进模型的性能,本文将提出的算法与主流目

标检测模型进行了对比实验,包括二阶段有锚框模型
 

Faster
 

R-CNN,一阶段有锚框模型
 

SSD,以及一阶段无锚

框模型
 

YOLOv8m和YOLOv11m。实验在相同数据集和

实验条件下进行,所有模型均已训练至收敛状态,其对比

实验结果如表4所示。

表4 主流算法对比实验

Table
 

4 Comparison
 

of
 

mainstream
 

algorithms

模型 mAP@0.5/% Para/106 FPS GFLOPs
Faster

 

R-CNN 72.2 41.14 12.9 78.13
SSD 73.7 24.83 41.2 88.14

YOLOv8m 86.0 25.84 55.6 78.7
YOLOv11m 86.4 20.06 60.0 67.7
RE-DETR 86.1 19.92 56.7 60.0

本文 89.7 17.43 66.0 57.8

  实验结果表明,改进算法(OURS)在所有模型显著优

于YOLOv11m(86.4%)和其他模型。尽管精度提高,改进

模型的每秒帧数(FPS)仍达到了66.0
 

fps,优于YOLOv8m
(55.6

 

fps)和 YOLOv11m(60.0
 

fps),显示出较好的实时

性。此外,本文模型的参数量为17.43
 

M,相较于其他模型

具有较小的规模,且GFLOPs为57.8,计算复杂度较低,体
现了其在计算效率上的优势。这表明,改进算法在保证较

高精度的同时,仍能兼顾实时性和资源消耗,具有较好的

应用前景。

3.6 泛化实验

  VOC
 

2007数据集包含9
 

963张图像,涵盖dog、person、

sofa、tvmonitor等20
 

类常见物体,图像背景丰富多样,目
标形状、纹理、颜色差异大。而道路缺陷检测数据集聚焦

道路表面裂缝、坑洼等,背景相对单一,但道路材质、天气

等因素致图像特征存在差异。为验证模型在通用目标检

测上的能力并考察其向道路缺陷检测任务的迁移潜力,在
该数据集上开展实验,其中训练集和验证集分别包含

5
 

011张和4
 

952张图像。PASCAL
 

VOC
 

2007数据集常

用于目标检测任务的评估,并且其广泛的类别和复杂的图

像内容使其成为评估模型泛化能力的理想选择。
实验结果如表5所示,改进后的算法在大多数类别上

均实现了轻微的性能提升。例如,在aeroplane
 

类别中,

mAP@50从84.9%提 升 至85.1%;在car类 别 中,从

83.5%增加到84.0%。在部分类别(如cat和horse)中,改
进后的算法则取得了更为显著的提升,分别提高了0.6%
和1.3%。这些结果表明,改进后的RT-DETR算法在不

同类别目标的检测上更加精准,且具备较强的适应能力。

表5 VOC
 

2007数据集不同算法 mAP@50对比

Table
 

5 mAP@50
 

comparison
 

of
 

algorithms
 

on
 

VOC
 

2007

类别 RT-DETR/% 本文/%
aeroplane 84.9 85.1
bicycle 80.1 80.5
bird 75.8 76.0
boat 64.3 64.6
bottle 58.8 59.5
bus 80.5 80.5
car 83.5 84.0
cat 85.5 86.1
chair 53.5 54.7
cow 82.3 83.2

diningtable 59.2 61.5
dog 81.4 81.9
horse 82.2 83.5
motorbike 80.3 80.9
person 81.5 81.9

pottedplant 48.9 49.5
sheep 71.4 72.4
sofa 65.7 66.8
train 85.9 86.6

tvmonitor 74.1 74.6
Average 74.0 74.7

  此外,改进后的算法在
 

person、dog和train等常见类

别上也展现了稳定的提升,进一步验证了该算法在数据集

中的广泛泛化能力。尽管在某些类别(如
 

bottle和boat)
中,改进幅度较小,但总体来看,改进后的算法在多类别目

标检测中仍展现出了良好的稳健性。

4 结  论

  本文提出了一种基于改进RT-DETR的道路缺陷检

测算法,针对现有方法在检测精度和小目标检测方面的不

足,提出了创新性改进。通过引入PConv重构RT-DETR
主 干 网 络,提 升 了 特 征 提 取 能 力,同 时 通 过 Triplet

 

Attention增强了模型对多尺度、多维度特征的感知能力,
从而进一步提高了检测精度。采用BiFPN改进的BiFPN-
CCFM,显 著 提 升 了 对 小 目 标 的 检 测 性 能,并 通 过

DySample上采样算子的引入,增强了对图像局部细节和

语义信息的捕捉能力。
实验结果表明,改进算法在 RDD2022数据集上的

mAP@50较原始模型提升了3.6%,同时在检测速度上达

到了66
 

fps,参数量减少了12.5%。这些改进表明,提出的

算法在保持高检测精度的同时,具有更低的计算开销和更
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优的实时性,具备较强的实际应用潜力。
虽然现有道路缺陷检测模型在某些领域已取得良好

效果,但是依然面临诸如缺陷形态和尺寸差异大、复杂环

境干扰等挑战。未来的研究应着重于进一步优化算法的

实时性能,同时通过引入更多的路面数据集,提升算法的

泛化能力。此外,随着硬件加速技术的发展,模型的推理

速度和检测精度有望得到更大幅度的提升,为道路缺陷检

测的实际应用提供更强有力的技术支持。
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