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Abstract: This paper addresses the challenges of segmenting rural roads in remote sensing images, including small
pixel proportion, irregular shapes, shadow occlusions, and blurred edges. To improve the segmentation accuracy of
small and single-object rural roads, we propose an improved DeeplLabV3-+ semantic segmentation model. We employ
MobileNetV3 as the backbone for parameter reduction and enhanced accuracy. A global attention mechanism is
incorporated to improve global information extraction and generalization. Depthwise separable convolutions replace
standard convolutions in the ASPP module to minimize information loss and computational cost. Experiments on a self-
built satellite remote sensing road image dataset demonstrate significant improvements, achieving an MIoU of 84. 45%
and MPA of 92. 32%, outperforming the original DeeplLabV3- by 4. 63% and 6. 48 % , respectively, with a parameter
size of only 6.30 X 10°. Validation on the public CHN6-CUG dataset confirms the model’s effectiveness, showing
MIoU and MPA improvements of 3.05% and 5.54% to reach 79.64% and 88.13%, respectively. These results
indicate that our lightweight, improved model effectively enhances rural road segmentation accuracy and efficiency.
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Architecture diagram of the improved DeeplLabV3+ remote sensing semantic segmentation model
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Fig. 2 MobileNetV3 network architecture diagram
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Fig.4 Channel attention sub-module architecture diagram
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Fig. 10 Comparison of segmentation outputs from different models
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Table 4 Comparative experimental results of different

semantic segmentation models on the CHN6-CUG dataset

B MIoU/ % MPA/ %
PSPNet 72.78 77. 33
HRNet 73. 90 78. 49
SegNet 74. 26 79. 76
U-Net 76. 12 81.58

DeeplLabV3—+ 76.59 82.59
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Fig. 11 Comparison of segmentation results from different models on the CHN6-CUG dataset
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