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摘 要:
 

在基于机器视觉的锯链缺陷实时检测过程中,油污、粉尘等因素影响图像亮度和质量,导致目标检测网络的

特征提取能力下降。为保证复杂环境下锯链缺陷检测的准确率,本文设计了一种结合弱光增强和YOLOv3算法的锯

链自动化缺陷检测方法。首先使用RRDNet网络自适应增强锯链图像亮度,恢复图像暗区的细节特征;然后采用改进

YOLOv3算法对锯链零件进行缺陷检测,增加FPN结构特征输出图层,利用K-means聚类算法对先验框参数重新聚

类,并引入GIoU损失函数来提高小目标的缺陷检测精度。最后搭建一套锯链缺陷在线检测系统,对所提方法进行验

证。实验结果表明,该方法能够显著提高弱光环境下的锯链图像照度、恢复图像细节,改进YOLOv3算法的 mAP值

为92.88%,相比原始YOLOv3提高14%,最终系统整体的漏检率降低到3.2%,过检率也降低到9.1%。所提出的方

法可实现弱光场景下锯链缺陷的在线检测,并且对多种缺陷有着较高的检测精度。
关键词:锯链;弱光增强;YOLOv3;缺陷检测
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Abstract:In
 

real-time
 

detection
 

of
 

saw
 

chain
 

defects
 

based
 

on
 

machine
 

vision,
 

factors
 

like
 

oil
 

contamination
 

and
 

dust
 

impact
 

image
 

brightness
 

and
 

quality,
 

leading
 

to
 

a
 

decrease
 

in
 

the
 

feature
 

extraction
 

capability
 

of
 

the
 

object
 

detection
 

network.
 

In
 

this
 

paper,
 

an
 

automated
 

saw
 

chain
 

defect
 

detection
 

method
 

that
 

combines
 

low-light
 

enhancement
 

and
 

the
 

YOLOv3
 

algorithm
 

is
 

proposed
 

to
 

ensure
 

the
 

accuracy
 

of
 

saw
 

chain
 

defect
 

detection
 

in
 

complex
 

environments.
 

In
 

the
 

system,
 

the
 

RRDNet
 

network
 

is
 

used
 

to
 

adaptively
 

enhance
 

the
 

brightness
 

of
 

the
 

saw
 

chain
 

image
 

and
 

restore
 

the
 

detailed
 

features
 

in
 

the
 

dark
 

areas
 

of
 

the
 

image.
 

The
 

improved
 

YOLOv3
 

algorithm
 

is
 

used
 

for
 

defect
 

detection.
 

FPN
 

structure
 

is
 

added
 

with
 

a
 

feature
 

output
 

layer,
 

the
 

a
 

priori
 

bounding
 

box
 

parameters
 

are
 

re-clustered
 

using
 

the
 

K-means
 

clustering
 

algorithm,
 

and
 

the
 

GIoU
 

loss
 

function
 

is
 

introduced
 

to
 

improve
 

the
 

object
 

defect
 

detection
 

accuracy.
 

Experimental
 

results
 

demonstrate
 

that
 

this
 

approach
 

significantly
 

improve
 

image
 

illumination
 

and
 

recover
 

image
 

details.
 

The
 

mAP
 

value
 

of
 

the
 

improved
 

YOLOv3
 

algorithm
 

is
 

92.88%,
 

which
 

is
 

a
 

14%
 

improvement
 

over
 

the
 

original
 

YOLOv3.
 

The
 

overall
 

leakage
 

rate
 

of
 

the
 

system
 

eventually
 

reduces
 

to
 

3.2%,
 

and
 

the
 

over-detection
 

rate
 

also
 

reduces
 

to
 

9.1%.
 

The
 

method
 

proposed
 

in
 

this
 

paper
 

enables
 

online
 

detection
 

of
 

saw
 

chain
 

defects
 

in
 

low-light
 

scenarios
 

and
 

exhibits
 

high
 

detection
 

accuracy
 

for
 

various
 

defects.
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0 引  言

  油锯是林业木料采集的重要工具,锯链作为油锯的关

键装配件直接关乎油锯的性能[1-2]。在锯链装配机长时间

生产过程中,由于现场环境复杂、机器磨损等因素的影响,
使得锯链零件产生破损、混料等多类缺陷。人工检测成本

高且效率低下。随着生产自动化水平的提高,使用复杂机

械生产装配的需求大幅增加,基于机器视觉的缺陷检测方
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法被广泛应用。然而视觉检测系统在长时间的检测过程

中,会受到油污、粉尘等环境因素的干扰,从而产生大批量

低光照数据集。弱光情况下,采集的图像局部特征模糊,模
糊特征与零件的缺陷易混淆,直接进行检测会使模型准确

率和可靠性降低,现实工业场景下的锯链缺陷检测仍面临

着诸多严峻挑战。因此,研究一种弱光环境下的锯链缺陷

检测系统对提高锯链生产效率有着重要意义。
近年来,以Fast

 

R-CNN[3]、Faster
 

R-CNN[4]为代表的

两阶段检测算法和以 YOLO[5]、SSD[6]为代表的一阶段检

测算法被广泛应用。其中,一阶段目标检测算法具有更快

的检测速度,满足实际检测效率的要求。马晨凯等[7]采用

YOLOv3目标检测算法设计了陶瓷缺陷检测系统,提高了

缺陷检测的精度和速度。李维刚等[8]通过改进 YOLOv3
算法的网络结构,采用 K-means++算法重新聚类先验框

参数,实现了对带钢表面缺陷的精确识别。现有的缺陷检

测通常是在光照良好的情况下开展,而实际的工业检测环

境常伴随着高噪声、环境条件的变化,噪声和照度的变化可

能会掩盖缺陷特征,导致误检或漏检,影响目标检测算法应

用时的准确性。因此,缺陷检测算法需要具有一定的泛化

能力和自适应能力,减少因环境变化带来的检测性能下降。
如何在视觉系统光源变暗的情况下仍保持缺陷识别精度不

受影响成了关键。
为了克服上述问题,通常对目标进行缺陷检测之前对

图像进行弱光增强预处理[9]。增强方法主要分成两种。第

一种是使用传统图像处理的方法进行图像增强,Wang
等[10]采用小波变换对图像分量进行重构的方式,实现低照

度图像自适应增强。Tian等[11]通过双边滤波将图像分解

高低频两域的方式来抑制噪声和粉尘。这些方法能够恢复

暗光图像,但是它们更加注重对比度和亮度提升,这使噪声

也同时被放大。随着深度学习的发展,另一种基于数据驱

动的弱光增强方法被广泛研究。Hu等[12]提出了一种弱光

增强缺陷检测算法,融合了弱光增强块和SE-FP模块,并
成功应用于细罐表面缺陷检测。Hui等[13]针对现有弱光

图像增强在 细 节 方 面 的 局 限 性,提 出 基 于 深 度 学 习 的

DELLIE算法。上述这些算法虽然能够有效对暗度图像进

行增强,但是这些数据驱动的方法高度依赖数据集,这使得

图像恢复过程变得繁琐,并且这些方法仅针对低照度的图

像,无法解决实际工业环境中时照度变化情况下图像的自

适应调整。
针对弱光环境下锯链高效率、自动化、高精度的在线检

测需求,本文提出了一种锯链缺陷检测方法。重点对弱光

锯链图像处理与缺陷检测方面进行深入研究。首先利用三

分支 卷 积 网 络 (robust
 

retinex
 

decomposition
 

network,

RRDNet)[14]对照度变低的锯链图像进行预处理,使弱光情

况下的锯链图像照度增强。其次,使用前期研究的锯链自

适应分 割 算 法[15]实 现 零 件 的 分 割。在 此 基 础 上 利 用

YOLOv3算法对锯链零件进行缺陷检测。改进FPN特征

金字塔 结 构,融 合 锯 链 图 像 的 浅 层 与 深 层 特 征;使 用

K-means++聚类算法代替 K-means算法,优化先验框参

数信息;引入GIoU边框回归损失函数,提高锯链缺陷预测

框的定位精度。最后搭建一套锯链缺陷在线检测系统,对
所提方法进行验证。实验结果表明,所提方法对弱光环境

下的锯链缺陷检测具有较快的检测速度和较高的检测

精度。

1 基于RRDNet模型弱光增强锯链图像

  本文将RRDNet网络模型应用于弱光情况下的锯链

缺陷检测。该模型是在Retinex模型[16]基础上引入了噪声

分量,调整图像照明度并去除部分噪声,从而生成高可见度

图像。RRDNet模型框架包括两个部分,分解和调整。

1.1 分解阶段

  RRDNet模型在分解阶段是一个三分支卷积神经网

络,将图像分解成照度S、反射率R 和噪声N 三部分,如
图1所示。

图1 RRDNet分解阶段

图像I可以表示为:

I=R×S+N (1)
照度和反射率分别经过多个卷积和池化操作后,采用

Sigmoid激活函数将变量压缩在[0,1]之间,而噪声分量则

在最后一层使用Tanh函数将值压缩在[-1,1]之间。接

着通过损失函数和权重更新的不断迭代完成图像分解。损

失函数由如下三部分组成:

L =λreLre+λteLte+λnLn (2)
式中:Lre、Lte、Ln 分别表示Retinex重构损失、纹理细节损

失和噪声损失,λre、λte、λn 分别表示对应的权重系数。
根据Retinex分解理论,将R、G、B 三通道最大的S0

估为照明的初始值,使用l1 范数估计出清晰的照明和反射

率,Retinex重构损失具体计算如下:

Lre= ‖I-(R·S+N)‖1+‖S-S0‖1+

‖R-
I
S‖1 (3)

纹理细节损失通过光照损失来表示,对于低照度图像

亮度接近的相邻像素,将它们除以相同的[0,1]之间的数值

·101·



 第47卷 电 子 测 量 技 术

时,两者之间照度将被同时放大。通过垂直、水平两个方向

来计算:

Lte= ‖ωx·(∂xS)2‖1+‖ωy·(∂yS)2‖1 (4)
式中:ωx、ωy 分别表示x、y 方向估算的权重系数。

ωx =
1

G􀳱(∂xIg)2
(5)

式中:使用G 表示高斯滤波,􀳱表示卷积运算,Ig 为输入的

灰度图。
根据Retinex理论通过拉伸对比度提高亮度的方法会

导致噪声也不可避免地被放大,RRDNet通过估计照度图

来估计噪声,具体计算如下所示:

Ln = ‖I·N‖F +
1
λn
[‖ωr·(∂xR)2‖1+

‖ωr·(∂yR)2‖1] (6)
式中:使用Frobenius范数来估算损失值,ωr 为引导系数,
它通过归一化函数normalize进行估算,具体计算如下:

ωr =normalize
1

I·(∂xR)2(∂yR)2  (7)

至此完成损失值的计算,完成输入图像的分解。

1.2 调整阶段

  照度分量经过gamma变换,更新S值。接着根据分解

阶段的式(1)估算反射率,使用更新后的Ŝ 和R̂ 重构图像,
完成图像的调整。调整阶段过程如图2所示。具体计算公

式如下:

Ŝ =Sγ (8)
式中:γ为gamma因子。

R̂ =
I-N

S
(9)

Î=R̂·Ŝ (10)

图2 RRDNet调整阶段

2 基于改进YOLOv3模型的锯链缺陷检测

  尽管利用YOLO系列模型可实现快速有效的目标检

测部署,但在特定场景下仍需针对性改进。针对锯链缺陷

检测,应用YOLOv3为锯链缺陷检测模型的必要性如下:

1)锯链缺陷种类多样,铆钉漏铆、连接片倒装类小尺寸缺陷

在经过RRDNet照度增强后,使用改进YOLOv3算法能够

满足检测需求。2)综合考虑计算资源和部署难度,将锯链

检测应用在YOLOv3上较为合适。

2.1 网络结构改进

  采 用 Darknet-53 作 为 YOLOv3 特 征 提 取 主 干 网

络[17],Darknet-53网络结构如图3所示。

图3 Darknet-53网络结构

不同于其他卷积神经网络,Darknet-53多采用11、33
大小的卷积核,通过调整卷积核移动步长的方式进行5次

下采样,代替了池化层的作用。引入多尺度融合的目标检

测方法,输出3种尺度的特征图层用于预测大、中、小尺寸

的目标物,并 将 特 征 图 层 上 采 样 处 理,融 合 各 层 特 征。

YOLOv3算法对于416
 

416的输入图像在预测阶段会将各

输出特征图层划分为1
 

313、2
 

626、5
 

252大小的网格,最大

预选框数量有3
 

549个。
本文在原有YOLOv3的基础上将浅层特征与深层特征

进一步融合,如图4所示,DBL中每层卷积层(convolutional
 

layer,CONV)后 都 加 入 批 标 准 化 (batch
 

normalization
 

layer,BN)和Leaky
 

Relu激活函数,提升了特征提取的效

率,网络中引入res残差块解决了训练过程中梯度下降缓

慢的问题,避免了由于网络层数过深导致特征提取不明显。
上采样将小尺寸特征图放大两倍,并将其与大尺度特征图

进行融合,最终输出特征图层。

FPN改进部分如图4虚线框所示。在FPN中增加输

出预测特征图的尺度,将Darknet-53网络中第2个残差块

的输出特征与经过2倍上采样的特征图层融合,再经过卷

积核大小为11的卷积层,形成新的输出特征图层,新的特

征图层将网络的特征提取效果进一步提高,网格数量进一

步划分为104×104。在增加一层特征图层后,先验框的总

数由原来的9个增加到了12个,对输入图片的最大预选框

数量可以达到14
 

365个,相比原始YOLOv3预选框数量扩

大了4倍,增加了网络对不同尺寸类型的锯链零件缺陷的

预测能力,降低缺陷漏检的概率。
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图4 改进的YOLOv3网络结构图

2.2 先验框参数信息优化

  YOLOv3中 各 特 征 图 层 先 验 框 的 尺 寸 是 通 过 K-
means聚类算法在 VOC数据集上获得的,锯链缺陷与

VOC数据集形状、大小差异较大,导致在预测过程中边界

框标注范围与缺陷目标不匹配。因此,需要对锯链数据集

重新聚类,计算YOLOv3网络各输出特征图层中先验框尺

寸大小。

K-means对初始点的随机选取计算得到了聚类中心,
得到各类先验框的大小有利于最后生成的预测框更加匹配

目标物,K-初始点的选择对于聚类结果有很大的影响。
因此,本文选用 K-means++聚类算法生成12个聚类中

心,具体步骤如下:

1)根据标注信息,随机选择一个样本作为第一个聚类

中心k1,设置12个聚类中心。

2)计算每个样本与聚类中心k1 之间的IoU距离,以及

被选为下一个聚类中心的概率,最后根据轮盘法选择下一

个聚类中心。距离计算公式如下所示:

dij = [Bi(x)-Cj(x)]2+[Bi(y)-Cj(y)]2

(11)
式中:Bi(x)、Bi(y)第i个样本点的横、纵坐标,Cj(x)、
Cj(y)为第j个聚类中心的横纵坐标。并重复该步骤,直
到选择出12个聚类中心。

3)计算每个样本到12个聚类中心的IoU距离,并将其

分配到距离聚类中心最小的簇中。

4)重新计算聚类中心,具体计算如下:

ki=
1

|ki|∑n∈kin
(12)

式中:ki 为第i个聚类中心,n为样本总量。

5)重复步骤3)和4),直至聚类中心不再变化。

在锯链缺陷数据集上,聚类后的先验框参数信息如

表1所示。

表1 先验框参数信息

特征图层
先验框

参数信息
特征图层

先验框

参数信息

13×13 (90,75) 13×13 (90,75)

26×26 (80,93) 26×26 (80,93)

52×52 (71,69) 52×52 (71,69)

104×104 (40,54) 104×104 (40,54)

2.3 损失函数改进

  原网络采用IoU
 

Loss作为预测框损失函数存在一些

不足:当预测框与标注框不存在重叠区域时,模型无法继续

优化预测框,无法提供准确的位置信息;预测框与标注框在

不同方向存在重叠区域且重叠区域面积相等时,IoU值相

同,但不能体现预测框与标注框的重合程度。因此,本文提

出引入GIoU来弥补IoU的不足。

GIoU在两框无限重合的情况下取1,在两框没有重叠

区域且无限远的情况下取-1,可更好的反映重合程度。

IoU、GIoU及 GIoU损失函数分别如式(13)~(14)所示。
引入GIoU后的总损失函数如式(15)所示。

IoU=
|B1∩B2|
|B1∪B2|

(13)

GIoU=IoU-
|C-(B1∩B2)|

|C|
(14)

LGIoU =1-GIoU (15)
式中:B1 为预测框,B2 为标注框,C 为B1、B2 并集的最小

外接矩形区域,LGIoU 为GIoU边框回归损失函数。

Loss=λcoord∑
S2

i=0
∑

B

j=0
lobjij (1-GIoU)+

∑
S2

i=0
∑

B

j=0
lobjij C-Ĉi  2+λnoobj∑

S2

i=0
∑

B

j=0
lnoobjij C-Ĉi  2+

∑
S2

i=0
lobjij ∑

C∈Classes
pi(c)-p̂i(c)  2 (16)

式中:λcoord为权重系数,λnoobj为惩罚系数,S为图像网格划

分系数,B 为每个网格内预测框个数,C 为缺陷类别数量,

p 为属于某个类别的概率,c为缺陷种类编号。lobjij 为第i个

网格中的第j个预测框是否包含物体,包含物体置1,否则

置0。

3 实验及评估

3.1 视觉检测系统的搭建

  为实现锯链的智能化检测,搭建了一套锯链缺陷在线

检测系统,该系统主要由运动控制模块、图像采集与检测模

块和结果显示与输出模块构成。系统工作原理图如图5
所示。
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图5 系统工作原理图

1)运动控制模块由PLC、电机、气缸、电磁阀等组成,完
成系统正常运行、停止、接收上位机命令以及检出缺陷时控

制电磁阀通断的功能,达到缺陷检测与标记的目的。

2)图像采集与检测模块主要由工控机、CCD面阵相

机、相机支架、镜头、同轴光和碗光组成。相机每隔1.8s捕

获一张锯链图像,每张锯链图像包含9个完整的零件。

3)结果显示与输出模块。借助 QT
 

Creator平台设计

人机交互界面,将缺陷结果进行可视化显示。记录缺陷检

出数量、总检测锯链数量和良品率统计的结果,便于实时查

看锯链零件的质量。
该系统与锯链生产设备直接连接,实现链条从生产到

检测生产线一体化。系统应用场景图如图6所示。

图6 系统实际应用场景图

系统工作流程:在计算机的人机交互界面上启动系统,

PLC控制系统驱动步进电机转轴带动主从动组件旋转运

动,当锯链移动至上下工位拍照组件下方或上方时,CCD
面阵相机进行图像采集,并于可视化界面显示采集结果。
工控机对输入图像进行弱光增强处理,增强后的图像进行

自适应分割处理,并将零件分割图放入缺陷检测队列,使用

改进后的YOLOv3对数据集进行缺陷检测。若存在缺陷,
软件输出缺陷名称并向PLC发送缺陷检出指令,PLC接收

到指令后,控制喷码器在缺陷位置喷码标记,并将结果于界

面显示。系统整体的工作流程如图7所示。

图7 系统工作流程图

3.2 弱光增强性能测试

  本实验中的图像处理算法是在 Windows操作系统下,
基于Opencv计算机视觉库,采用Python3.9进行编写和测

试。RRDNet模型参数设置:λre=1、λte=3、λn=5
 

000、

γ=0.4。使用自然图像质量评估器(natural
 

image
 

quality
 

evaluator,NIQE)[18]、峰 值 信 噪 比 (peak
 

signal-to-noise
 

ratio,PSNR)、平均亮度和平均梯度[19]作为图像增强的评

价指标。NIQE用于评估弱光增强后图像的整体质量效

果,NIQE数值越低,图像质量越高;PSNR用于衡量原图

与增强后图像之间的相似程度,数值越高损失越小;平均亮

度反映图像整体的亮度,影响信息获取的容易程度;而平均

梯度则反映了图像细节的变化情况,梯度值越大代表图像

信息越丰富。
为了更好评估实际工厂生产装配过程中的照度变化情

况下RRDNet模型的性能,
将视觉系统连接在现场装配线上进行实测。采集机台

工作1天、3天、5天后的锯链图像,分别构成A、B、C三组

数据集,每组随机挑选锯链图像200张进行后续实验测试。
使用RRDNet模型对3组不同时段的锯链图像进行照

度增强,采集结果和恢复结果如图8所示,第1行为每组的

原始图像,第2行为增强后的效果图,图片左上角显示了质

量评价指标。由3组数据集的评估指标,可以发现随着机

台工作时间的增加,图像质量和亮度逐渐降低。而经过

RRDNet模型训练后可以降低 NIQE,这是因为 RRDNet
模型中的噪声估计分量能够自然调整暗区细节,改善图像

质量。A、B、C三组数据集的NIQE值分别降低了约0.03、

0.19和0.21。网络对于照度更低的数据集图像质量恢复

程度更大。根据图像可视化和平均亮度指标可以发现图像

亮度显著提高,但当原图平均亮度为71.39时,即C组极端

黑暗的情况下时恢复效果较差。这是因为原图照度过低,
恢复后的图像亮度仍位于平均亮度阈值以下,因此需对C
组数据集进行二次训练。二次训练的实验结果如图9所

示,并使用图10图像亮度直方图来进一步显示增强后像素

值的分布。结果显示经过二次训练的锯链图像能够满足图

像质量的恢复需求。
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将本文使用算法与典型的图像增强算法于现场采集的

锯链图像上进行实验对比,进一步验证算法有效性。为突

出对比效果,使用一款油污、粉尘干扰严重情况下的锯链进

图8 RRDNet的恢复结果

图9 训练结果

  

图10 图像直方图

行实验验证。各算法对锯链图像的增强结果如图11所示,
评价指标如表2。可知经过 Retinex算法增强的图像其

PSNR和平均亮度值较低,说明图像损失严重,照度增强能

力有限,而且该算法并未考虑到噪声干扰,导致图像亮度和

细节恢复程度都较低;BIMFF算法[20]虽然能够提升图像

质量,但是亮度增强和去噪效果不佳,背景部分的油污影响

仍明显;URetinex算法[21]虽然增强后的图像亮度值较高,
但结果图的局部亮块区域突出,增强效果不均匀,使传动片

零件边缘产生曝光,影响细节特征;相比之下本文使用算法

在对锯链图像进行弱光亮度增强的同时兼顾去除噪声干

扰,得到了更多的细节信息。

图11 不同弱光增强算法性能比较

·501·



 第47卷 电 子 测 量 技 术

表2 不同算法性能指标的比较

指标 原图 Retinex BIMFF URetinex 本文算法

平均亮度 139.177175.043172.149 202.091 185.211
平均梯度 33.109 36.121 35.355 34.447 42.815
NIQE 5.883

 

3 3.198
 

2 3.353
 

7 3.860
 

2 2.952
 

7
PSNR - 13.906 15.500 13.621 17.272

3.3 图像分割效果

  为实现锯链缺陷的精准定位,需要先对锯链零件进行

分割。采用课题组之前研究的分割算法进行实验,验证弱

光环境下的分割性能。对比分析 RRDNet网络增强对锯

链零件分割算法性能的影响。
将增强前后的A、B、C三组锯链图像输入分割算法中

进行测试,结果如表3所示。对锯链图像进行增强处理,使
分割算法正确率显著提升。这是因为锯链零件是通过铆钉

位置坐标和零件之间固有的装配距离进行分割,而弱光环

境下的漏铆、铆裂特征因油污、粉尘等干扰影响变得模糊,
降低了霍夫圆算法定位效果,从而使分割性能下降。而

RRDNet网络使漏铆等暗区细节更加清楚,使铆钉位置定

位更为准确。因此在对锯链零件检测前,使用弱光增强方

法能够为后续缺陷检测提供更加精确、简便的数据集。分

割结果如图12所示。

表3 弱光增强对图像分割算法性能的影响

分割算法 正确分割图像数量 分割正确率/%
增强前 465 77.5
增强后 554 92.3

图12 锯链分割效果图

3.4 改进YOLOv3缺陷检测算法性能测试

  1)缺陷检测数据集的建立

实验数据集由在线检测系统在自然光条件下进行采

集。由于锯链出现缺陷概率较小,为降低训练时过拟合,增
强网络泛化能力,需要大量的图片训练。因此,需要对图片

进行数据增强。原数据集1
 

200张,采用图像平移、增加随

机噪声的方法扩充数据集图片至2
 

491张。训练集与测试

集按照8∶2比例随机划分。使用深度学习工具labelImg
对图片缺陷进行类别和位置标记,生成含有标注信息的txt
格式的文件。

2)性能评价指标

mAP 为所有类别缺陷的平均检测精度,用于衡量模型

整体泛化性能,fps衡量模型的检测速度,计算公式如式下

所示:

mAP =
∑

N

j=0
AP(j)

N
(17)

fps=
NP

T
(18)

式中:AP(j)为第j类缺陷的检测精度,N 为总体缺陷类

别数量;NP 为预测图片总数量,T 为预测总时间。

3)训练与检测过程

本文的锯链缺陷智能化检测方法的实验模型运行在

Ubuntu18.04操作系统的服务器上,安装有CUDA11.1版

本环境和 Pytorch深度学习框架,采用 Tesla
 

P100系列

GPU进行训练加速。训练迭代2
 

000轮次,采用Adam优

化器,Batch
 

size设置为64,初始学习率设为0.001,学习率

衰减系数设为0.0005。改进后的YOLOv3算法迭代训练

中的损失值变化如图13所示。可以观察到,在前500次迭

代中,训练损失下降速度非常快。随着迭代训练进行至

1
 

500轮次,损失值的变化逐渐趋于稳定,并最终收敛于约

0.1的数值范围。

图13 损失值-迭代次数曲线

4)系统整体测试

为验证本系统所提方法在弱光环境下的缺陷检测精

度,对生产现场的1
 

200条锯链进行缺陷检测实验,锯链中

含有刀片破损、连接片混料、铆钉铆裂等缺陷共154处。.以
工业应用中常用的过检率y0 和漏检率y1 作为目标检测的

性能指标,具体计算公式如下:

y0 = (n1-n0)/n1×100%
y1 = (X-n0)/X×100% (19)

式中:检出缺陷数n1 为算法实际检测到的缺陷数量,包含

错检现象;实际缺陷数n0为检出缺陷数n1中真实存在缺陷

的数量。X 为实际缺陷数量,本文中X =154。
改进前后模型的检测效果如表4所示,由表可知弱光环

境下直接使用YOLOv3算法检测漏检率高达68.8%,改进算

法的过检率和漏检率仍较高。这是因为网络特征提取能力受

到暗区模糊特征影响,导致识别率低。图像增强后,使原模型

的过检率与漏检率分别降至12.5%和27.3%,改进后的网络
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则降低到了9.14%和3.2%,满足产品的质检需求。

表4 不同方法下锯链缺陷检测结果对比

图像

类型

YOLOv3
算法

实际

缺陷数

n0

检出

缺陷数

n1

过检率

y0/%
漏检率

y1/%

原始

图像

原始YOLOv3 48 65 26.1 68.8
改进YOLOv3 75 95 21.0 53.2

增强

图像

原始YOLOv3 112 128 12.5 27.3
改进YOLOv3 149 164 9.1 3.20

  采用不同算法在自制锯链数据集上的检测性能如表5
所示,其中方法1:在YOLOv3中使用K-means++聚类,
方法2:在YOLOv3中使用K-means++聚类算法并引入

GIoU边框 损 失 函 数。改 进 后 算 法 为92.88%,比 原 始

YOLOv3提高了14%,表明本文算法的检测精度优于原始

YOLOv3算法。方法1和方法2比本文算法的精度分别低

了9.27%和2.35%,是由于本文算法中新的特征图层能够

提取到更多的特征信息。Faster
 

R-CNN的mAP 低于本文

算法4.16%,相对原始 YOLOv3算法和方法1有一定优

势,但检测速度最慢。本文算法的检测速度为51
 

fps,略低

于方法1和方法2,但检测精度最高,这是由于YOLOv3网

络结构中增加了输出特征图层的尺度,GIoU边框回归损

失函数以及 K-means++聚类共同改进的结果。综上所

述,本文算法的综合检测性能最优,满足实际锯链检测精度

的要求。

表5 算法测试性能对比

算法 mAP/% fps
Faster

 

R-CNN 88.72 39
原始YOLOv3 78.88 55

方法1 83.61 55
方法2 90.53 55

本文算法 92.88 51

5)检测结果

表6所示为使用原始 YOLOv3和本文改进的算法对

锯链表面缺陷进行检测对比图,其中第1列为使用原始

YOLOv3进行缺陷检测的效果,第2列为本文算法的检测

效果。由表可知,原始YOLOv3算法未完全标注出传动片

混料位置整个缺陷区域,且对于连接片倒装类缺陷存在漏

检情况,没有预测到缺陷的位置。使用本文改进算法在铆

钉铆裂和传动片混料类的缺陷检测中预测框位置与缺陷位

置更加匹配,成功检测出连接片倒装类的缺陷。因此,本文

算法对缺陷的检测精度整体高于原始算法,且对缺陷位置

的预测更加准确。

表6 算法检测结果对比

图像类型 原始YOLOv3算法 本文算法

铆钉铆裂

铆钉漏铆

连接片倒装

传动片混料

4 结  论

  为实现复杂环境下锯链缺陷自动化检测,本文设计了

一种基于弱光增强和 YOLO算法的锯链缺陷检测方法。
采用RRDNet网络模型实现复杂环境下锯链照度的自适

应增强,并提出一种改进YOLOv3的缺陷检测算法,从网

络结构、聚类算法、边框回归损失函数三方面改进此算法,
提高了对小目标缺陷特征的检测精度。测试结果表明,改
进的 YOLOv3算 法 锯 链 缺 陷 检 测 的 平 均 检 测 精 度 为

92.88%,较原有 YOLOv3算法提高了14%,检测速度保

持在51
 

fps,可在实际应用中准确识别、分类与定位锯链缺

陷,实现锯链缺陷的智能化检测。最后对搭建的检测平台
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于弱光环境下进行系统整体测试,系统漏检率和过检率仅

为3.2%和9.1%,满足企业生产需求。本文所提方法通过

RRDNet网络和改进YOLOv3算法,全局增强图像照度和

质量,强化锯链的有效特征,实现零件缺陷的精确检测。
但在实际检测过程中仍存在因环境干扰造成的局部对比

度较低的情况,增加了系统误检和漏检率。下一步将针对

这一问题进行改进,尝试采取特定的预处理措施,开发鲁

棒性更强的缺陷检测算法,以提升检测的准确性和可

靠性。
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