基于改进的DeepLabV3+的海岸线遥感图像分割方法
DOI:
CSTR:
作者:
作者单位:

中国飞行试验研究院 西安 710089

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.73

基金项目:


Coastal remote sensing image segmentation method based on the improved DeepLabV3+
Author:
Affiliation:

Chinese Flight Test Establishment,Xi′an 710089, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对海岸线遥感图像存在的不规则边界精细化分割困难的问题,本文提出了非对称性多路解码的海岸线分割网络(AMDNet)。以Deeplabv3+作为主干网络,通过使用EfficientNetB0作为特征提取器,大幅降低网络计算量,并在改进的ASPP中引入D-LKA模块,添加额外的偏移量来调整标准卷积的采样位置,允许卷积核灵活调整采样网格,结合DUpsampling技术实现上采样过程中的高精度还原,提高图像分割的精确度。AMDNet模型在Aerial photo-maps数据集上的准确率、灵敏度、Dice和Jaccard分别达到了96.77%、93.03%、90.42%、86.67%,性能提升明显。

    Abstract:

    Aiming at the difficulty in fine segmentation of irregular boundaries in coastal remote sensing images, this paper proposes an Asymmetric Multi-path Decoding Network for Coastline Segmentation (AMDNet). Taking Deeplabv3+ as the backbone network, the network uses EfficientNet-B0 as the feature extractor to significantly reduce the computational load of the network. Additionally, the D-LKA module is introduced into the improved ASPP to add extra offsets for adjusting the sampling positions of standard convolution, allowing the convolution kernel to flexibly adjust the sampling grid. Combined with DUpsampling technology to achieve high-precision restoration during the upsampling process, the accuracy of image segmentation is improved. The accuracy, sensitivity, Dice and Jaccard of the AMDNet model on the Aerial photo-maps dataset reach 96.77%, 93.03%, 90.42% and 86.67% respectively, showing a significant performance improvement.

    参考文献
    相似文献
    引证文献
引用本文

连帅.基于改进的DeepLabV3+的海岸线遥感图像分割方法[J].电子测量技术,2025,48(24):51-58

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告