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摘 要:道路病害检测对于交通安全和道路管养维护至关重要,但现有算法普遍存在检测精度低、计算成本高昂以及

难以部署于移动端设备的问题。为解决这些问题,提出了一种基于 YOLOv8n的轻量化多尺度道路病害检测算法

LMR-YOLO-P。通过设计多尺度组卷积模块以适应病害尺寸多变性,并构建轻量化共享检测头降低计算成本并保留

精细特征,引入感受野注意力卷积RFAConv增强全局信息捕捉能力,结合DFP模块和高效局部注意力机制构建SAC
模块增强多尺度特征融合,最后利用基于层自适应幅度剪枝方法进一步压缩模型。实验结果表明,在RDD2022数据

集上,该算法相较于YOLOv8n网络的mAP50提升了1.8%,同时参数量和计算量分别降低了46%和40%,成功实现

了道路病害的轻量化与实时高精度检测,为智能道路管养提供了有效工具。
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Abstract:Road
 

disease
 

detection
 

is
 

crucial
 

for
 

traffic
 

safety
 

and
 

road
 

maintenance,
 

but
 

existing
 

algorithms
 

generally
 

suffer
 

from
 

low
 

detection
 

accuracy,
 

high
 

computational
 

costs,
 

and
 

difficulty
 

in
 

deploying
 

on
 

mobile
 

devices.
 

To
 

address
 

these
 

issues,
 

we
 

propose
 

a
 

lightweight
 

multi-scale
 

road
 

disease
 

detection
 

algorithm
 

LMR-YOLO-P
 

based
 

on
 

YOLOv8n.
 

By
 

designing
 

a
 

multi-scale
 

group
 

conv
 

module
 

to
 

adapt
 

to
 

the
 

variable
 

sizes
 

of
 

road
 

diseases,
 

and
 

constructing
 

a
 

light
 

weight
 

shared
 

detection
 

head
 

to
 

reduce
 

computational
 

costs
 

while
 

preserving
 

fine
 

details,
 

introducing
 

receptive
 

field
 

attention
 

convolution
 

RFAConv
 

to
 

enhance
 

global
 

information
 

capture
 

capability,
 

combining
 

the
 

DFP
 

module
 

and
 

efficient
 

local
 

attention
 

mechanism
 

to
 

build
 

a
 

SAC
 

module
 

for
 

enhanced
 

multi-scale
 

feature
 

fusion,
 

and
 

finally
 

utilizing
 

the
 

layer-adaptive
 

sparsity
 

for
 

the
 

magnitude-based
 

pruning
 

method
 

to
 

further
 

compress
 

the
 

model.
 

Experimental
 

results
 

show
 

that
 

on
 

the
 

RDD2022
 

dataset,
 

the
 

algorithm
 

improved
 

mAP50
 

by
 

1.8%
 

compared
 

to
 

the
 

YOLOv8n
 

network,
 

while
 

reducing
 

parameter
 

count
 

and
 

computational
 

cost
 

by
 

46%
 

and
 

40%
 

respectively,
 

successfully
 

achieving
 

lightweight
 

and
 

real-time
 

high-precision
 

detection
 

of
 

road
 

diseases,
 

providing
 

an
 

effective
 

tool
 

for
 

intelligent
 

road
 

maintenance.
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0 引  言

  公路交通一直是国家的经济命脉与人民幸福的重要保

障。随着国家工业化进程的推进,截止2024年,我国的公

路总 里 程 达 到 了544.1万 公 里,高 速 公 路 里 程 增 长 至

18.36万公里,稳居世界第一。我国幅员辽阔,交通流量

大,各种极端气候环境导致路面更易于产生裂缝、坑洞等病

害。早期的道路病害检测方法通过人工巡检的方式,通过

人为主观的目视观察,敲击路面发现病害。这种方法存在

着大量依靠个人主观经验,检测排查的效率低下,以及单次

检测对所需要排查的道路范围小的缺陷。
随后提出的一系列半自动道路病害检测算法,如将动

态阈值分割算法应用于道路裂缝图像的提取,以及利用基

于网格单元分析链技术对道路病害的纹理特征进行检测,
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虽然取得了一定的检测性能提升,但无法满足高效道路病

害的检测需求。尤其在面对复杂背景环境时,半自动的检

测算法使得对道路病害的检测任务更加困难。因此,研究

快速、准确的道路病害检测算法对保障人民财产安全、提高

交通道路巡检养护效率至关重要。
近年来,随着深度学习技术的飞速发展,基于深度学习

的道路病害分割与目标检测算法也逐步提出。邹凯鑫等[1]

在U-Net的基础上提出SN-Disout残差块与循环十字交叉

模块,增强模型对过拟合鲁棒性的同时增强特征图不同位

置的捕获特征能力,并在解码器端引入空间通道挤压与激

励模块,能够在保证分割精度的情况下满足实时性的道路

缺陷的分割要求。于天河等[2]提出了一种低成本高精度的

道路裂缝自动分割量化算法SW-Net,通过转置卷积优化

上采样模块,增强对局部细小裂缝特征的捕捉能力,同时,
引入跳跃级往返多尺度融合机制,增强网络对不同感受野

的感知能力。目标检测算法分为单阶段和以 Mask
 

R-
CNN[3]、Faster

 

R-CNN[4]为主的两阶段算法。研究者们对

上述算法进行了诸多改进,有力地推动了该领域的发展。

Li等[5]基于Faster
 

RCNN使用ResNet50与squeeze-and-
excitation

 

network(SENet)集成作为特征提取的骨干网络,
增强对裂纹的特征提取能力,实现了对路面裂纹检测性能

的提升。Lyu等[6]以 Mask
 

RCNN为基础,通过提取 Mask
 

RCNN的输出裂纹的掩膜结果,建立出所有裂纹的轨迹形

态特征,使得模型可以有效识别真假裂纹,提高了模型对混

凝土裂缝的检测能力。然而,两阶段目标检测算法的检测

效率低的问题。相比之下,以 YOLO[7-10]为主的单阶段算

法以其轻量化的模型架构以及快速的检测速度,在道路病

害检测领域受到了广泛关注。胡晓伟等[11]在YOLOv9c的

基础上设计出全新的轻量化YOLOM路面病害检测算法,
设计多扫描模式的视觉 Mamba层与空间金字塔 Mamba
层SPMELAN,增强模型的长程信息捕捉能力。罗向龙

等[12]提出了一种道路病害检测模型RGT-YOLOv7,在主

干网络部分引入三重注意力机制,并引入快速全连接空间

金字塔卷积模块和新的损失函数加强在复杂场景下的道路

病害检测性能。
然而,目前道路病害检测算法仍然面临多方面的挑战

与局限性:

1)首先是特征的多尺度提取与融合能力较弱。道路病

害从微小裂缝到大型坑洞跨越了多个尺度范围。现有的单

一感受野的传统卷积神经网络难以同时捕获不同尺度的特

征信息。

2)其次是上下文信息的获取能力不足。道路病害通常

不是孤立存在的,周围的背景环境提供了重要的判断依据。
目前的检测方法大多仅关注局部的特征提取,缺乏对高级

语义上下文的建模能力。

3)同时,随着网络深度的增加,在特征提取和融合过

程中可能会出现关键信息的丢失,导致模型无法获取部分

如病害中复杂形状以及边缘等重要细节,进而影响检测

性能。

4)随着智能交通系统的普及和移动设备的广泛应用,
道路病害检测系统面临着日益增长的轻量化需求。复杂的

深度网络模型虽然在检测精度上效果优秀,但是庞大的参

数规模和高计算成本使其难以在资源受限的设备上实时运

行。因此,如何在有限的计算资源约束下,平衡检测精度和

模型效率成为了一个亟待解决的挑战。
与上述的算法相比,YOLOv8作为一种先进与成熟的

目标检测算法,具有参数量更小,检测精度更高,以及检测

速度更快的优势,创新的C2f模块和优化的检测头设计显

著提升了特征提取效率,同时多种模型规格能够灵活地适

应不同的计算资源约束条件,特别适合于道路巡检等移动

应用场景,得到了广泛的关注。张强等[13]基于 YOLOv8,
通过引入深度可分离卷积与最大池化提取不同尺度的目标

信息,同时使用dynamic
 

head提升模型头部表征能力,并
将卷积模块与ECA注意力机制结合提高对目标网络定位

能力,但其模型计算量仍较大,难以在资源受限的设备上部

署;王海群等[14]引入rep
 

conv和DBB重参数化模块解决参

数冗余问题,提高特征表达,但未考虑对小尺寸病害目标检

测的局限性。
综上,现有基于YOLOv8的道路病害检测任务仍存在

以下不足:未针对深度网络中的信息丢失提出专门的解决

方案;其次没有一种较为完善的多尺度特征提取架构,难以

适应道路病害尺寸多变性;没有全面考虑模型在实际应用

中的计算资源的限制问题,难以保持或提高检测性能的同

时实现模型压缩。
针对以上问题,提出了一种基于 YOLOv8n的轻量化

多尺度自适应的道路病害检测算法LMR-YOLO-P。主要

贡献如下:

1)针对在道路病害检测任务中存在的多尺度特征提取

与融合能力 有 限 的 问 题,设 计 新 的 多 尺 度 组 卷 积 模 块

(multi-scale
 

group
 

convolution,MSGConv),并融合C2f中

瓶颈结构的高效特征提取能力,替换原先的C2f结构;

2)构建了一个关注局部上下文信息与多尺度特征的融

合模块(scale-aware
 

context
 

block,SAC)。通过构建的空

洞特征金字塔模块(dilated-feature
 

pyramid
 

block,DFP)使
得模型充分捕捉到所有尺度的病害信息。同时,引入高效

局部注意力机制(efficient
 

local
 

attention,ELA)进一步增

强模型的空间感知与上下文提取能力,优化 YOLOv8的

SPPF模块;

3)针对卷积神经网络深度增加带来的道路病害关键信

息丢失 的 问 题,引 入 细 节 增 强 卷 积 模 块(detail-enhance
 

convolution,DEConv),设计新的融合细节增强的轻量化共

享参数检测头(light
 

weight
 

shared
 

detection
 

head,LWSD)
替换网络中原有的检测头,减少了由于网络深度增加带来

的道路病害关键信息丢失;
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4)采用基于层的自适应幅度的剪枝(layer
 

adaptive
 

sparsity
 

for
 

the
 

magnitude-based
 

pruning,LAMP)策略,在
保证检测性能的前提下最大限度地压缩模型大小,同时提

升模型的检测效率。

1 LMR-YOLO改进算法网络模型设计

  本研究在YOLOv8n的基础上,构建出了全新针对道路病

害的轻量化检测算法LMR-YOLO,图1为改进模型结构。

图1 LMR-YOLO算法模型

Fig.1 LMR-YOLO
 

algorithm
 

model

  由图1可知,本研究在YOLOv8的基础之上对网络中

的backbone和head部分进行改进。首先,针对C2f模块

中bottleneck的局限性,创新性提出了一种新的 MSGConv
卷积模块,该模块能够更充分地挖掘高维特征中的多尺度

信息,适应不同尺度的目标病害,从而提升模型的表达能

力。此外,设计了一种融合细节增强能力的全新轻量化共

享参数卷积头LWSD,共享参数卷积的设计大幅降低模型

的参数量与计算量,同时细节增强卷积能够以普通卷积的

参数量提取更为丰富的特征,弥补了因网络深度增加而导

致的关键信息丢失。其次,为了增强模型的长程信息获取

能力,将网络中的下采样模块轻量化为感受野空间注意力

卷 积 模 块 (receptive-filed
 

attention
 

convolution,

RFAConv)。最后,在骨干网络末端,设计了全新的SAC
模块,通过全新构建的DFP模块配合ELA局部注意力机

制,增强骨干网络对病害图像的多尺度特征高效提取与融

合性能,同时扩展模型的局部细节与全局语义的表达

能力。

1.1 基于多尺度组卷积模块 multi-scale
 

group
 

convolution
的C2f_MSGC
  在处理道路病害检测任务时,YOLOv8对病害特征的

形变适应能力往往不佳。单一的卷积核尺度的卷积操作

会使得图像中的高频信息失真,尤其是针对道路病害中各

种尺度变化较大的裂缝坑洞信息时难以进行全面捕捉。

这就要求检测模型能够同时处理不同尺度的目标。针对

以上问题,根据组卷积能够高效并行处理多路信息的特

点,以及通过调节卷积核大小进行提取多尺度信息的思

想,构建了一种全新的用以增强模型对道路病害中尺寸变

化感知能力的卷积模块称为多尺度组卷积 MSGConv。如

图2所 示,通 过 引 入 多 个 不 同 大 小 的 卷 积 核,构 建 了

MSGConv卷积模块,首先将输入的道路病害特征图按其

通道数进行分组,每组对应不同大小的卷积核进行卷积操

作。卷积核的尺寸设定为1×1、3×3、5×5、7×7。分别能

够从小到大提取病害图片中细节与局部的信息,且组卷积

的思想使得模型在提高并行度的同时降低模型的计算量。
多个并行的相异大小的卷积核使得检测网络的骨干和颈

部部分可以同时提取不同尺度的特征,从而可以更全面地

捕捉目标细节与上下文信息。最后将各个支路的卷积结

果进行拼接,从而融合多尺度信息,增强特征表达能力,使
得模型能够更好区分不同类型的病害。

在C2f的瓶颈结构中采用的是3×3的普通卷积,假设

输入输出通道数为C,H 和W 分别代表特征图的高度和

宽度,则对于普通3×3卷积层来说,参数量P3×3 为:
 

P3×3 = (c×3×3+1)×c=9c2+c (1)
计算量C3×3 为:

C33 =H ×W ×c×32×c=9c2+c (2)
而对于 MSGConv卷积模块,由于分别将特征图分为
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图2 MSGConv结构

Fig.2 MSGConv
 

model
 

structure

了4组,并分别进行卷积核大小为1、3、5、7的卷积操作,其
参数量PMSGConv 为:

PMSGConv = (1+32+52+72)×
c

groups  
2

+
4c

groups
(3)

计算量CMSGConv 为:

CMSGConv =H ×W ×
c

groups  
2

×(1+32+52+72)

(4)
其中,groups是分组卷积的组数,由上可知,组数为

4,则普通3×3多尺度组卷积的计算量和参数量的比

值为:

P3×3

PMSGConv
=

9c2

84c2

16 +c
>1 (5)

C3×3

CMSGConv
=
9c2×H ×W

H ×W ×
84c2

16

>1 (6)

当输入特征图通道数较大时,MSGConv卷积模块通

过分组卷积将特征通道划分为多个组,并对每个组分别进

行卷 积,有 效 降 低 了 模 型 的 计 算 量 和 参 数 量。将

MSGConv模块嵌入C2f瓶颈结构中,能够充分挖掘道路

病害图像中多尺度、复杂纹理等特征,增强模型的特征表

达能力。实验结果验证了 MSGConv模块的有效性,模型

对不同尺度、不同类别的道路病害具有更强的鲁棒性。此

外,MSGConv的高效计算特性使其在保证模型性能的同

时,降低了模型的计算复杂度。
根据 MSGConv的 优 势 设 计 了 图3的 MSGConv_

bottelneck结构。MSGConv_bottleneck由一个普通卷积

模块与 MSGConv模块堆叠而成。第1个普通卷积层用以

在进行降维与特征变换,普通卷积的计算方式相对简单,
可以 一 定 程 度 保 证 计 算 效 率。第2个 卷 积 层 使 用 了

MSGConv模块,通过多尺度特征提取和特征融合,即使当

病害特征发生弯曲和扭曲,MSGConv_botteneck仍可以很

好的捕捉到其主要特征。

图3 C2f_MSGC结构

Fig.3 C2f_MSGC
 

model
 

structure

1.2 融合细节增强的轻量化共享参数检测头

  YOLOv8中通过解耦头的设计结构,将检测模块分为

了类别损失与边界框损失两条支路。两条支路通过对通

道数的遍历进行卷积操作,导致模型的计算量与参数量显

著增加,不利于模型的轻量化部署。同时,随着网络深度

的加深,特征提取和融合过程中极易出现关键信息的损

失,这种信息损失主要体现在对病害目标的如裂缝精细纹

理以及病害不规则边缘的精细化特征捕捉能力的下降。
为了解决上述问题,通过引入细节增强卷积模块(detail-
enhanced

 

convolution)设计并构建了一个新的轻量化共享

卷积参数检测头LWSD,为在有效增强模型精细化也在捕

捉能力、缓解网络深度增加导致的关键信息损失的同时,
维持了较低的计算成本。

卷积神经网络中,批归一化(batch
 

normalization,
 

BN)
层被广泛应用与特征归一化。然而,BN层对批大小(batch

 

size)较为敏感,当批大小较小时,BN层基于小批量数据统

计量的估计精度会显著下降,导致归一化效果不佳,进而

影响模型的泛化能力。Tian等[15]的研究表明,在检测头中

引入组归一化(group
 

normalization,
 

GN)层,能够有效缓

解由批大小引起的统计估计不准确的问题,从而提升检测

头的分类与回归性能。
针对在检测阶段模型由于网络堆叠导致的道路病害
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关键信息的损失问题,引入Chen等[16]设计的细节增强卷

积模块DEConv,其能够将先验信息整合到正卷积层中,增
强了模型对细微特征的学习能力。

DEConv由两条并行的支路构成,如图4所示。其中

一条支路为普通卷积,另一条支路上由4个差分卷积构

成,通过中心差分卷积(CDC)、角差分卷积(ADC)、水平差

分卷积(HDC)和垂直差分卷积(VDC)将传统的局部描述

子整合到卷积层中,增强了表征和泛化能力。同时,5个并

行的卷积层在以相同步幅和填充操作时,能够相加以得到

一个等价的核,公式如下:

Fout = DEConv Fin  = ∑
5

i=1
Fin*Ki =

Fin* ∑
5

i=1
Ki  =Fin*Kcvt (7)

其中,Ki=1,…,5 分别表示Conv、CDC、ADC、HDC以及

VDC的核,*表示卷积操作,Kcvt 表示将并行卷积组合在

一起的转换核。权重分解的重参数化能够将该卷积模块

以与普通卷积相同的参数量的同时提取更丰富的特征,并
且在推理阶段不引入额外的计算成本与内存负担。

依据上面提出的改进思路,设计并构建了一种融合细

节增强的轻量化共享卷积参数检测头(LWSD)。
为了平衡参数共享带来的性能损失,引入组归一化

(group
 

normalization,GN)来替代传统的批归一化(batch
 

normalization,BN),GN能够更好地适应小批量数据和不

同尺度的特征,从而保持检测头的分类和回归精度。此

外,为了解决不同检测头所对应目标尺度差异的问题,设
计了Scale层,通过引入可学习的缩放因子,对不同尺度

  

图4 DEConv结构

Fig.4 DEConv
 

model
 

structure

的特征进行自适应缩放使得模型能够更好地适应不同尺

度目标的检测。这种自适应缩放机制不仅提高了模型的

训练效率和稳定性,同时增强了模型对多尺度目标的鲁

棒性。
如图5所示,该检测头通过在不同尺度的特征图P3、

P4、P5上共享参数的细节增强卷积模块,显著降低了模型

的计算复杂度。细节增强卷积模块能够在图像的不同方

向上计算像素差异,并将这些差异作为先验知识编码进网

络中,从而提升模型对细小物体、纹理和边缘等细节特征

的感知能力。提升对关键信息的提取能力。

图5 LWSD结构

Fig.5 LWSD
 

model
 

structure

1.3 基于感受野空间特征的注意力卷积模块RFAConv
  在依赖空间特征的道路病害检测任务中,道路病害的

图像特征的多样性、尺度变化大且复杂,仅依靠局部卷积

难以 充 分 捕 捉 道 路 病 害 的 空 间 上 下 文 信 息,基 于

Transformer的自注意力机制虽然能够解决远程信息的建

模问题,但也给模型带来了显著的计算开销与复杂性。理
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想的病害检测模型需要具备更强大的全局感知能力,以便

更好地理解图像的整体语义,从而准确地定位和分类病害

区域。
为了弥补下采样中处理全局空间特征信息方面的不

足,同时保证模型的轻量化架构,引入了一种低计算成本,
通过将空间注意力机制引导到感受野的空间特征的感受

野空间注意力卷积模块RFAConv[17]称为感受野注意力卷

积,如图6所示。

图6 RFAConv结构

Fig.6 RFAConv
 

model
 

structure

  整个感受野空间注意力卷积模块由两条支路组成,如
图6所示。首先是注意力图支路,将输入特征图经过平均池

化聚合特征图的全局特征,并通过1×1的多个组卷积的进

行高效的局部特征提取,并将提取的局部特征用于生成计

算注意力关系的权重,实现了感受野特征信息的交互。组

卷积在一定程度上降低了模型的计算量和参数量。最后使

用softmax来强调每个特征在感受野特征内的重要性,并
将感受野滑块中不同特征重要性进行了优先级排序,生成

注意力图。从而保证了得到的卷积核能够对重要的特征进

行优先提取;其次是感受野空间特征支路,将特征图进行组

卷积后得到了与注意力图相同尺寸的感受野空间特征,3×
3的组卷积使得感受野滑块展开速度更快,效率更高。

1.4 引入高效局部注意力机制模块ELA
  注意力机制由于其能够有效地增强深度神经网络的

性能而取得巨大的成功。然而现有的注意力机制能力往

往难以有效利用空间信息,或者即使有效利用也会以降低

通道维数或增加神经网络的复杂性为代价。Hou等[18]提

出了一种高效的局部注意力ELA方法,通过结合1D卷积

和群归一化特征增强技术,有效地编码两个1D位置特征

映射而无需降维,从而实现了局部上下文信息的捕捉,同
时允许轻量级的实现。

如图7所示,与CA坐标注意力机制相比,ELA通过

在高度与宽度两个维度上进行平均池化,得到了两个方向

的注意力权重,从而实现了局部上下文信息的捕捉;同时,
由于主要关注局部上下文信息,并使用了平均池化与一维

卷积等计算效率较高的操作,因此ELA能够在更加关注

微小病害的同时保证了高效计算。

1.5 构建SAC模块

  SPPF模块由普通卷积与最大池化组成,通过普通卷

图7 ELA结构

Fig.7 ELA
 

model
 

structure

积对输入特征图进行通道数压缩与特征融合。然而,SPPF
模块仅关注不同尺度的空间信息,最大池化可能会丢失部

分关键信息,无法充分捕捉到所有尺度的病害信息。同

时,忽略了病害纹理细节等局部上下文信息。
针对以上问题,构建出了通过膨胀卷积与共享卷积核

高效提取不同尺度特征的DFP模块,并配合高效局部注意

力机制ELA的轻量级和局部上下文信息提取能力构建了

如图8所示的SAC模块。增强骨干网络多尺度特征提取

融合能力的同时提高了模型对局部上下文信息的捕捉能

力。如图8所示,多尺度注意上下文模块SAC分为了两条

主要支路,分别为多尺度空洞卷积支路与局部信息增强

支路。
多尺度空洞卷积通路主要由构建出的DFP模块构成。

通过不同的空洞率的卷积操作,捕捉到不同尺度的病害特

征,并通过类似于特征金字塔FPN的结构,融合多尺度信
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图8 SAC模块结构

Fig.8 SAC
 

block
 

model
 

structure

息,实现了多尺度特征的高效提取与融合。同时,空洞卷

积可以有效扩大卷积核的感受野,使得模型可以更好地捕

捉到全局上下文信息。
局部信息增强支路主要由深度可分离卷积 DWConv

与高效局部注意力机制组成。通过低运算成本的深度可

分离卷积提取局部特征后,利用ELA注意力机制增强局

部信息,从而提高模型对病害细节的感知能力。

SAC模块通过将不同空洞率卷积核提取的特征、原始

输入特征以及经局部注意力机制处理后的特征进行通道

维度的拼接,实现更丰富的特征融合,从而提高了检测

性能。

1.6 基于层自适应幅度的剪枝

  为了进一步降低模型的计算量与参数量,提升改进模

型的检测效率,实现稀疏性与性能之间的最佳权衡,引入

了基于层自适应幅度LAMP[19]剪枝算法。

LAMP基于失真的最小化框架,提出了新的全局剪枝

重要性评分。通过重新调整的权重大小,近似于剪枝造成

的模型级失真,如式(8)所示。

score(u;W)=
(W[u]2)

∑v≥u
(W[v]2)

(8)

其中,W(1)、…、W(k)为一个深度为k 的前馈神经网

络中的权重,LAMP评分通过将当前权重大小的平方除以

所有幸存权重的综合进行归一化,使得不同层间的权重参

数具有可比性。

LAMP分数的大小决定了该权重对于模型输出的影

响大小,通过剪去分数较小的权重,实现了自适应剪枝的

功能。LAMP剪枝流程如图9所示。

图9 LAMP剪枝流程

Fig.9 LAMP
 

pruning
 

process

2 实验结果与分析

2.1 数据集与实验环境

  为了验证改进模型的有效性,本实验选用 RDD2022
数据集[20]作为实验基准。该数据集是一个大规模的多国

道路损坏图像数据集,包含来自中国、印度、日本、捷克、美
国、挪威等6个国家地区的47

 

420张图像,涵盖了裂缝、坑
洞、隆起等多种道路病害。为了确保研究的针对性,并考

虑到数据集在不同病害类别分布不均衡的问题,本研究基

于《公路技术状况评定标准》(JTG
 

5210-2018)[21],选取了

D00(纵向裂缝)、D10(横向裂缝)、D20(网状裂缝)和D40
(坑洞)经过数据清洗,最终获得23

 

767张带标注图像,并
按照7∶2∶1的比例随机划分为训练集、验证集和测试集,用
于后续模型的训练和评估。实验环境与平台如表1所示。
训练过程中均使用了相同的超参数,如表2所示。

表1 实验环境及平台配置

Table
 

1 Experimental
 

environment
 

configuration
名称 配置

操作系统 Windows
 

11
CPU Intel(R)Core(TM)

 

i5-12400f
GPU GeForce

 

RTX
 

4060Ti
内存大小 32

 

G
显存 8

 

GB
学习框架 PyTorch

 

2.2.2+CUDA12.1
编程语言 Python3.9

表2 实验参数配置

Table
 

2 Experimental
 

parameter
 

configuration

名称 配置

数据增强 Mosaic
更新学习率 余弦退火算法

优化器 SGD
训练轮数 300
Batch 16
Patience 0
Workers 8

2.2 评价指标

  为 了 量 化 改 进 算 法 的 检 测 效 果,采 用 精 准 率

(precision,P)、召回率(recall,R)、平均精度均值(mean
 

average
 

precision,mAP)、以 及 每 秒 十 亿 次 浮 点 运 算 数

(giga
 

floating-point
 

operations
 

per
 

second,GFLOPs)作为

算法的评价指标。假设TP、FP、FN 分别是检测中正确、
错误以及缺失的目标数。

精准率是描述在检测过程中将正例样本检测为正确

的比例,计算式为:
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P =
TP

TP+FP
(9)

召回率是指正例样本中检测正确的正例所占全部正

例样本的比例,计算式为:

R =
TP

TP+FN
(10)

平均精度均值衡量了模型在所有目标类别上的平均

精度,计算式为:

mAP =
1
n∑

n

i=1∫
1

0
Pi(R)dR (11)

其中,∫
1

0
Pi(R)dR 是第i 个目标 类 别 的 Precision-

Recall曲线下围成的面积。

F1为精确率与召回率的算术平均值,计算式为:

F1=2×
PR

P+R  (12)

每秒帧数(frame
 

per
 

second,FPS)是指网络结构每秒

能够处理的图片数量(帧数),该指标用于评估模型在给定

硬件条件下的处理速度。

2.3 C2f_MSGC模块对网络性能的影响

  为了验证在检测网络的不同位置添加C2fMSGC自研

模块对检测效果的影响,设计了如表3所示的消融实验。

MSGC-backbone表示将骨干网络中的 C2f模块替换为

C2fMSGC而颈部网络保持不变,MSGC-neck表示将颈部

网络的C2f模块替换为C2fMSGC,而骨干网络保持不变。

表3 C2f_MSGC不同位置对比结果

Table
 

3 Comparison
 

results
 

of
 

different
 

C2f_MSGC
 

positions
算法 P/% R/% mAP50/% mAP50-95/% Params/M GFLOPs

YOLOv8n 63.6 53.2 57.0 28.8 3.0 8.1
+backbone 64.9 52.4 57.3 29.5 2.9 8.0
+neck 65.5 52.2 57.7 29.6 2.9 8.0
本文 65.8 52.0 57.8 29.9 2.8 7.9

  在 骨 干 网 络 中 引 入 C2fMSGC 模 块 后,相 比 于

YOLOv8n略微降低了模型计算量,且略微提升了检测精

度。由于 MSGConv的多尺度特征提取能力能够提高骨干

网络对道路病害的特征提取能力,并行分组卷积的思想在

一定程度上降低了模型大小;将颈部网络中的C2f替换为

C2fMSGC模块后,提升了模型融合多尺度特征的能力,

mAP50得到了进一步提升。最终,实验结果表明将骨干

与颈部网络中的C2f模块替换为C2f_MSGC能够获得最

佳性能。

2.4 消融实验

  为了验证改进模型LMR-YOLO算法在道路病害检

测中的性能优势,设计了以YOLOv8n为基线模型,通过依

次添加模块得到了如下的消融实验如表4所示。首先将

骨干与颈部网络的C2f进行替换后,参数量与计算量下降

的同时,精度上升了0.8%,有效地解决了道路病害特征存

在尺寸差异较大的问题;其次在改进模型检测头模块后,
共享卷积参数的低运算成本使得模型的计算量和参数量

分别降低了18%和23%,轻量化的同时细节增强卷积使得

模型的检测精度略微提升。SAC模块在关注图像空间特

征的同时融合了高效计算的局部注意力机制,充分捕捉所

有尺度的病害信息。引入基线网络后使得平均精度上升

了1.1%。

表4 消融实验结果

Table
 

4 Results
 

of
 

ablation
 

experiment
模型 C2f_MSGC RFAConv SAC LWSD mAP50/% mAP50-95/% GFLOPs/G Params/M FPS

YOLOv8n 57.0 28.8 8.1 3.0 151.9
Model-1 √ 57.8 29.9 7.9 2.8 105.8
Model-2 √ 58.3 29.6 8.4 3.0 109.4
Model-3 √ 58.1 29.7 8.1 3.1 114.2
Model-4 √ 57.3 29.3 6.6 2.3 123.1
Model-5 √ √ 58.4 30.2 8.0 2.9 94.5
Model-6 √ √ 57.9 29.5 6.8 2.4 110.2
Model-7 √ √ √ 58.5 30.2 8.4 3.2 99.6
Model-8 √ √ √ √ 58.9 30.4 6.7 2.6 88.4

  综合以上的实验结果,提出的LMR-YOLO道路病害 检测算法通过结合C2f_MSGC、LWSD检测头、RFAConv
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以及SAC模块在经过了300轮迭代计算下,模型精度提升

了1.9%,同时模型参数量降低了13%,计算量降低18%,
实现了模型在性能与效率之间的良好平衡,满足实时检测

道路病害的要求。

2.5 剪枝结果分析

  为了进一步降低模型大小,同时提升模型的实时性,
采用了LAMP剪枝算法对模型进行轻量化改进。能够尽

量实现无损的轻量化。实验结果如表5所示。通过在剪

枝算法中调整Speed_up参数以对模型进行剪枝。Speed_

up表示的是剪枝前模型的浮点运算数除以剪枝后模型的

浮点运算数的倍数,Speed_up参数越大,需要剪除的模型

权重也就越多,但是对模型的影响也就越大。分别设置

Speed_up为1、1.2、1.5、1.8、2.0进行对比实验。可以发

现,当Speed_up为1.2时,模型在轻量化的同时精度得到

了提升,这是由于模型具有冗余的权重,剪枝能够帮助模

型剪除不重要的参数,减少其中噪声的影响。在Speed_up
为1.5时模型的精度基本保持不变,同时相比于Speed_up
为1.2时的模型大小进一步减小,而在Speed_up为1.8和

2.0时,虽然模型大小有了更大程度的压缩,但是也带来了

一定的精度丢失。综合以上实验结果,最终使用Speed_up
为1.5作为模型的最终剪枝轻量化模型。剪枝后的模型

通过聚焦关键特征,在道路病害的多尺度特征中能够更高

效的分配计算资源,实现了模型实时性与检测准确率之间

的平衡。

表5 不同speed_up实验结果

Table
 

5 Results
 

of
 

different
 

speed_up
算法 Speed_up mAP50/% P/% R/% Params/M GFLOPs/G Size/MB FPS

YOLOv8n - 57.0 63.6 53.2 3.0 8.1 6.1 151.9
LMR-YOLO - 58.9 64.1 54.5 2.6 6.7 6.0 88.4
LMR-YOLO-P 1.2 59.1 64.1 54.7 2.0 5.7 4.9 106.8
LMR-YOLO-P 1.5 58.8 64.0 54.5 1.6 4.8 4.2 127.3
LMR-YOLO-P 1.8 56.9 63.4 52.4 1.4 4.2 3.7 131.5
LMR-YOLO-P 2.0 56.5 63.7 51.8 1.3 3.9 3.4 138.2

2.6 热力图可视化分析

  为 直 观 展 示 LMR-YOLO-P 模 型 相 较 于 基 础

YOLOv8n模型在病害目标检测上的显著优势,本研究利

用Grad-CAM热力图对两种模型的检测结果进行了可视

化对比。如图10所示。其中,热力图中的红色区域表示重

点关注的特征区域,可以看出,YOLOv8基础模型在面对

道路病害的多尺度特性以及复杂纹理影响导致模型的检

测精度不佳。提出的LMR-YOLO-P算法能够准确识别

出病害区域,识别结果与病害所在区域较高重合,表明改

进算法在道路病害检测任务中具有较高精度。

图10 改进模型热力图可视化结果

Fig.10 Visualization
 

results
 

of
 

improved
 

model
 

heat
 

map

2.7 不同目标检测算法对比分析

  为了验证提出的道路病害检测算法的有效性与可行

性,本节选取了几种主流的目标检测算法进行对比,包括

FasterR-CNN以及几种主流的 YOLO 算法(YOLOv5n、
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YOLOv7n-tiny、YOLOv8n、YOLOv10n、YOLOv11n)和

LMR-YOLO-P算法,结果如表6所示。可以发现,相较于

两阶段的FasterR-CNN目标检测算法,LMR-YOLO-P仅

拥有其2.1%与2.2%的计算量与参数量,但 mAP50%与

mAP50-95%均提高了7.6%。与主流的 YOLO 算法相

比,LMR-YOLO-P的 mAP50分别提高了4.7%、2.3%、

1.8%、3.1%、2.0%,mAP50-95分别提高了1.8%、4.8%、

1.7%、1.6%、1.7%。有效地提高了模型在复杂背景以及

遮挡等 不 良 条 件 下 的 检 测 效 果。检 测 准 确 度 对 比

YOLOM[12]、RGT-YOLOv7[13]提出的改进算法有明显提

升,模型大小明显降低。此外,相较于目前针对YOLOv8n

的改进算法,LMR-YOLO-P算法为深度网络的信息丢失

提出了解决方案,保证低廉计算成本的同时,提出了完善的

多尺度特征提取架构以适应道路病害的尺寸多变性。相较

于文献[12]、文献[13]和DML-YOLO[22],mAP50分别提高

了1.5%、0.5%和1.1%,mAP50-95分 别 提 高 了1.4%、

0.3%和0.5%,同时LMR-YOLO-P的计算量仅为他们的

48%,45%与20%,参数量仅为他们的47%,44%与21%。
且LMR-YOLO-P的实时性实现了最佳效果。以上的实验

结果可以表明,本研究提出的LMR-YOLO-P模型在满足了

低廉运算成本的同时,大幅提升了检测精度,增强了模型在

复杂背景下的检测能力,拥有更强的泛化能力。

表6 不同算法对比试验

Table
 

6 Comparative
 

experiments
 

of
 

different
 

algorithms

算法 mAP50/% mAP50-95/% F1 Params/M GFlops/G FPS

FasterR-CNN 51.2 22.5 49.4 137.1 370.2 11.0

RT-detr 57.6 29.4 58.2 29.2 105.2 47.0

YOLOv5n 54.1 28.7 54.8 2.5 7.1 134.5

YOLOv7n-tiny 56.5 25.7 57.1 6.9 13.0 144.3

YOLOv8n 57.0 28.8 57.8 3.0 8.1 151.9

YOLOv10n 55.3 28.9 56.3 2.7 8.2 125.0

YOLOv11n 56.8 28.8 57.6 2.5 6.3 118.2

YOLOM[10] 58.2 30.2 57.7 26.3 102.6 88.5

RGT-YOLOv7[11] 56.8 28.7 57.4 57.6 144.1 54.0
文献[12] 57.3 29.1 57.2 3.4 9.8 39.8
文献[13] 58.3 30.2 58.5 3.6 10.5 86.3

DML-YOLO[23] 57.8 30.0 58.3 7.52 24.0 77.0

LMR-YOLO 58.9 30.5 59.0 2.6 6.1 88.5

LMR-YOLO-P 58.8 30.5 59.0 1.6 4.8 127.3

3 结  论

  针对道路病害检测面临的多尺度特征提取不足、上下

文信息获取有限以及轻量化部署需求等关键挑战,基于

YOLOv8n模型提出了一种轻量化多尺度的道路病害检测

改进算法LMR-YOLO-P。

MSGConv卷积结构通过多尺度特征提取与融合,
显著增强了模型对从微小裂缝到大型坑洞等不同尺寸

病害的感知能力,同时减少了模型的计算量与参数量,
解决了现有方法难以适应道路病害尺寸多变性的问题。
创新设计的LWSD轻量化共享参数检测头结构优化了

网络参数分配,在减少计算成本的同时提升了检测精

度,解决了现有算法模型在资源受限设备上难以部署的

问题。引入的RFAConv卷积以较低的计算成本增强了

模型对全局上下文信息的感知能力,弥补了传统卷积操

作感受野有限的缺陷。构建的SAC模块通过DFP结构

和ELA注意力机制,充分捕捉不同尺度的病害信息,同
时增强了对局部与全局上下文信息的提取能力,提升了

道路病害检测的准确性,克服了现有算法在小尺寸病害

检测方面的局限性。此外,采用的 LAMP剪枝策略在

保证检测性能的前提下最大限度地压缩了模型大小,进
一步提升了检测效率。

实验表明,LMR-YOLO-P在道路病害检测任务中表

现出卓越的性能,具有检测精度高、计算量与参数量低的

突出优势,同时满足实时检测的要求。与现有模型相比,
该算法能够更好地适应不同尺寸道路病害特征,获得明显

的检测精度提升。这些改进在智能交通系统和道路养护

领域具有重要的现实意义,特别是在资源受限的移动设备

上进行实时道路病害检测应用中,可以显著提升巡检效

率、降低养护成本、保障交通安全,为我国公路交通基础设

·191·



 第48卷 电 子 测 量 技 术

施的智能化管理提供了新的技术支持。
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