

DOI:10. 19651/j.cnki.emt.2005463

基于小波包和 AFSA-SVM 的电机故障诊断

胡业林 代 斌 宋 晓 (安徽理工大学 淮南 232000)

摘 要:针对电机滚动轴承故障诊断准确率问题,提出基于小波包分析结合人工鱼(AFSA)优化支持向量机(SVM) 的电机故障诊断方法。利用小波包多分辨率分析法对电机的震动信号进行多层分解及重构,得到不同频段的信号时 频图;然后采用 AFSA 算法对支持向量机中的参数惩罚参数(*C*)和核参数(σ)进行寻优选择,并最终建立 AFSA-SVM 故障诊断模型,提取信号时频图中频带能量值作为 AFSA-SVM 的输入特征向量进行学习、测试。最后通过仿真实验 验证,故障诊断准确率达 98.7%,并与粒子群算法优化支持向量机(PSO-SVM)和未经优化的支持向量机对比分析, 结果表明该方法具有更高的故障诊断识别效果。

关键词:小波包分解;AFSA-SVM;电机;故障诊断

中图分类号: TH133. 33 文献标识码: A 国家标准学科分类代码: 470. 40

Motor fault diagnosis based on wavelet packet and AFSA-SVM

Hu Yelin Dai Bin Song Xiao

(Anhui University of Science and Technology, Huainan 232000, China)

Abstract: Aiming at the problem of motor rolling bearing fault diagnosis accuracy, a motor fault diagnosis method based on wavelet packet analysis and artificial fish (AFSA) optimized support vector machine (SVM) was proposed. Wavelet packet multi-resolution analysis method was used to decompose and reconstruct the motor vibration signals, and the time-frequency diagrams of different frequency bands were obtained. Then, AFSA algorithm is used to optimize the parameter penalty parameter (C) and kernel parameter (σ) in the support vector machine. Finally, the fault diagnosis model of AFSA-SVM is established, and the frequency band energy value in the signal time-frequency graph is extracted as the input feature vector of AFSA-SVM for learning and testing. Finally, the simulation experiment verifies that the fault diagnosis accuracy is up to 98, 7%, and compared with the particle swarm optimization support vector machine (PSO-SVM) and the unoptimized support vector machine, the results show that the proposed method has a higher fault diagnosis and recognition effect.

Keywords: wavelet packet decomposition; AFSA-SVM; motor; fault diagnosis

0 引 言

随着工业技术的进步和大型生产设备的持续更新,大型电机在生产过程中起到了举足轻重的作用。电机运行状态的好坏直接影响整个生产系统。电机故障中大约42%的故障是由轴承引起,因此相关轴承故障诊断技术得到了全面且迅速的发展^[1]。

1930年,控制理论专家 Wiener 提出了功率谱概念,并 结合傅里叶变换应用于齿轮箱的故障诊断^[2]。但轴承故障 发生时,大量的时变、短时冲击、非平稳的信号成分存在于 振动信号中,经典的 Fourier 信号分析方法,无法有效地提 取出轴承故障信号中的特征向量。因此本文采用小波包分 析法解决这个问题^[3],通过对故障中高、低频振动信号多尺

收稿日期:2020-11-30

• 48 •

度细化提取特征向量。

在故障诊断方面,相比传统的经验诊断法,机器学习算法是故障诊断很好的发展方向,常见的有人工神经网络^[4] (artificial neural network,ANN)、支持向量机^[5](SVM)等, 但基于 ANN 的轴承故障诊断,不但需要大量的训练、测试 样本,且学习速度慢、网络训练失败可能性比较大^[6]。 SVM 解决了小样本情况下机器学习,并且具有很好的分类 效果。由于 SVM 分类效果主要受参数寻优选择的影 响^[7],为了提高故障诊断准确率,出现了粒子群算法^[8] (PSO)优化 SVM 的模型,如李嫄源等^[9]采用 PSO 算法对 SVM 的惩罚参数和径向基核函数参数进行寻优。虽然 PSO 优化后 SVM 模型提高了故障诊断率,但粒子群算法 在参数寻优时计算量较大、收敛性慢且容易产生局部最优 解等问题。人工鱼算法^[10](AFSA),是一种新的寻找最优 解的算法,具有收敛速度快、精度高、可调参数少的优点,利 用人工鱼个体适应度高低的相互比较不依赖于优化对象本 身的特点很好的解决了 SVM 参数寻优的问题。

本文通过美国凯斯西储大学实验室提供的实验数据进行试验,将小波包分析与 AFSA-SVM 结合的方法应用于 轴承故障类型识别。该方法通过小波包分析法对轴承振动 信号进行分解和特征向量的提取^[11],然后作为 AFSA-SVM^[12]的输入,通过 AFSA-SVM 的训练和测试来获得具 有准确分类的轴承故障信息,从而实现小样本情况下在线 准确诊断故障类型。最后将诊断结果与 SVM 和 PSO-SVM 的诊断结果进行比较分析。结果表明此方法效率更 高且更加准确。

1 小波包原理及改进

1.1 小波包分析

小波分析的发展源于 Fourier 分析^[13]。经典 Fourier 有明显的不足是缺乏空间局部性。小波变换(wavelet transform)则很好地解决了空间局部性的问题,对于低频 信号,时间窗变宽而频率窗变窄;对于高频信号,时间窗变 窄而频率窗变宽。因为频率与每单位时间的周期数成正 比,所以取一个窄的时间窗可以更精确地确定高频现象,而 取一个宽的时间窗可以更充分地分析低频特性。小波变换 正好满足时频分析中自适应可调"柔性"窗的要求,克服了 加窗 Fourier 变换"刚性"时频窗的不足,所以小波变换被称 为"数学显微镜",可以聚焦到信号的任意局部细节。如 图 1、2 所示为短时 Fourier 变换和小波变换的时频特性 比较^[13]。

图 1 短时 Fourier 变换时频窗特性

小波包分析法是小波分析法的推广,它可以对全频进 行分解得到高频和低频,是一种更精细的信号分析方 法^[14],拥有多维多分辨分析的特点,并且能够根据被分析 信号的特征,自适应地选择相应频带,使其与频谱信号相匹

图 2 小波变换时频特性

配,以此提高了时频分辨率。小波包函数也是一种时频函数,它可以被描述为:

 $W_{j,k}^{n}(t) = 2^{j/2}w(2^{j}t - k)$ *j*, *k* ∈ *Z* (1) 式中:整数 *j*和*k*是尺度坐标和位置坐标; *n*是震荡次数。 尺度函数 $\phi(t)$ 和小波函数 $\phi(t)$ 定义为:

$$\phi(t) = \sqrt{2} \sum_{k} h_{0k} \phi(2t - k)$$
⁽²⁾

$$\psi(t) = \sqrt{2} \sum_{k} h_{1k} \phi(2t - k)$$
(3)

当 n=2,3,...,定义该函数为如下函数式:

$$W_{2n}(t) = \sqrt{2} \sum_{k \in \mathbb{Z}} h_{0k} W_n(2t - k)$$
(4)

$$W_{2n+1}(t) = \sqrt{2} \sum_{k \in \mathbb{Z}} h_{1k} W_n(2t-k)$$
(5)

式中: h_{0k} 和 h_{1k} 是预定义的具有缩放功能的小波母函数关于正交滤波器的参数。小波包系数 Wⁿ_{j,k}(t)可定义为:

$$W_{j,k}^{n} = \left| \Phi(t) W_{j,k}^{n}(t) \mathrm{d}t \right| \tag{6}$$

例如 W[®] 表示子空间,代表第 3 层分解的第 0 个子空间。实验研究表明,信号如果被分解为 3 层,结果将产生 8 个子空间和频率。本文使用一个 3 层分解树图对小波包进行说明,其小波包分解树如图 3 所示。S 表示原始信号,A 表示低频,D 表示高频,字母后面的 1、2、3 表示分解层数。

• 49 •

1.2 小波包的分解及重构算法

设
$$f_j^n(t) \in U_n^j$$
, 则 $f_j^n(t)$ 可表示为:

$$f_{j}^{n}(t) = \sum_{l \in \mathbb{Z}} d_{l}^{j \cdot n} 2^{-j/2} u_{n}(2^{-j}t - l)$$
⁽⁷⁾

式中: $d_{i}^{j,n}$ 为分解后所得系数; $f_{i}^{n}(t)$ 分解为 $f_{i+1}^{2n}(t)$ 与 $f_{i+1}^{2n+1}(t)$,小波包的重构算法:

$$\begin{cases} d_{l}^{jl+1,2n} = \sum_{k} h_{k-2l} d_{k}^{j,n} \\ d_{l}^{j+1,2n+1} = \sum_{k} g_{k-2l} d_{k}^{j,n} \end{cases}$$
(8)

小波包分解实质上就是对信号低通和高通组合经过共 轭正交滤波器将信号分割到不同的频带上,滤波器每作用 一次,信号长度减少 1/2。 $f_{i+1}^{2n}(t)$ 和 $f_{i+1}^{2n+1}(t)$ 重构 $f_{i}^{n}(t)$ 算 法公式:

$$d_{l}^{j,n} = \sum_{k} \left[h_{l-2k} d_{k}^{j+1,2n} + g_{l-2k} d_{k}^{j+1,2n+1} \right]$$
(9)

式中:h,,g,为小波包重构共扼滤波器系数。

2 AFSA 优化 SVM

2.1 SVM

SVM 是由 Vapnik 提出的一种学习方法,统计学习理 论中比较年轻的学习理论^[15]。SVM 是从平面线形可分的 前提下寻找最优分类线的概念发展而来的,映射到高维空 间时演化为最优超平面。当遇到线性不可分时,需要在约 束条件中添加松弛变量 ϵ ,以此来放宽约束条件,最终得到 如下优化问题求解公式。

$$\min \frac{1}{2} \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{\omega} + C \sum_{i=1}^{n} \boldsymbol{\xi}_{i}$$
(10)

s.t.
$$y_i [\boldsymbol{\omega}^{\mathsf{T}} \boldsymbol{\varphi}(x_i) + b] \ge 1 - \boldsymbol{\xi}_i,$$

 $\boldsymbol{\xi}_i \ge 0, i = 1, 2, \cdots, n$ (11)

式中:b为偏移量; ω 为权向量;C是惩罚参数。

加入 Lagrange 乘子法将上述问题转化成为对偶二次 规划,得到最优分类决策函数:

$$f(x) = \operatorname{sgn}_{i=1,j=1}^{n} \alpha_{i}^{*} y_{i}(x_{i} \cdot x) + b^{*}$$
(12)

式中:α是拉格朗日乘子,是遇到非线性分类问题通常需要 加入输入变量 x 来进行非线性变换,将问题映射到高维空 间中,在高维空间中去寻找最优分类面,即使用一种核函数 $K(x_i, x_i)$ 对应变换空间中的内积映射得到非线性最优分 类决策函数:

$$f(x) = \operatorname{sgn}\sum_{i=1,j=1}^{n} \alpha_{i}^{*} y_{i} K(x_{i} \cdot x_{j}) + b^{*}$$
(13)

式中: a^{*}、b^{*} 是优化问题式(12)的解,本文所采用的是径 向基(RBF)核函数:

$$K(x,y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right)$$
(14)

SVM 的分类效果主要由自身参数惩罚因子 C 和核函 数参数σ决定,目前 SVM 中使用最多的参数寻优是交叉验 证法,但最佳参数的寻找效果一般,本文针对这个问题,采 用了 AFSA 对 SVM 中的参数 C 和 σ 进行寻优选择,最终 达到优化分类的效果。

2.2 SVM 输入

特征向量是 SVM 的输入,利用小波包对某频段信号 进行多层分解,将信号分解到对应的层,特征向量提取上具 有较大的优势。故障特征信号的提取过程如下:

1) 对原始数据进行小波包分解重构,得到多层分解重 构信号,然后求的各尺度小波系数。

2) 利用式(15)求出各尺度小波包系数的能量值:

$$E_{H} = \int |H_{N}|^{2} dt = \sum_{k=1}^{m} |d_{l}^{j,n}|^{2}$$
(15)

式中:H_N表示小波包分解第N层从低频到高频中频带成 分的系数构成的特征信号; di,"表示小波系数; M 表示每 个频带小波系数个数。

3) 对所得到的能量进行如下标准化处理:

$$\overline{E} = \frac{\left[E_H - M(E_H)\right]}{D_s(E_H)} \tag{16}$$

式中:M()表示小波包系数能量的均值;D。表示小波系数 能量得到标准差。

4) 最终得到标准的故障特征向量:

$$\overline{E} = \left[\overline{E}_{H_0} \ \overline{E}_{H_1} \ \overline{E}_{H_2} \cdots \ \overline{E}_{2j-1}\right]$$
(17)

2, 3 AFSA

AFSA 是由李晓磊等通过对生物鱼类群体的相关行为 特性进行观察和总结研究,在此基础上模拟鱼类群体的相 互社会行为提出的[16]。该算法结构简单、鲁棒性强、全局 收敛性好、快速等优点。如图 4 所示为利用 AFSA 算法对 函数 $Z = (\sin x/x) \times (\sin y/y)$ 寻最优值模型。AFSA-SVM 优化参数流程如图 5 所示。

基于 AFSA 优化 SVM 的算法过程如下^[17]:

1)适应度函数:鱼群中的个体代表 SVM 中(C,σ)参 数,选择使用较多的交叉验证法寻求最优参数作为适应度 函数。

2)初始化鱼群:随机生成规模大小适中的鱼群,使之均 匀分布在解空间中。

• 50 •

图 5 AFSA 优化 SVM 参数流程

3)计算个体适应度:根据鱼群中个体的特性设置支持向量机的参数(C,σ),输入样本集到 SVM 模型,根据 SVM 的分类性能函数计算个体适应度。

4)终止条件是否满足的判定:若满足则输出最优解,结 束算法。若不满足,再通过 AFSA 算法中觅食、聚群、追尾 等行为,更新公告牌,直到输出最优解。

3 电机轴承故障诊断仿真实验

美国凯斯西储大学实验室提供的实验数据的故障特征 比较明显,是作为轴承故障诊断公共数据的理想选择,因此 本文也采用这些数据。采样时间为1 s,数据长度为 12 000。具体电机轴承参数如表1所示。

轴承	轴承	滚动体	山久	山久	
位置	节径	直径	2下111	内住	
参数	39.04 mm	7.94 mm	52 mm	25 mm	
故障	内圈	外圈	滚动体	枯油	
位置	故障	故障	故障	拉述	
特征频率	162, 1 Hz	105. 8 Hz	141. 2 Hz	1 797 r/min	

表1 电机滚动轴承参数

在参数相同的前提下,提取4种工况故障信号数据,分 别进行 FFT 变换和小波包变换。图 6~7 所示为原始信号 进行 FFT 变换,很明显看出信号频谱经过 FFT 变换时,需 要提取信号的全部时域信息,因此 FFT 变换是一个整体变 换,信号在任何时刻的微小变化都会牵动整个频谱;反过 来,任何有限频段上的信息都不足以确定在任意时间小范 围的函数。而在许多工程问题中,实际信号往往是时变、非 平稳信号,人们关心的恰恰是信号在局部范围内的特征。

而小波包变换很好的解决这个问题。

使用小波包对原始进行3层分解,得到8个频带,去 噪后利用8个频段进行重构信号,图8~15为不同故障状态下滚动轴承原始信号经过小波包3层分解后得到的子 代信号和对应的子代信号频谱。s10~s17、s20~s27、 s30~s37、s40~s47分别代表不同状态下分解的子代 信号。

用小波包对原始数据进行去噪重组处理后计算各尺度 小波的能量值,最后得到4种不同状态下的特征能量谱如 图 16 所示。

由图 16 可以看出 4 种工况相对特征能量有明显不同, 正常轴承下 2 处的能量值最高,随着故障的出现,值有显著

• 51 •

电

轴承内圈故障频谱分解 图 15

降低。正常轴承在7处能量值最低,当故障出现时,它的值 将增大。故障时3处的能量值也明显高于正常状态时。由 此可以看出,小波包分解能更好的细化、分析频带,提取出 对电机故障诊断有用的频率特征,提高了故障诊断结果的 准确率。

用小波包处理数据后共得到4种故障状态样本,其中 一种的测试数据的样本和诊断结果如表 2 所示。

AFSA-SVM 故障诊断 4

利用表 3 所示参数设置的 AFSA 来优化 SVM 的参数 (C, σ)寻优,并对轴承故障的类别进行判定。

本文采用 MATLAB 编程语言搭建 AFSA-SVM 算法 模型,将谐波小波包提取出的4种状态各480组样本,随机 抽出 400 组样本作为训练集,剩余 80 组作为测试集,通过 训练集的输入,利用 AFSA 对惩罚因子和核函数寻优,并 把全局最优值分别赋给 SVM 的参数(C, o)再进行训 练^[18]。另外 320 组测试集通过优化好的 SVM 分类器进行 分类诊断,结果如图 17、18 所示。

胡业林 等:基于小波包和 AFSA-SVM 的电机故障诊断

第2期

表 2 电机轴承 4 种故障对应的特征样本和诊断结果

样本类型	特征样本	结果	
	0.370757561		
	0.307 154 474		
	0.048 258 676		
工告	0.147 689 347	工告	
Ш. Ф	0.099 458 984	中 土	
	0.098 786 992		
	0.471 856 323		
	0.298 578 560		
	0.345753498		
	0.549 265 532		
	0.668 942 643		
内園故陪	0.593580885	内图故障	
门间灰阵	0.014 334 506	门间以阵	
	0.115 481 476		
	0.073 217 388		
	0.040 589 558		
	0.316 037 029		
	0.574 191 828		
	0.655 998 029		
外圈故障	0.639720278	外离故障	
川首政任	0.125 265 654		
	0.206 276 317		
	0.171 665 825		
	0.090 666 011		
	0. 330 433 815		
	0.578 032 242	滚动体故障	
	0.647 806 660		
滚动体故障	0.635 383 177		
	0.078 947 298		
	0.198 953 936		
	0.148 949 421		
	0.079 862 964		

图 18 AFSA_SVM 预测的结果

通过图 17 可以明显看出 AFSA 在第 10 代时已经寻找 到最优值,此时 SVM 最优参数 $C = 97.500, \sigma = 0.8441$ 。 为了 更 好 的 分 析 AFSA-SVM 诊 断 效 果,本 文 利 用 MATLAB 搭建了 PSO-SVM 和 SVM 算法模型,分别对谐 波小波包提取出的特征向量进行诊断结果,同样的训练集 和测试集 预测结果进行对比。对比结果如表 4 所示, 图 19、20 所示分别为 PSO-SVM 和 SVM 诊断结果。

表 3 AFSA-SVM 参数

参数	鱼群数量	最大跌代	最大试探	步长	感知距离	拥挤度
类别	N	次数 M	次数 T	step	visual	因子 s
参数值	20	20	5	1. 25	10	0. 3

表 4 AFSA-SVM、PSO-SVM 和 SVM 诊断结果对比

算法	识别组数(80)	正确率/%	运行时间/s
AFSA-SVM	76	98.7	9.674
PSO-SVM	70	95.6	11. 341
SVM	68	65.6	18.578

由图 18、19 可知 AFSA 和 PSO 处理后的 SVM 分类 效果更好,相对来说 AFSA 准确率最高,原始 SVM 表现最 差,出现大量的诊断分类不准确的情况。利用谐波小波包 提取的 4 种不同状态下的特征向量,相同的训练集和测试 集的输入,通过对表 4 的分析能更好的看出,AFSA-SVM 算法模型识别出了 76 组,准确率高达 98 7%,提高准确率 的同时还缩短了用时。综上分析,AFSA-SVM 算法模型

• 54 •

[3]

测试集分类样本
图 20 SVM 预测结果

40

60

80

具有很高的故障诊断效果,准确率和效率更高的优势。

5 结 论

本文提出了一种改进的支持向量机优化算法,即 AFSA 优化的 SVM 算法,用于电机故障诊断的分类判别。首先, 利用改进的谐波小波包分解将原始谐波信号分解重构提取 特征向量,然后利用 AFSA 算法对 SVM 模型中的参数做自 适应优化,得到 SVM 的最优参数(*C*,σ),最后利用 SVM 的 分类技术对轴承的故障类别进行分类,提升诊断准确率的 同时还提高了效率。实验结果表明,改进的谐波小波包分 解技术具有更好的分解高频和低频的能力,能更好地提取 特征向量,且本文中经过 AFSA 优化后的 SVM 算法模型相 比于 PSO 优化 SVM 和没有经过优化的 SVM 具有更好的 故障诊断性能。由此可见此优化模型具有很好的实际应用 价值。未来可推广应用于其他领域的故障诊断。

参考文献

- [1] 宫文峰,陈辉,张美玲,等.基于深度学习的电机轴承微 小故障智能诊断方法[J].仪器仪表学报,2020,41(1): 195-205.
- [2] 张澎涛.齿轮箱故障振动信号去噪及特征提取算法研究[D].哈尔滨:东北林业大学,2014.

- 黄良沛,吴超威,王靖.小波包分析和 BP 神经网络在滚动轴承故障模式识别中的应用[J].电子测量技术,
- [4] LK S D, MH B C. Bearing fault diagnosis based on statistical feature extraction in time and frequency domain and neural network[J].International Journal of Vehicle Structures & Systems, 2016, 8(4):229-240.

2016,39(4):164-168.

- [5] 邵元海,刘黎明,黄凌伟,等.支持向量机的关键问题和 展望[J].中国科学:数学,2020,50(9):1233-1248.
- [6] 闫俊泉,李东明,孙学锋,等.基于改进神经网络的电机轴 承故障的诊断[J].国外电子测量技术,2019,38(1):5-10.
- [7] 吕洪爽,何玉珠.基于 CBA-SVM 的模拟电路故障诊断 方法研究[J].电子测量技术,2018,41(7):6-10.
- [8] 宁琦,耿读艳,王晨旭,等.基于多尺度排列熵及 PSO-SVM 的输电线路故障判别[J].电子测量与仪器学报, 2019,33(7):173-180.
- [9] 李嫄源,袁梅,王瑶,等.SVM 与 PSO 相结合的电机轴 承故障诊断[J].重庆大学学报,2018,41(1):99-107.
- [10] ZHUANG D Y, MA K, TANG C A. Mechanical parameter inversion in tunnel engineering using support vector regression optimized by multi-strategy artificial fish swarm algorithm [J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2019, 83: 425-436.
- [11] 齐磊,王海瑞,李宇芳,等.基于谐波小波包和 DAG-RVM 的滚动轴承故障诊断[J].计算机应用与软件, 2017,34(5):61-67,103.
- [12] 姬盛飞,王丽君,吉南阳.基于 AFSA-SVM 的滚动轴承 故障诊断研究[J].组合机床与自动化加工技术,2019 (1):115-117.
- [13] 曾秀丽,玄兆燕,于子旺.小波与神经网络结合用于电 机在线监测与故障诊断[J].制造业自动化,2010, 32(9):36-38.
- [14] XIAN G M, ZENG B Q. An intelligent fault diagnosis method based on wavelet packer analysis and hybrid support vector machines [J]. Expert Systems With Applications, 2009, 36(10): 12131-12136.
- [16] 姚正华.改进人工鱼群智能优化算法及其应用研究[D].徐州:中国矿业大学,2016.
- [17] 孙健,王成华,洪峰,等.基于人工鱼群优化支持向量机 的模拟电路故障诊断[J].系统仿真学报,2014,26(4): 843-847.
- [18] WEI Y, LI M J,XIN P. Application of support vector regression cooperated with modified artificial fish swarm algorithm for wind tunnel performance prediction of automotive radiators [J]. Applied Thermal Engineering, 2020, 164: 114543.

作者简介

胡业林,博士,教授,硕士生导师,主要研究方向为自动 控制工程、计算机控制与检测技术、仪器仪表等。

E-mail:2439498035@qq.com

代斌(通信作者),硕士,主要研究方向为电气信息监测 技术、人工智能算法、电气设备谐波故障诊断技术等。 E-mail:1148735547@qq.com

• 55 •