融合决策树和轻量化神经网络的调制识别方法
DOI:
CSTR:
作者:
作者单位:

郑州大学电气与信息工程学院 郑州 450001

作者简介:

通讯作者:

中图分类号:

TN911.3;TN911.7

基金项目:

河南省科技攻关计划(242102211107)项目资助


Modulation recognition method integrating decision trees and lightweight neural networks
Author:
Affiliation:

School of Electrical and Information Engineering, Zhengzhou University,Zhengzhou 450001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有决策树方法设置门限值对先验知识依赖大,神经网络方法在调制识别领域存在的模型尺寸大,参数量高的问题,本文提出一种融合决策树的轻量化神经网络调制识别方法。该方法通过引入决策树思想,对数据集的混淆矩阵进行分析,根据不同的信号类别特征将数据集划分成了不同的子类,并使用轻量化卷积神经网络进行分层识别;为了在分层识别中对每个子类进行有针对性的识别,通过数据清洗和特征提取来获取每个子类特有的信号特征。实验结果显示,在公开数据集RML2016.10a上,该方法在信噪比为0~+18 dB范围内的整体识别率为90.03%,相较对比模型最高提升了7.49%,当信噪比为18 dB时,识别率达到95.03%;且模型参数量仅为86 342,与同精度模型相比降低了96.85%。

    Abstract:

    Aiming at the problems that the existing decision tree methods rely heavily on prior knowledge in setting threshold values and the neural network methods in the field of communication signal recognition have large model sizes and high parameter counts, this paper proposes a lightweight neural network modulation recognition method integrating decision trees. This method introduces the idea of decision trees to analyze the confusion matrix of the dataset, divides the dataset into different subclasses based on the characteristics of different signal categories, and uses lightweight convolutional neural networks for hierarchical recognition. To achieve targeted recognition for each subclass in the hierarchical recognition process, data cleaning and feature extraction are employed to obtain the unique signal features of each subclass. Experimental results show that on the public dataset RML2016.10a, the overall recognition rate of this method reaches 90.03% within the signal-to-noise ratio range of 0 to +18 dB, which is 7.49% higher than the highest recognition rate of the comparison models. When the signal-to-noise ratio is 18 dB, the recognition rate reaches 95.03%; and the model parameter count is only 86 342, which is 96.85% lower than that of models with the same accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王玮,王浩哲,胡坡,赵振禹,王俊珏.融合决策树和轻量化神经网络的调制识别方法[J].电子测量技术,2025,48(20):125-132

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-19
  • 出版日期:
文章二维码