基于半非负矩阵分解神经网络的异常检测方法
DOI:
CSTR:
作者:
作者单位:

1.广州铁路职业技术学院电气工程学院 广州 511300; 2.广东工业大学机电工程学院 广州 510006

作者简介:

通讯作者:

中图分类号:

TP274;TN98

基金项目:

广东省自然科学基金面上项目(2022A1515011559)、广州市教育局高校科研项目(202234875)、广州市高等教育教学质量与教学改革工程项目(2024CJRHJD001)资助


Anomaly detection based on semi-nonnegative matrix factorization neural network
Author:
Affiliation:

1.School of Electrical Engineering, Guangzhou Railway Polytechnic,Guangzhou 511300, China; 2.School of Electromechanical Engineering, Guangdong University of Technology,Guangzhou 510006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    异常检测旨在识别数据中的异常,在工业检测等领域中具有显著的应用价值。目前主流异常检测方法采用的是自编码器等无监督模型,这类模型采用全连接层或卷积层进行编码、解码的数据处理过程,会导致模型面临缺乏解释性、语义误差等问题。为此,本文提出将半非负矩阵分解模型和神经网络训练方式相结合,设计了一个用于异常检测的半非负矩阵分解神经网络。由于半非负矩阵分解模型具有“局部叠加构成整体”的特性,该网络能更好的保留语义信息,且具有可解释性。此外,该网络的特征矩阵作为权值随着网络训练而更新,这能有效解决传统半非负矩阵分解模型存在的局部最优解问题。在三个数据集上,测试了该网络的异常检测性能,实验结果表明其在应对连续数据时,比主流自编码器和变分自编码器方法的检测指标高3%,在离散数据上也取得了不弱于主流方法的效果;与基于传统半非负矩阵分解模型的异常检测方法相比,该网络在所有检测指标上均有提升,升幅最高达12%。该网络是利用传统矩阵分解模型构建神经网络的有益探索,能有效解决异常检测问题。

    Abstract:

    Anomaly detection aims to identify abnormal patterns in data, and it has significant application value in various fields such as industrial inspection. The current mainstream anomaly detection methods employ unsupervised models such as auto-encoder. These models use fully connected layers or convolutional layers for the data processing during encoding and decoding, which can lead to problems such as lack of interpretability and semantic errors. This paper proposes a combination method of the semi-nonnegative matrix factorization model and network training to design a semi-nonnegative matrix factorization neural network for anomaly detection. Due to the characteristic of the semi-nonnegative matrix factorization model that “local superposition constitutes the whole”, this network can better preserve semantic information and is also interpretable. Additionally, the feature matrix of this network is updated as weights during the training of the network, which effectively solves the problem of local optimal solutions existed in the traditional semi-nonnegative matrix factorization model. The anomaly detection performance of this network was tested on three datasets. The experiment results show that it outperforms mainstream auto-encoder and variational auto-encoder methods by more than 3 percentage points in continuous data, and achieves comparable results in discrete data. Compared with the detection method based on the traditional semi-nonnegative matrix factorization model, this network has significantly improved in all detection metrics, with the highest improvement reaching 12%. This network is a beneficial exploration that utilizes traditional matrix factorization model to construct neural network, and it can effectively solve the anomaly detection problem.

    参考文献
    相似文献
    引证文献
引用本文

韩威,吴黎明.基于半非负矩阵分解神经网络的异常检测方法[J].电子测量技术,2025,48(23):224-230

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告