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深度神经网络模型在测井电成像图像处理中的应用
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摘　要：电成像测井可直观分析碳酸盐岩、砂砾岩等复杂储层中的裂缝分布、地层层理及砾岩颗粒。提出一种基于

Ｕ－Ｎｅｔ的全卷积深度神经网络模型结构，在没有大量学习样本的情况下，通过逐步优化神经网络模型参数，捕获图像
上的大量底层先验统计特征，从而实现大井眼情况下电成像图像的空白条带充填，形成全井眼覆盖图像。相比于常规
的编码器－解码器网络模型，本文模型采用ｓｋｉｐ模式，将编码器层输出接入对应解码器层，有助于恢复图像局部细节信
息；同时采用空洞卷积，捕获多尺度上下文信息。实验结果表明，所提出方法相比于主流的充填算法，平均像素灰度误
差减少了约１２％，对于复杂岩性的图像充填效果更好。

关键词：电成像测井；深度神经网络；Ｕ－Ｎｅｔ；空洞卷积
中图分类号：ＴＰ６３１．８４　　文献标识码：Ａ　　国家标准学科分类代码：５１０．４０３０

Ａｐｐｌｉｃａｔｉｏｎ　ｏｆ　ｄｅｅｐ　ｎｅｕｒａｌ　ｎｅｔｗｏｒｋ　ｍｏｄｅｌ　ｉｎ　ｐｒｏｃｅｓｓｉｎｇ　ｏｆ
ｅｌｅｃｔｒｉｃａｌ　ｌｏｇｇｉｎｇ　ｉｍａｇｅｓ

Ｃｈｅｎ　Ｊｉａｎｈｕａ１　Ｙａｎｇ　Ｌｉｌｉ　１　Ｚｈａｏ　Ｙａｎｊｉｎｇ１　Ｚｈａｏ　Ｈｕ１　Ｚｈａｎｇ　Ｗｅｎｈａｏ１　Ｆａｎｇ　Ｇｕａｎｇｂｉｎｇ１　Ｗｕ　Ｗｅｉ　２

（１．Ｃｈａｎｇｑｉｎｇ　Ｂｒａｎｃｈ　ｏｆ　ＣＮＰＣ　Ｌｏｇｇｉｎｇ　Ｃｏ．，Ｌｔｄ．，Ｘｉ′ａｎ　７１００００，Ｃｈｉｎａ；２．Ｒｅｓｅａｒｃｈ　Ｉｎｓｔｉｔｕｔｅ　ｏｆ　Ｌｏｇｇｉｎｇ
Ａｐｐｌｉｃａｔｉｏｎ　ｏｆ　ＣＮＰＣ　Ｌｏｇｇｉｎｇ　Ｃｏ．，Ｌｔｄ．，Ｘｉ′ａｎ　７１００００，Ｃｈｉｎａ）

Ａｂｓｔｒａｃｔ：Ｄｉｓｔｒｉｂｕｔｉｏｎ　ｏｆ　ｆｒａｃｔｕｒｅｓ，ｓｔｒａｔｉｇｒａｐｈｙ　ａｎｄ　ｇｒａｉｎｓ　ｏｆ　ｃｏｎｇｌｏｍｅｒａｔｅ　ｃａｎ　ｂｅ　ａｎａｌｙｚｅｄ　ｖｉｓｕａｌｌｙ　ｉｎ　ｃｏｍｐｌｅｘ
ｒｅｓｅｒｖｏｉｒｓ　ｓｕｃｈ　ａｓ　ｃａｒｂｏｎａｔｅ　ａｎｄ　ｓａｎｄ　ｃｏｎｇｌｏｍｅｒａｔｅ　ｂｙ　ｅｌｅｃｔｒｉｃａｌ　ｉｍａｇｉｎｇ　ｌｏｇｇｉｎｇ．Ａ　ｆｕｌｌｙ　ｃｏｎｖｏｌｕｔｉｏｎａｌ　ｄｅｅｐ　ｎｅｕｒａｌ
ｎｅｔｗｏｒｋ　ｍｏｄｅｌ　ｉｓ　ｐｒｏｐｏｓｅｄ　ｉｎ　ｔｈｉｓ　ｐａｐｅｒ　ｗｈｉｃｈ　ｃａｐｔｕｒｅｓ　ｌａｒｇｅ　ｖｏｌｕｍｅｓ　ｏｆ　ｂｏｔｔｏｍ　ｐｒｉｏｒ　ｓｔａｔｉｓｔｉｃ　ｆｅａｔｕｒｅｓ　ｉｎ　ｉｍａｇｅ　ａｎｄ
ｒｅａｌｉｚｅｓ　ｇａｐｓ　ｆｉｌｌｉｎｇ　ｉｎ　ｅｌｅｃｔｒｉｃａｌ　ｌｏｇｇｉｎｇ　ｉｍａｇｅｓ　ｉｎ　ｗｅｌｌｓ　ｗｉｔｈ　ｌａｒｇｅ　ｃａｌｉｐｅｒ　ｔｏ　ｆｏｒｍ　ｆｕｌｌ　ｂｏｒｅｈｏｌｅ　ｃｏｖｅｒｉｎｇ　ｉｍａｇｅｓ　ｂｙ
ｇｒａｄｕａｌｌｙ　ｏｐｔｉｍｉｚｉｎｇ　ｐａｒａｍｅｔｅｒｓ　ｏｆ　ｎｅｕｒａｌ　ｎｅｔｗｏｒｋ　ｍｏｄｅｌ　ｗｉｔｈｏｕｔ　ｌａｒｇｅ　ｎｕｍｂｅｒ　ｏｆ　ｌｅａｒｎｉｎｇ　ｓａｍｐｌｅｓ．Ｃｏｍｐａｒｅｄ　ｗｉｔｈ
ｔｒａｄｉｔｉｏｎａｌ　ｅｎｃｏｄｅｒ－ｄｅｃｏｄｅｒ　ｍｏｄｅｌ，ｓｋｉｐ　ｐａｔｔｅｒｎ　ｉｓ　ｕｔｉｌｉｚｅｄ　ｔｏ　ｃｏｎｎｅｃｔ　ｏｕｔｐｕｔ　ｏｆ　ｅｎｃｏｄｅｒ　ｌａｙｅｒｓ　ｗｉｔｈ　ｃｏｒｒｅｓｐｏｎｄｉｎｇ
ｄｅｃｏｄｅｒ　ｌａｙｅｒ　ｗｈｉｃｈ　ｉｓ　ｈｅｌｐｆｕｌ　ｆｏｒ　ｒｅｃｏｖｅｒ　ｌｏｃａｌ　ｄｅｔａｉｌｓ　ｉｎ　ｉｍａｇｅｓ　ａｎｄ　ａｔｒｏｕｓ　ｃｏｎｖｏｌｕｔｉｏｎ　ｉｓ　ａｄｏｐｔｅｄ　ｔｏ　ｃａｐｔｕｒｅ　ｍｕｌｔｉ－ｓｃａｌｅ
ｃｏｎｔｅｘｔｕａｌ　ｉｎｆｏｒｍａｔｉｏｎ．Ｅｘｐｅｒｉｍｅｎｔｓ　ｓｈｏｗ　ｔｈａｔ　ｍｅａｎ　ｅｒｒｏｒ　ｏｆ　ｇｒａｙ　ｌｅｖｅｌ　ｏｆ　ｐｉｘｅｌｓ　ｉｓ　ｄｅｃｒｅａｓｅｄ　ｂｙ　ａｂｏｕｔ　１２％ａｎｄ　ｇａｐｓ
ｆｉｌｌｉｎｇ　ｅｆｆｅｃｔ　ｆｏｒ　ｉｍａｇｅｓ　ｗｉｔｈ　ｃｏｍｐｌｅｘ　ｌｉｔｈｏｌｏｇｙ　ｉｓ　ｂｅｔｔｅｒ　ｉｎ　ｔｈｉｓ　ｐａｐｅｒ　ｃｏｍｐａｒｅｄ　ｗｉｔｈ　ｍａｉｎｓｔｒｅａｍ　ｇａｐｓ　ｆｉｌｌｉｎｇ
ａｌｇｏｒｉｔｈｍｓ．
Ｋｅｙｗｏｒｄｓ：ｅｌｅｃｔｒｉｃａｌ　ｉｍａｇｉｎｇ　ｌｏｇｇｉｎｇ；ｄｅｅｐ　ｎｅｕｒａｌ　ｎｅｔｗｏｒｋ；Ｕ－Ｎｅｔ；ａｔｒｏｕｓ　ｃｏｎｖｏｌｕｔｉｏｎ

　收稿日期：２０２０－１２－２８

０　引　　言

　　电成像测井将极板推靠在井壁后，测量极板上多个纽
扣电极向地层发射的聚焦电流，得到每个纽扣电极对应位
置的地层电导率，再通过色标刻度，得到井眼环周二维图
像，可直观分析碳酸盐岩、砂砾岩等复杂储层中的裂缝分
布、地层层理及砾岩颗粒，已广泛应用于碳酸盐岩、砂砾岩
和火成岩的测井评价［１－３］。但在大井眼的情况下，由于仪器
极板之间出现空隙，导致无法测量井眼环周上两个极板之
间的地层，图像上表现出规律的空白条带。为保证图像的

进一步处理解释与地质目标的精确识别，有必要对这些空
白条带进行充填。
目前主流的充填方法是基于反距离加权的插值算法［４］

和基于多点地质统计学的Ｆｉｌｔｅｒｓｉｍ算法［４，５－８］。反距离加
权方法通过将待充填点一定范围邻域内的已知像素点加

权，线性计算待充填点像素值，权值与已知像素点和待充填
点的距离成反比。虽然这种方法简单、快速，但充填后的区
域与已知区域连续性较差，特别是在非均质性较强的情况
下［４］。Ｆｉｌｔｅｒｓｉｍ算法则采用模板匹配原理，先对已知像素
区域分块和滤波，聚类后形成多个模板类别；在充填时，采
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用序贯模拟，随机选择缺损图像块，通过距离度量，与各类
别模板进行匹配，选择最匹配的模板类别进行充填。但由
于序贯模拟的随机性，造成在结构特征为主的多层理区域，
填充后的层理连续性不强［９］。
由于深度神经网络强大的图像语义提取和特征表达能

力，文献［１０］初步将深度神经网络用于电测井图像的空白
条带充填，其借鉴了人为设计的深度神经网络结构能够抓
取大量底层图像统计先验信息的思想［１１］，构造 Ｅｎｃｏｄｅｒ－
Ｄｅｃｏｄｅｒ网络模型，通过编码层进行特征提取，由解码层恢
复图像，实现了对简单结构的砂泥岩图像的充填。但该模
型没有利用编码器网络的底层包含的精确像素级信息，而
只将编码器网络的顶层得到的特征图用作解码器网络的输

入，漏失了图像关键细节信息，因此对于结构复杂的砂砾岩
图像，充填效果不佳。
本文在文献［１０］的基础上进行了改进，采用 Ｕ－Ｎｅｔ网

络替换已有的常规编解码网络，并通过ｓｋｉｐ模式，在Ｕ－Ｎｅｔ
网络中将相同深度的编码器层和解码器层连接起来，充分
利用各层级的信息，包括底层的局部细节信息和顶层的全
局抽象信息。同时用空洞卷积替换 Ｕ－Ｎｅｔ网络中的标准

卷积，捕获图像的多尺度上下文信息。在简单砂泥岩剖面
和复杂砂砾岩电成像图像上的实验结果表明，本文所提出
的算法较传统方法的充填效果有了明显的视觉提升，总体
效果较好。

１　Ｕ－Ｎｅｔ网络模型结构

　　Ｕ－Ｎｅｔ网络是一种更加简洁的全卷积深度神经网络模
型，最初用于生物图像语义分割任务［１２］，可以使用少量的训
练图像并产生更加精确的分割结果。在文献［１３］的基础上，

Ｕ－Ｎｅｔ网络在上采样部分，构建了与压缩编码层对称的扩展
解码层，产生大量的特征通道，使得网络能够向更高分辨率
的层传播上下文信息，这样形成了一个 Ｕ型的网络结构。

Ｕ－Ｎｅｔ网络不存在任何全连接层，只使用每个卷积的有效部
分，如分割特征图只包含存在完整上下文的输入图像像素。

Ｕ－Ｎｅｔ通过重叠平铺策略进行任意大尺寸图像的无缝分割。
为预测图像边界区域的像素，通过对输入图像的镜像操作，
外推缺失的上下文。对于小训练样本情况，Ｕ－Ｎｅｔ采用对训
练图像应用弹性形变，来进行数据扩增。Ｕ－Ｎｅｔ网络模型结
构如图１所示，这里加入了本文的ｓｋｉｐ模式。

图１　Ｕ－Ｎｅｔ网络模型结构

　　Ｕ－Ｎｅｔ网络由压缩编码路径（图１左侧）和扩展解码路
径（图１右侧）组成。压缩编码路径遵从典型的卷积网络
架构，由４个ｂｌｏｃｋ组成，每个ｂｌｏｃｋ由两个３×３卷积（无
反射卷积）组成，每个卷积后跟ＲｅＬＵ层（线性整流单元），
第２个卷积后跟步长为２的２×２最大池化操作，以进行下
采样。每次下采样之后，特征通道数目增加１倍，同时特
征图的尺寸缩小２倍。扩展解码路径同样由４个ｂｌｏｃｋ组
成，每个ｂｌｏｃｋ开始前，通过２×２的反卷积，将特征图的尺
寸扩大２倍，同时将特征通道数目减半，再与相同层级压
缩编码路径的剪裁过的特征图合并后，进行后跟ＲｅＬＵ层

的两个３×３卷积。这里由于每个卷积丢失了边界像素，
需要对压缩编码路径的特征图进行剪裁。在最后一层，使
用１×１卷积，将每个６４分量的特征向量映射到期望的类
别数目。Ｕ－Ｎｅｔ网路总共有２３个卷积层。

２　空洞卷积

　　空洞卷积又名扩张卷积，是一种显式控制深度卷积神
经网络计算的特征分辨率的强力工具，其通过拓展标准卷
积操作，调整卷积核的感受野以捕获多尺度信息［１４－１５］。由
于深度卷积网络中在多个连续层上最大池化和步长的重
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复组合极大地降低了输出特征图的空间分辨率，因此向卷
积层引入一个超参数－扩张率，定义卷积操作时各点之间的
间隔像素数量（标准卷积的扩张率为１），通过在卷积核各
点之间添加空洞，增大感受野，但由于空洞处为０，卷积参
数量和计算量保持不变。首先考虑一维信号，一维输入信
号ｘ［ｉ］在长度为Ｋ 的滤波器ｗ［ｋ］下的空洞卷积输出

ｙ［ｉ］定义如下：

ｙ［ｉ］＝∑
Ｋ

ｋ＝１
ｘ［ｉ＋ｒ·ｋ］ｗ［ｋ］ （１）

式中：ｒ为扩张率参数，对应采样输入信号的步长。
图２所示为卷积核为３的标准卷积和空洞卷积。如

图２（ａ）所示，空洞卷积扩展率为２，卷积步长为１，可以看
到参与卷积的输入信号的相邻两个采样点之间间隔了一

个采样点，相当于插入一个零值。图３所示为二维空洞卷
积，上部为要计算的特征图，下部给出了对应特征图上某
点的输入特征图上参与卷积的计算点，这里卷积核为３×３，空
洞扩张率为２。空洞卷积可以在深度卷积神经网络的任何
层任意扩大滤波器的视觉感受野。深度卷积神经网络为
保持计算量和参数数量，通常采用小空间的卷积核，如３×３；
扩张率为ｒ的空洞卷积在卷积连续值之间插入ｒ－１，在没
有增加参数量和计算量的情况下，有效的将ｋ×ｋ卷积核
的尺寸扩展到ｋｅ ＝ｋ＋（ｋ－１）（ｒ－１）。 空洞卷积为控制
感受野，在精确定位（小感受野）和上下文同化（大感受野）
之间找到最佳平衡，提供了一种有效机制。本文采用隔行
扫描方式，首先形成多个ｒ×ｒ的中间输入特征图，在这些
特征图上再使用标准卷积，最后反交错到原始特征图的分
辨率，来计算空洞卷积。通过将空洞卷积简化到标准卷
积，可以使用现有的高度优化的卷积例程。

图２　一维空洞卷积

３　测井电成像图像空白条带填充深度学习算法

　　目前大多基于深度神经网络的图像修复工作都需要
大量的样本进行训练［１６－１８］，这对测井电成像图像充填是不
适用的。对电成像测井来说，本身无法获取地层的完整图
像，且取得大量的井周全井眼的图像数据，在工程上实现

图３　二维空洞卷积

难度很大。因此，本文通过优化深度卷积网络模型参数θ，
使能量函数Ｅ（ｆθ（ｚ）；ｘ０）最小的方式，实现单幅电成像图
像的空白条带充填，其中ｆθ（·）为本文的 Ｕ－Ｎｅｔ＋ｓｋｉｐ＋
空洞卷积网络模型，ｘ０为待修复图像，ｚ为网络模型输入，
具体算法如图４所示。

图４　空白条填充深度学习算法

图４中，最左侧为网络模型输入ｚ，为与待修复图像尺
寸同样大小的２通道网格灰度图像（ＭｅｓｈＧｒｉｄ），其中第１通
道图像灰度从左到右，由０渐变到２５５；第２通道图像灰度
从上到下，由０渐变到２５５，具有很强的平滑性，有益于大面
积图像缺失区域的修复。网络模型由一个随机初始化的网

络模型参数θ０开始，由输入ｚ得到网络输出ｆθ０（ｚ），计算

Ｅ（ｆθ０（ｚ）；ｘ０）的值，即计算ｆθ０（ｚ）在已知像素点处与ｘ０
的差异，作为网络模型的误差，再采用随机梯度下降（ＳＧＤ）
类型的优化算法－Ａｄａｍ算法，将误差反向传播，更新网络
模型参数θ０为θ１；重复上述过程，直到找到（局部）最优的

θ＊，然后由ｘ＊ ＝ｆθ＊（ｚ）得到最终的修复图像。

４　实验结果及分析

４．１　自然图像实验

　　为了说明本文方法的有效性，首先在自然图像上进行
实验验证图像充填效果。实验数据集采用 Ｐｌａｃｅｓ　３６５－
Ｓｔａｎｄａｒｄ数据集，选择其中图像大小为２５６×２５６的小型验
证数据集，从中任意挑选１０张作为原始图像。图５所示为
其中一张示例图像。图５（ａ）为数据集中的原始图像，本文
将彩色图像转换为灰度图像进行处理，如图５（ｂ）所示。

图５（ｃ）为充填方法中使用的掩膜膜板图像，其中黑色表示
图像信息缺失部分，白色表示图像信息保留部分；将原始
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图像与掩膜膜板图像对应像素点乘后，作为实验待修复图 像，如图５（ｄ）所示。

图５　自然图像空白条充填示例１

　　图６为图５中示例图像使用３种网络模型的充填结
果，可以看到常规编码－解码器网络［１０］的结果中出现明显

的充填痕迹，而采用Ｕ－Ｎｅｔ＋ｓｋｉｐ模式的网络，充填效果有
了明显的提升；在网络引入空洞卷积后，充填效果更好。

图６　自然图像示例１的充填结果对比

　　图７所示为另一幅示例图像的充填效果比对，同样采
用图５（ｃ）所示的掩膜膜板，可以看到本文网络模型的充填
结果更好。通过对１０张原始图像和不同模型对应充填生

成的图像分别计算平均像素灰度误差和ＳＳＩＭ（ｓｔｒｕｃｔｕｒａｌ
ｓｉｍｉｌａｒｉｔｙ　ｉｎｄｅｘ）值，进行定量分析，最后对１０张图片每项
的结果求取平均值，结果如表１所示。

图７　自然图像示例２的充填结果对比

表１　自然图像的不同模型结果对比

评价指标
常规编码－
解码器

Ｕ－Ｎｅｔ＋
ｓｋｉｐ

Ｕ－Ｎｅｔ＋ｓｋｉｐ＋
空洞卷积

平均像素灰度误差 ９．４６６　１　 ８．４４１　０　 ８．３５７　３
ＳＳＩＭ　 ０．７８５　０　 ０．７９８　６　 ０．７９９　１

　　这里，平均像素灰度误差即计算原始灰度图像与充填
结果图像在对应像素位置的灰度差值的绝对值之和，再除
以像素数目，求取平均误差。ＳＳＩＭ 反映了两幅图像的相
似度。由表１看到，随着平均像素灰度误差逐渐减小，

ＳＳＩＭ值逐步增加，说明网络模型的充填效果越来越好。
本文采用的网络比常规编码－解码器网络在平均像素灰度

误差这一指标上，减少了１１．７１％。

４．２　砂砾岩电成像图像实验

　　本文采用ＹＪ油区Ｙ９２０井的砂砾岩电成像测井资料，

进行实验。图８和９所示为砂砾岩电成像图像的填充结
果，原测井真实图像如图８、９（ａ）所示，首先使用常规编解
码器网络进行填充，实验效果如图８、９（ｂ）所示，发现整体
图像空白条带的填充痕迹较为明显，填充后砂砾岩的边缘
轮廓不清晰、不连续，总体视觉效果不佳。采用 Ｕ－Ｎｅｔ＋
ｓｋｉｐ模式的网络模型，实验结果如图８、９（ｃ）所示，结果表
明充填后的图像提升了视觉填充效果。整体空白条边缘
的填充痕迹已基本消除，且更准确地填充了图像内容，整
体图像的连续性更好。最后在网络中引入空洞卷积进行
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实验，充填结果如图８、９（ｄ）所示。可以看到，填充的砂砾
岩的边缘轮廓更为清晰，进一步提升了总体视觉效果，表

明引入空洞卷积增大了常规感受野，从而在Ｕ－Ｎｅｔ的压缩
编码路径中，捕获了有效的多尺度上下文特征信息。

图８　砂砾岩图像充填结果对比１

图９　砂砾岩图像充填结果对比２

５　结　　论

　　本文通过在Ｕ－Ｎｅｔ网络中引入ｓｋｉｐ模式，并将Ｕ－Ｎｅｔ
压缩编码路径中的标准卷积替换为空洞卷积，加强了网络
模型对复杂结构和纹理特征的感知，更好地恢复了砂砾岩
图像中砾岩颗粒的轮廓细节信息。在自然场景和实际砂
砾岩图像的实验结果表明，本文构建网络能够有效地对图
像中的空白条带进行充填，视觉效果比常规的编解码器网
络有了进一步的提升，且在平均像素灰度误差和ＳＳＩＭ 等
定量判别指标上优于常规编解码器网络。本文中图像高
级语义特征和低级语义特征的有效结合未做深入探讨，多
尺度、多层级的语义特征混合编码网络是下一步的重点研
究方向。
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