面向航空发动机涡轮叶片表面缺陷的Swin-DCUnet分割及评估方法
DOI:
CSTR:
作者:
作者单位:

1.华南理工大学机械与汽车工程学院 广州 510640; 2.广东光电杰泰技术有限公司 广州 510640

作者简介:

通讯作者:

中图分类号:

TN958.98;TM75;TP391.4

基金项目:

广东省重点领域研发计划项目(2019B010154003)资助


Aero-engine turbine blade surfaces defect based on Swin-DCUnet segmentation and assessment method
Author:
Affiliation:

1.School of Mechanical and Automotive Engineering, South China University of Technology,Guangzhou 510640, China; 2.Guangdong Photoelectric Jitai Technology Co., Ltd., Guangzhou 510640, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航空发动机涡轮叶片作为关键零部件,长时间服役后极易出现裂纹、烧伤等表面缺陷,直接影响飞机安全高效运行。针对普通机器视觉方法或语义分割方法对复杂环境下叶片缺陷分割效果局限性,本文提出一种航空发动机涡轮叶片表面缺陷的Swin-DCUnet分割及评估方法,重点研究其语义分割模型Swin-DCUnet,它选用适用不同尺度特征提取的SwinTransformer作为特征提取器,并与全卷积操作提取特征双通道融合,再引入混合损失函数,从而提升模型收敛速度及分割准确;研发模型预测分割结果与相关定量分析结合的等级评估方法,完成叶片表面缺陷危害严重性评估,为后续叶片检修工作提供参考。构建数据集与试验评价指标,开展相关消融实验,结果表明Swin-DCUnet指标AR、AF1、mIoU、Dice分别达到92.18%、92.92%、87.44%、47.85%,具有先进性、有效性、实用性。

    Abstract:

    As critical components of aero-engines, turbine blades are prone to defects such as cracks, burns after long-term service, which can directly affect the safe and efficient operation of aircraft. To address the limitations of conventional machine vision or semantic segmentation methods in accurately segmenting blade defects under complex conditions, this paper proposes a Swin-DCUnet-based segmentation and assessment method for aero-engine turbine blade surface defects. The core of this approach is the semantic segmentation model Swin-DCUnet, which employs the Swin Transformer—capable of extracting multi-scale features—as the backbone feature extractor. The extracted features are fused through a dual-channel convolutional process, and a hybrid loss function is introduced to improve model convergence speed and segmentation accuracy. Furthermore, a defect severity grading method is developed by integrating the predicted segmentation results with quantitative analysis, providing a valuable reference for subsequent blade maintenance. A dedicated dataset and evaluation metrics are constructed, and ablation experiments are conducted. Results show that the proposed Swin-DCUnet achieves AR, AF1, mIoU, and Dice scores of 92.18%, 92.92%, 87.44%, and 47.85%, respectively, demonstrating its advancement, effectiveness, and practicality.

    参考文献
    相似文献
    引证文献
引用本文

何振华,刘桂雄,黎文富.面向航空发动机涡轮叶片表面缺陷的Swin-DCUnet分割及评估方法[J].电子测量技术,2025,48(20):200-208

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-19
  • 出版日期:
文章二维码