面向发动机叶片缺陷检测的轻量化YOLOv11改进方法研究
DOI:
CSTR:
作者:
作者单位:

中国民用航空飞行学院航空工程学院 成都 618307

作者简介:

通讯作者:

中图分类号:

TN911.73;TP391.41

基金项目:


Research on a lightweight improved YOLOv11 method for aero-engine blade defect detection
Author:
Affiliation:

School of Civil Aviation Engineering, Civil Aviation Flight University of China,Chengdu 618307, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航空发动机叶片的缺陷检测是保障飞行安全的关键技术环节。传统工业内窥镜检测方法严重依赖人工经验,存在效率低、主观性强及微小缺陷易漏检等问题。为此,本文提出一种轻量化、高精度的YOLOv11改进模型,专用于发动机叶片缺陷的实时检测任务。研究中采集并构建了包含4类典型缺陷(弯曲、烧蚀、裂纹、材料缺失)在内的高质量工业图像数据集,并针对小目标、复杂背景及多尺度特性,构建CFES主干网络来增强语义信息的整合能力和减少计算量,采用ShuffleNetV2替换原始主干以减轻计算负担,引入BiFormer注意力机制提升特征表达能力,同时结合Dynamic-DCNv3增强检测头对复杂纹理与小尺寸目标的建模能力。实验结果表明,改进模型较基线模型在mAP@05提升至85.0%,参数量降低至1.7 M,具备更优的检测性能与边缘部署适应性,最终成功部署于内置芯片为RK3588的工业内窥镜平台,帧数维持在30帧左右,实现了高效、稳定的缺陷自动识别。该研究为航空维修现场的智能检测提供了可行方案,也为轻量化目标检测模型在工业嵌入式场景的应用拓展提供了技术支撑。

    Abstract:

    Defect detection of aero-engine blades is a critical technological step to ensure flight safety. Traditional industrial borescope inspection methods rely heavily on manual expertise, which often leads to low efficiency, strong subjectivity, and missed detections of subtle defects. To address these issues, this paper proposes a lightweight and high-precision improved YOLOv11 model, specifically designed for real-time defect detection of engine blades. A high-quality industrial image dataset was constructed, comprising four typical defect types—bending, ablation, cracks, and material loss. Aiming at the characteristics of small targets, complex backgrounds, and multi-scales, a CFES backbone network is constructed to enhance the integration ability of semantic information and reduce the amount of computation. Specifically, ShuffleNetV2 is employed as the backbone network instead of the original one to alleviate computational overhead, while the BiFormer attention mechanism is integrated to strengthen the feature representation capability. Additionally, a Dynamic-DCNv3-based detection head is employed to improve the modeling capability for complex textures and small-sized objects. Experimental results show that the improved model achieves an mAP@0.5 of 85.0%, surpassing the baseline model, while reducing parameters to only 1.7 M. This demonstrates superior detection performance and adaptability for edge deployment. The model was successfully deployed on an industrial borescope platform equipped with the RK3588 chip, where the frame rate remained at approximately 30 frames per second, achieving efficient and stable automatic defect recognition. This study provides a practical solution for intelligent on-site inspection in aviation maintenance and offers technical support for the application of lightweight object detection models in industrial embedded scenarios.

    参考文献
    相似文献
    引证文献
引用本文

敖良忠,牟晋仟.面向发动机叶片缺陷检测的轻量化YOLOv11改进方法研究[J].电子测量技术,2025,48(20):48-58

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-19
  • 出版日期:
文章二维码