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Abstract: Road disease detection is crucial for traffic safety and road maintenance, but existing algorithms generally

suffer from low detection accuracy, high computational costs, and difficulty in deploying on mobile devices. To address
these issues, we propose a lightweight multi-scale road disease detection algorithm LMR-YOLO-P based on
YOLOv8n. By designing a multi-scale group conv module to adapt to the variable sizes of road diseases, and
constructing a light weight shared detection head to reduce computational costs while preserving fine details,
introducing receptive field attention convolution RFAConv to enhance global information capture capability, combining
the DFP module and efficient local attention mechanism to build a SAC module for enhanced multi-scale feature fusion.,
and finally utilizing the layer-adaptive sparsity for the magnitude-based pruning method to further compress the model.
Experimental results show that on the RDD2022 dataset, the algorithm improved mAP50 by 1.8% compared to the
YOLOv8n network, while reducing parameter count and computational cost by 46% and 40% respectively,

successfully achieving lightweight and real-time high-precision detection of road diseases, providing an effective tool for

intelligent road maintenance.
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Fig.1 LMR-YOLO algorithm model
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Fig. 9 LAMP pruning process
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AR B BR A Sk H T LEDEE VAR HEE LR
E LRSS 6 AN E R HLIX 9 47 420 SRIEMR 55 T 2458 4t
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B B A AN [ 5 2 0] 43 A AN 35 4 1) 1) L L A i o Ak
FCA BT AR BV E AR HE) (JTG 5210-2018)™, BB T
DOO(HhIn) 4 4%) . D10 (it [m) 24 48 ) . D20 (MR 48 ) F1 D40
(HURD 233 B v Uk » S 243K 45% 23 767 kA bn i BR, IF
Fi BB 7220 100 EL B BE AL R 40 A DI R 4R 36 4B AT 4R L
FRREMBINGERIEAE . LHRARESFEWE 1R,
Yl FE ¥ 6 T ARE B S8, Ik 2 PR .
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Table 1 Experimental environment configuration
4 Fr [
BIERS Windows 11
CPU Intel(R) Core(TM) i5-12400f
GPU GeForce RTX 4060Ti
[RE N 32 G
A7 8 GB
2 HESRL PyTorch 2. 2. 24+CUDA12. 1
WS Python3. 9

R2 ZRSYERE

Table 2 Experimental parameter configuration

PN i &
BT Mosaic
iR AREXIR K
ffeds SGD
PR 4 300
Batch 16
Patience 0
Workers 8
2.2 EHIERR

T i Ak W R TE R I R SR, RO ORS ME R
(precision, P) | 74 [8] 2 (recall, R) | 3 ¥ K5 & ¥ {§ (mean
average precision, mAP) , P & &t B + 42 IR 7 538 B 5
(giga floating-point operations per second, GFLOPs) fE J
BRI FERR . B TP FP FN 435I & 46 0w 15 5
Fi LA R B2k 1Y H AR R

N T 28 Tl A A I 5 R s T A A R A E
1 TR
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TP
P =Tp+Fp o
18] K28 TE 6] A F kG 0 T i 69 1F 41 A 5 4 OE
BIREA B Fe ] 35
TP
R=TpTFN (10>

SRR B B e R TR RLAE T A F AR 28 L A B
KR R AN

mAP = iZJ P.(R)dR

n 3 Jo

an

1
Hop, j P.(RYAR 45 i /~ H bi 26 510 Precision-

Recall #H4E T Fl A% A9 1T R,

F1 8035 4 FR W AR, 11508 .
PR )
P+R
FFPMWI%L (frame per second, FPS) 218 W 4% 45 ¥4 4 70
AE A% b 31 R 508 (TS0 L Z 45 47 1 TPl B 0 7 44 2
T 252 TR G A R
2.3  C2f_MSGC #EH 3T W £ 14 B #9 5
kT 6 E ARG I D 2% 1) AN [) o7 B VR i C2EMSGC 4
AR S G I 5 S A R i, BET T AR 3 BT R BT AL e .
MSGC-backbone 3 7 ¥ B T W 4 1 (1) C2f £ B8 4 oy
C2EMSGC i 255 P 45 $5 A 25 , MSGC-neck 37 4 3 &
W 2% g C2f BBy C2IMSGC, B T M 45 R 35 A48

(12)

F1:2><(

£3 C2f MSGC RREIIEX L& R
Table 3 Comparison results of different C2f MSGC positions

RS P/% R/% mAP50/ % mAP50-95/ % Params/M GFLOPs
YOLOv8n 63.6 53.2 57.0 28.8 3.0 8.1
+ backbone 64.9 52.4 57.3 29.5 2.9 8.0

+neck 65.5 52.2 57.7 29.6 2.9 8.0

A3 65. 8 52.0 57.8 29.9 2.8 7.9

BT ™% d5 A C2IMSGC # 5, M1 1L T
YOLOvSn W i B AR 7 45 20 1 50 B, FL W& 48 7 7 A T kG
. BT MSGConv ) 2 )R HHF HL HUAE ) g g 42 v B 1
0 245 X6F 3 I8 5 1) R AE 4 BB 7 AT 4 A B AR TR
—E R LR T AN o BRI 4% h g C2f Bl
C2fMSGC BH 5 . 2 T+ T AL AL Bl & 2 R FRAFE I BE 1,
mAP50 33 T — BT, m& LR R RS T
53R W 45 1 C2f BB R e A C2f_MSGC fE W 3K 15 f

W rp A PR RE A 3, 83T T LA YOLOv8n b B 2R A5 50, 58 i 4k
IR AL B AR 2] T a0 F AT S se an 3% 4 i, 1 5e ks
H T 5EEM R Cof #T G, SRESITAR TR
BRI R BE LT T 0. 8%, A Ak M it e T 3 I SRR AE AT
P RUST 22 53 350 R 4 T R0 5 JHG O T W30 A58 7R T Sk S B
HZHBRSHN IS B A MR BB S 5
A3 MBEAR T 18 %01 23 %6 , 5 0 Ak 14 ) B 40045 3 588 45 ARl 45
TR PG K B R B4R T . SAC AR B TE O 1 18] 1% 25 (8] 4%

fEHERE . I 1 ) B 5 T e AR TR ) R A A T AL TR A R T
2.4 HRAXI FRERREREB. 51 AL MGG #5898 LT+
T RS BB LMR-YOLO Sk e s 4 7 1 1%,
x4 HBMIRER
Table 4 Results of ablation experiment
T C2{_MSGC RFAConv SAC LWSD mAP50/% mAP50-95/%  GFLOPs/G  Params/M  FPS
YOLOv8n 57.0 28.8 8.1 3.0 151. 9
Model-1 N/ 57.8 29.9 7.9 2.8 105. 8
Model-2 N 58.3 29.6 8.4 3.0 109. 4
Model-3 J 58.1 29.7 8.1 3.1 114.2
Model-4 J 57.3 29.3 6.6 2.3 123.1
Model-5 N NG 58. 4 30. 2 8.0 2.9 94.5
Model-6 J J 57.9 29. 5 6.8 2.4 110. 2
Model-7 J J J 58.5 30. 2 8.4 3.2 99. 6
Model-8 NG J N N 58.9 30.4 6.7 2.6 88. 4
LA U LS as R 8t i LMR-YOLO 38 # 3% 0 555 5 45 A C20_MSGC, LWSD #4 M 3k . RFAConv
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T 1.9%, MR SHE BT 13% , IR B AR 182,
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2.5 BRERSW

g T k25 AR R AN, [ B 4 AT A ) S e
KT LAMP B9 B8 2 % B0 47 R i fb il . REfE R
HEALHR YR, TWERME 5 PR, B
B IR #E Speed_up ZELLI X BRI HEAT BT AL . Speed_
up FE7 Y 2 BY B TR B (1Y) VF A B0 DL O A S B R Y
T A8 BB A5 5, Speed _up 2 B0 K, 75 B BY [ 6 45 Y
A AR 22, (EL 2 X AR Y 1Y) 5 R R, o

Speed up K 1.1.2.1.5.1.8.2. 0 #EATX Lh 528, T LL &
B, Y4 Speed_up 4 1.2 B, B 7 42 5 Ak i) (] s oA 2 45 5]
THRETE, OR W TR AR TUAR BB, 55 AR 45 5 B A
RIBY R AN B0 S0 D Fo RS (9, £E Speed_up
S 1.5 B AR TR (AR B AR AR A A AR L [R) B AH L T Speed_up
R 1.2 B BRI R /N il — 25 08/, T 7E Speed_up iy 1. 8 Fl
2.0 B, BARBIR KNG T8 KRR E R4S B2k T
—EMREEER, GHULTHRER, FZ AT Speed_up
1.5 VR R B A 2% 05 KRR i AR R, 0 BE By ARE RY
T IR A SCHRR AT , A6 B I 2 RUERRE T RS T &
AR A BE 1A PR R ST TR S A R T v i R 2 [
111

K5 7A[E speed_up LG LER
Table 5 Results of different speed_up

Bk Speed_up mAP50/ % P/ % R/ % Params/M  GFLOPs/G  Size/MB FPS
YOLOv8n — 57.0 63.6 53.2 3.0 8.1 6.1 151. 9
LMR-YOLO — 58.9 64.1 54,5 2.6 6.7 6.0 88. 4
LMR-YOLO-P 1.2 59.1 64. 1 54. 7 2.0 5.7 4.9 106. 8
LMR-YOLO-P 1.5 58. 8 64.0 54.5 1.6 4.8 4.2 127.3
LMR-YOLO-P 1.8 56.9 63. 4 52.4 1.4 4.2 3.7 131.5
LMR-YOLO-P 2.0 56.5 63.7 51.8 1.3 3.9 3.4 138.2
2.6 HAETFRLS RO BYRHIE DB, BT LU i, YOLOVS 5 il 485 78 75 [ XF

9 H W R R LMR-YOLO-P #i %1 #H #% T 3 fib
YOLOv8n A A5 E B br ke U 1 19 2 35 00 8, A 07 58 Fl
H Grad-CAM FAJy P T 3 A 8 7 46 000 25 S 3647 T m 40
XT e, W 10 s, Ho, 30 B i 41 (0 X 3R R B

R

Original image

YOLOvV8n

LMR-YOLO-P o = i

T R Y 2 R R DL T B 2= SCHE Y ) T BORE Y ) R
WKE BE A4, 42 59 LMR-YOLO-P 55 1 8 98 1 i iR 3
W E XL PUNS RS WENAEXREEmE S, RPN
HE L e TE

10 W AR R AR P AT R A 2 R

Fig. 10  Visualization results of improved model heat map
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YOLOv7n-tiny, YOLOv8n, YOLOv10n, YOLOv11n)
LMR-YOLO-P Hvk g5k 6 piR. mT LI, T
PR B 1) FasterR-CNN H #7342 U 5 1% , LMR-YOLO-P 1%
WHEKE 2.1%5 2.2%MWitA & 5S35 E . H mAPS0% Y5
mAP50-95 U ¥R BT 7.6%. 5 ERM YOLO B LM
I, LMR-YOLO-P ) mAP50 43 53 @ 7 4.7%.2.3%.
1.8%.3.1%.2. 0%, mAP50-95 /3 42 = T 1. 8% .4. 8% .
1L.7%.\1.6%.1.7% ., AR E T AEL 2T 50K
e ST NI B T SO a1 5 G O b IR - A Ol
YOLOM™ [ RGT-YOLOv7™ $£ H i ol o 8 vk W) 4 48
Fr BRI /N B REAR . SRS, AT B AT 4R X YOLOv8n

MBS 3 LMR-YOLO-P 53 AR M4 1 15 B E &
P T RO S BRIEAR BRI SR AR RIS 3R T SR
2 RUBE FRAE 4 BUEEAG L 35 IV T8 05 3 0 R 238 M. MR
T3k 12]., 3cHk[13]#1 DML-YOLO™ , mAP50 43 51 32 &
T 1.5%.,0.5% F 1.1%, mAP50-95 2F S48 5 T 1.4%,
0.3% 1 0.5%, [f B LMR-YOLO-P 1% 3% & {0 H i1 (%
48%,45%05 20% . B H AL MATTIM 47%,44% 5 21%.,
H LMR-YOLO-P Wy SEafPE S8 T me RO . DL B SR e
25 Al DLW AT ) LMR-YOLO-P R 2 T
IR B 32 S A 19 [ ESF , I 4 T 1 ARG J0KG BE , 38 98 T A AR 7
A SR R IURE ), 414 SR IG 2 L g

R6 AEEEILLRE

Table 6 Comparative experiments of different algorithms

Bk mAP50/ % mAP50-95/ % Fl Params/M GFlops/G FPS
FasterR-CNN 51.2 22.5 49. 4 137.1 370. 2 11.0
RT-detr 57.6 29. 4 58.2 29. 2 105. 2 47.0
YOLOv5n 54.1 28.7 54. 8 2.5 7.1 134.5
YOLOv7n-tiny 56.5 25.7 57.1 6.9 13.0 144.3
YOLOv8n 57.0 28. 8 57.8 3.0 8.1 151.9
YOLOv10n 55.3 28.9 56. 3 2.7 8.2 125.0
YOLOvl1n 56. 8 28. 8 57.6 2.5 6.3 118.2
YOLOM[ ' 58.2 30. 2 57.7 26. 3 102. 6 88.5
RGT-YOLOvy7™" 56. 8 28.7 57. 4 57.6 144.1 54.0
Swk[12] 57.3 29.1 57.2 3.4 9.8 39.8
SCHk[13] 58.3 30. 2 58.5 3.6 10. 5 86.3
DML-YOLO™ 57.8 30. 0 58.3 7.52 24.0 77.0
LMR-YOLO 58.9 30.5 59.0 2.6 6.1 88.5
LMR-YOLO-P 58. 8 30.5 59.0 1.6 4.8 127.3
3 % i PEIRR 32 B A BB B . F Y SAC BEHUE 1 DFP 4544

Gl of 3 fH 0 T A I TR I 1) 2 ROBEAFAE SR IR 2 L B F
SCfE BRI BR UL R e B AL HE B W sk SR e pk i, 3 T
YOLOv8n BRI T —Fh iz &1k 22 R (1% 38 I 975 3 A DUl
UGB Y LMR-YOLO-P,

MSGConv #4518 o 2 R EAFE# S @ &,
35 B TR AL E A B /N 24 4 B R A BT IR 45 R TR R
R BAIRE Ty, R A A TR TR S S8R,
fife e T BRAT v M LA IE N TE O R T 2 AR 4 1 )
BB BT LWSD 4% i 16 3 5= S 500 sk g5 ek 1
[ G VN A < Ny o N T i < 3 A o
B A e T IR G R A R TR A PR A X LR Y
M, 51 AW RFAConv 45 R DA BAR 09 11 B s A 158 T
BRI 42 5 B R SCfF B ERAL R 7 L kb T 1% 5 B B

A ELA EZEHIS . R MEAFRENHRERFD W
W3 as TR RS 2R LT U B R REE LR T
TH %9 R B HE AR SR T A R N R TR E
A6 DU 5 T R BR . AN SR H B LAMP BY B SR g 7E
PRI ARG 0 RE Y AT 4R T B R PR OBE M R 8 TR R RN 3E
— R T T R RO,

S F I, LMR-YOLO-P 138 9% 46 AT & 3£
P R LA R IR B R S S AT
g A A, [ B A S B AR I A IR . S EA B ELAR
121 RS T e b 3 A [R) R~ T8 8 e AR AE L 3R A5 )
ARG A 2 T, 3 S B AR A BB AC i R G R R b
AU HL A BB IS T S R IR A R 7 SR 1 RS 3h ik
AT ST T AR N, TR S R R T A R sk
B REARTRY LA AR R 28 i A 4, Sy R 2 I A8 Ak
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