基于动态自适应特征学习的水下鱼类识别方法
DOI:
CSTR:
作者:
作者单位:

1.海南热带海洋学院崖州湾创新研究院 三亚 572022; 2.海南热带海洋学院海洋科学技术学院 三亚 572022

作者简介:

通讯作者:

中图分类号:

TN919.8;TP391

基金项目:

国家自然科学基金(42266005)、海南省院士创新平台科研项目(YSPTZX202507)、海南省科技计划三亚崖州湾科技城科技创新联合项目(2021CXLH0002)、三亚市科技创新专项项目(2022KJCX83)、海南热带海洋学院崖州湾创新研究院重大科技计划项目(2022CXYZD003, 2023CXYZD001)资助


Underwater fish recognition method based on dynamic adaptive feature learning
Author:
Affiliation:

1.Yazhou Bay Innovation Institute, Hainan Tropical Ocean University,Sanya 572022, China; 2.College of Marine Science and Technology, Hainan Tropical Ocean University,Sanya 572022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水下复杂环境中鱼类识别易出现误检与漏检的问题,提出了一种基于YOLOv8n的动态自适应特征学习的识别方法FD-YOLO。首先,在主干中设计将多尺度并行卷积与具备区域自适应调节的RFA结合,构建MRFA模块增强对鱼类细微特征差异的学习能力。其次,在颈部中提出将双通道融合结构与CARAFE结合,构建ECARU模块作为上采样模块动态调整特征权重,提升鱼类局部细节重构。最后,为抑制样本分布不均导致的识别偏差,引入具有动态调节因子的Varifocal Loss作为损失函数,提高对水下鱼类位置的判定能力。实验结果表明,与YOLOv8n相比,FD-YOLO的精确率、召回率、mAP50-95分别提升了3.6%、4.9%和3.7%,参数量和计算量分别降低至2.5 MB和6.8 GFLOPs。该研究结果能够为水下目标自动检测和监测提供技术支持和参考。

    Abstract:

    To address the issues of false detections and missed detections in underwater fish recognition under complex environmental conditions, this paper proposes FD-YOLO, a recognition method based on YOLOv8 incorporating dynamic adaptive feature learning. First, in the backbone, we design a MRFA module that combines parallel multi-scale convolution with RFA to enhance the network′s ability to capture fine-grained differences in fish features. Second, in the neck, we introduce the ECARU module, which integrates a dual-channel fusion structure with the CARAFE mechanism. This upsampling module adaptively reweights features to improve the reconstruction of local fish details. Finally, to mitigate recognition bias caused by class imbalance, we adopt Varifocal Loss, which includes a dynamic adjustment factor, to improve the accuracy of underwater fish localization. Experimental results demonstrate that, compared with YOLOv8n, the proposed FD-YOLO achieves improvements of 3.6%, 4.9% and 3.7% in Precision, Recall and mAP50.95, respectively. Moreover, the parameter size and computational cost are reduced to 2.5 MB and 6.8 GFLOPs. These findings demonstrate that the proposed method can provide technical support and reference for automated detection and monitoring of underwater targets.

    参考文献
    相似文献
    引证文献
引用本文

朱晓龙,李超凡,陈郁隈,陈祥子,褚文敬.基于动态自适应特征学习的水下鱼类识别方法[J].电子测量技术,2025,48(23):30-40

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告