多尺度时频协同 Transformer 驱动的航空发动机故障诊断方法
DOI:
CSTR:
作者:
作者单位:

中国飞行试验研究院 西安 710089

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:


Multi-scale time-frequency synergistic Transformer driven fault diagnosis method for aero-engine
Author:
Affiliation:

China Flight Test Establishment,Xi′an 710089, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航空发动机作为飞行器的核心动力部件,其运行可靠性直接关系到飞行安全与运行效率,轴间轴承的故障诊断是保障其稳定工作的关键环节。本文针对航空发动机轴间轴承故障诊断问题展开研究,归纳总结现有1DCNN网络与1D-Transformer方法的局限性:自注意力机制易受原始振动信号中高频噪声与冗余信息干扰,关键故障特征聚焦能力不足;纯Transformer架构对局部细微特征的捕捉能力较弱。为此,提出多尺度时频协同Transformer驱动的故障诊断方法,通过融合多尺度时频特征提取与Transformer全局建模能力,实现对振动信号局部细微特征与全局关联特征的协同捕捉。实验结果表明,该方法在航空发动机轴间轴承故障诊断中表现优异:在高斯白噪声环境下(信噪比-4~4 dB),诊断准确率与F1-Score均为最优,强噪声(-4 dB)时达96.04%,弱噪声(4 dB)时达99.84%,抗噪稳定性优于五种对比方法;在CWRU基准数据集的无噪声与噪声场景中,可稳定识别不同程度故障(如轻度内圈故障),强噪声(-4 dB)时准确率99.01%,弱噪声(4 dB)时达99.78%,验证了泛化能力,有效改善了噪声干扰下特征聚焦不足与局部特征捕捉薄弱的问题。综上,多尺度时频协同Transformer为航空发动机轴间轴承故障诊断提供了高效稳健的解决方案,其强抗噪性与精准识别能力满足实际工程复杂振动环境需求,为提升故障监测可靠性提供技术支撑。

    Abstract:

    As the core power component of aircraft, the operational reliability of aero-engines is directly related to flight safety and efficiency, and fault diagnosis of intershaft bearings is a key measure to ensure their stable operation. Aiming at the fault diagnosis problem of intershaft bearings in aero-engines, this study first analyzes the limitations of existing 1D-CNN and 1D-Transformer methods: the self-attention mechanism is susceptible to high-frequency noise and redundant information in raw vibration signals, which weakens the ability to focus on critical fault features; meanwhile, the pure Transformer architecture shows insufficient capability in capturing subtle local features. To address these issues, a Multi-Scale Time-Frequency Synergy Transformer based fault diagnosis method is proposed, which integrates multi-scale time-frequency feature extraction with the global modeling capability of the Transformer, enabling collaborative capturing of both subtle local features and global correlation features of vibration signals. Experimental results indicate that in Gaussian white noise environments (SNR from -4 dB to 4 dB), the proposed method exhibits excellent fault diagnosis performance for aero-engine intershaft bearings: both diagnostic accuracy and F1-Score are optimal, reaching 96.04% under strong noise (-4 dB) and 99.84% under weak noise (4 dB), with noise-resistance stability superior to five benchmark methods. On the CWRU benchmark dataset, in both noise-free and noisy scenarios, it can stably identify different fault severities (including slight inner-race faults), achieving 99.01% accuracy under strong noise (-4 dB) and 99.78% under weak noise (4 dB), thereby demonstrating its strong generalization capability. In conclusion, the proposed MSTFS-Transformer effectively alleviates the insufficient feature-focusing and weak local feature-capturing problems under noise interference, providing an efficient and robust solution for aero-engine intershaft bearing fault diagnosis. Its strong noise immunity and accurate identification capability meet the demands of complex vibration environments in practical engineering, and offer solid technical support for improving fault-monitoring reliability.

    参考文献
    相似文献
    引证文献
引用本文

连帅.多尺度时频协同 Transformer 驱动的航空发动机故障诊断方法[J].电子测量技术,2025,48(20):90-102

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-19
  • 出版日期:
文章二维码